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GRT Equations of the Earth’s Rotation
V.A. Brumberg

In spite of many attempts we still have no reliable GRT equations of the Earth’s rotation
to be used in practice (see, for example, Klioner, 1996 and references therein). Meanwhile
the Newtonian theory of the rigid Earth rotation is presently advanced so far that to take
into account the GRT effects is of practical necessity (Bretagnon et al., 1997).

The most modern theoretical results concerning the problem of rotation in the GRT
framework have been obtained by Damour, Soffel and Xu (1993). But for practical appli-
cation one should have a specific system of ordinary differential equations describing the
rotation of the Earth in some definite coordinate system. The first question is whether
one has to forget all results obtained in this problem in the framework of Infeld and Fock
schools and to apply inclusively the DSX approach? It seems that one cannot treat all
former results as pure formal being of no interest nowadays. First of all, the GRT approach
developed by Infeld is the most economical one as compared with all other approaches.
Indeed, the post-Newtonian equations of translatory and rotational motion of celestial
bodies may be obtained from the action principle resulting both in the field equations and
the equations of motion. It was shown by Infeld for the delta-function stress-tensor (Infeld
and Plebanisky, 1960) and extended by Brumberg (1972) for the liquid body stress-tensor.

In this approach one has to deal only with components h(()%), hz(?) and h(()?;) whereas all

other existing techniques demand h((;é) as well (numbers in parentheses indicate the order

of smallness with respect to ¢?/c? or U/c?, ¢ and U being the characteristic velocity of
the celestial bodies and Newtonian gravitational potential, respectively). The first three
components may be expressed only in terms of Newtonian potential and Newtonian vector-
potential. This means that in post-Newtonian celestial mechanics one may deal without
BD moments at all (needless to say that BD moments are useful to present the GRT
equations of motion in more compact form but they are not needed to derive these equa-
tions). This is evident for BRS treatment (one may remember that the post-Newtonian

BRS equations of light propagation do not demand hgé) as well). As for GRS treatment
is concerned one may derive GRS equations also just from the action principle written in
GRS or by transforming BRS equations using BRS— GRS post-Newtonian transformation.
In both cases the GRS component ﬁé%) is not needed. One of the consequences of this fact
is that the present IAU (1991) resolutions on reference systems and time scales should be
specified by adding only hgj-) (and not h((;é)) to the explicitly given h(()%) and hl(.jg-).

There is no doubt that GRT equations of the Earth’s rotation have the simplest form
in DGRS, dynamically nonrotating GRS. It seems desirable to derive the corresponding
equations in two independent ways, i.e. directly in DGRS and in BRS accompanied by
BRS— GRS transformation. In applying latter approach one should take into account the
transformations relating BRS and GRT quantities such as angular velocity, rigid body ve-
locity distribution, quadrupole moments, mutual distances and so on (Brumberg, 1995a,b;
1997). In other words one should derive the GRT equations of the Earth’s rotation just
in the ways as were applied by Brumberg and Kopeikin (1989) to derive Earth satellite
equations of motion.



In dealing with the BRS approach one starts with the BRS equations of the Earth
rotation (see Brumberg, 1968, 1972 with improvements in Pushkarev and Abdil’din, 1976)

sk, .
with |
Sk = Ifwh — Iywp + ¢ Ry, (2)

and right-hand members Q¥, beginning with the leading Newtonian quadrupole terms

is GMA s ;
Q]E(N) = 3eijrlp § L ThATpa + - (3)
A#+E ' F

Here and everywhere below the Einstein summation rule from 1 to 3 is applied to each
repeated latin index. Capital latin letters relate to the Earth (E) and disturbing bodies (A)
such as Sun and Moon for the first instance. The use of the Levi-Civita fully antisymmetric
symbol

Eijk = (Z - j)(] - k)(k - Z)
simplifies algebra manipulation due to the identity

€ijk€imn = 5jm6kn - 5jn5km ’
d;; being the Kronecker symbol. In terms of €;;;, the component i of the vector product
c=axbisc =g palbr.

The BRS quantities occurring in the Newtonian part of (2) may be expressed in terms
of their GRS counterparts as follows (Brumberg, 1995a,b):

. _ . 1 .
I?Ek(t*) = [1 — ZC_QU(t,xE)] ]}Ek(u) — 50 UE (UEI + U%I};m)—

— ¢ 2 imn B + Ermn 2 F™ (4)
w};(t*) = LD}E(U) + 6_2 [—(%U% —+ UE(XE))L:}% + 8,'ij](:)§ + FZ] , (5)

t* being a moment of TCB= ¢ related to TCG= u by the equation
u=t"—c?A, A= 0 + Ug(xp) (6)

and F" representing the geodesic rotation vector. Substituting (4) and (5) into (2) one
gets o X
Sk — Juok — Jikgr 4 c2RE (7)

Equations (1) may be regarded as related to ¢t*. Changing the independent argument in
accordance with (6) one obtains the DGRS equations of the Earth’s rotation in the form

sk .
“E Qb ®



with X .
Qf = Qh(1+c?A). (9)

It remains to convert these equations into GRS™ system rotating with the Earth. This
system has the same time argument u but its spatial coordinates W* are resulted from the
three-dimensional rotation

W' = Pyt (10)
This transformation involves
Ty =PySk,  ML=PrQY, Fi=PyFF, QL = Ppok (11)
and constant inertia coefficients j;;]
Jy = P, P15 . (12)

Identifying the statial axes of GRS™ with the principal axes of inertia of the Earth one
gets the diagonal matrix of inertia coefficients with

J=4B+C-4), JP=3C+A-B), JP¥=3A+B-0C), (13)

A, B, C being the principal moments of inertia. Functions T% are determined by relations

Tp = J5Qp — JgQu +c Ty, T = PuRj (14)
and satisfy the equations
dT: A ;
d—UE + i1, QLTE = M, . (15)

Therefore, GRT equations of the Earth’s rotation replacing the classical Euler equations
are of the form

L Qo dO o _
FEE - TR e T 0500 = N (16)
Nj = Mp — 72 (T + e Th ) (17)
Remembering (Brumberg, 1995a) that
Pz’k = 52'ijij1<; (18)
one finds N ' )
]% + EiijJETg = PikRI]i; (19)
and finally
N = P (@ - o Rb). (20)



The value of S% given in (Brumberg, 1968, 1972; Pushkarev and Abdil’din, 1976) should
be corrected for the difference of the BRS Earth velocity distribution from the rigid body
distribution. Indeed, the DGRS rigid body Earth velocity distribution

@i == aijk@%wk (21)

involves the BRS distribution (Brumberg, 1995a)

7 T 7 k k —2 r1
V' — v = gipwp (2 — o) + 2 fp (22)
with
T 7k 1 i,k k 1 1(:1 ..k -k ik k
fE = gijk@ETE — |:§(G’E/UE + aE'UE) + Z(U/ETE + U/ETE) + D :| TE—
1 .4 k J.m 1. m.,.m 7k 1 m,_.m 7k
— SUEEkimVEWETE + 5VETEEijkWEVE + 5TETE CijkWEaE (23)
and
(I)j_(js_sj)s_( mns+2mm)j+§ .n,m (24)
B = a’ETE a’ETE CUE gmnstwErE CLETE CUE 4€anCLET'E .

Therefore, the contribution to RY due to f% ignored in (Brumberg, 1968, 1972; Pushkarev
and Abdil’din, 1976) is as follows:

0f Ry = 5ijk:/ pripgfh d’e =
(E)
=315 [_5kij(ajév% + AUl + Eamn VU EWE) + v (vEwh — vEwi) [ (25)

It remains to take into account the correction terms due to pressure p;; inside the Earth.
Proceeding as in (Pushkarev and Abdil’din, 1976) let us denote

p) :/ piyd’x,
(E)

E m m
pE) s = /( @ =B, (26)

E m m n n
p(<i3'mn> = /(E)(x — ) (" — xE)pidefB-

From the general expressions for S§ and Q% given in (Brumberg, 1968, 1972) it is seen
that the corrections due to pressure are

E E
20,5k = ni (VEP oy + EmnsBD iy ) (27)

and

GM 4 ; 3 :
2 ko Z (E) (E)
c 5PQE = Ekij 7“3 (p<ssi>TJEA + T2 p<ssjn>TlEAT7ELA> +
EA

A+E EA
+ Ekij (UE UEP(<j)m> + 5mnswEUEp(<j)ms>> : (28)
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Combining these corrections with the value of S % and Q’f; found in (Brumberg, 1968, 1972;
Pushkarev and Abdil’din, 1976) one gets for the post-Newtonian quadrupole approximation
(omitting all terms dependent only on the internal structure of the Earth to affect its mass
and quadrupole moments and treating the Sun and the Moon as the point masses)

RY, = 8 Rl + 26,55 + Luh(Thwh — TFwL) + €smnvgw%51jk1§v%+
GMA i z 1 .
+ Z " [3(IE — Iikwt) — rz—skij(Bv}; —4’UA)IE7“EA
AxE  PA EA
1
2 5kwIE (UATEA + UATEA) + 2 5szIE TEATEATEAUA (29)

and

Q= Qv + 0,Q% + ¢ 2eimnvwivs (Wi I — whIl)+

GM '
ety rs—A{<4v% =30 (Wi Ty — wplg" + Sjmnriswi ) riat+

4+ 1o fis( g8 pd + 3 +
5€kijlg | —VATEA — UATEA 2 TEAT’EATEAUA

EA

-2 Z GMA{ €kUIET’EA7’EA[%(3U2E + 3v% — 8upv) — Ua(xa)]+
A#E
0 TEA (92

+ Lepiufvg I Lo 2 5T (Tp(xp)). 30
BT o b e e 1 P (e ()

Before proceeding further let us remind the Newtonian relation
I§ = (exinTg + erjnl i) (31)

(applied in fact to DGRS quantities) and the expression for the geodesic rotation

. GM . N
FF = 5E€kij Z A (31}3}3 — 4vf4> oA (32)
A#£E EA
or else oM
m A n n n
Em P =3 Y =3 [(47112 — 3up)rpa — (0% — 30E)rEal. (33)
A£E TpA

Then one should estimate the analytical order of smallness of the corresponding terms.
If M is a characteristic mass of a body, R is its characteristic size, ¢ is its characteristic
velocity and D is a characteristic distance between bodies, then evidently

GM4 ~ ¢*D, wg ~ q/R, wg ~ q*/D?, Ip ~ MR?, Ip ~MqR. (34)
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R and T} should be determined up to the order M¢3R?/D? inclusively in correspondence
to the order ¢ 2M¢*R?/D? in Q% and N§. The pressure integrals may be taken by a
technique due to Fock (1955). On the one hand one has the Newtonian internal equations
of motion

PEE—P oz, paxi+

82UE(XE)>( s s ) _ 8}7@« .

ox', 0% TE (35)

- n 2 i .8
+ p<€1n3w - wE(S’iS +wEwE -

The first two terms mutually cancel within adopted accuracy. The third term affecting the
internal structure terms may be removed in the process of integration. On the other hand
there exist identities

2 ) ’ - ( ! r ir)a 36
Pik ¥ ox" e gz oz \' Pk TP (36)

i apk?" k 6pi7" 0k apjr
Z ox” i 81‘7"> sae ox"
and so on. In actually using these identities z* should be relaced by z*—z%. The right-hand

members of (36), (37), etc., give no effect in integration. Moreover, within the quadrupole
approximation only < p;r > has an actual contribution. There results

. . o, . .
227 pir, + ? (w = 5o <$J9€Zpkr + 2 akp — 90190]{%) , (37)

P<ik> = IE WE (IEWE + IJI%SWZE) - %(Igsgkns + ]gsgim)w%‘f’

GMA i 3 S %

9.2
A+£E TEA 2TEA

Performing transformation (4) and (5) into (2) one gets the correction

vh +3Us(xp)| (IFws — I50k) — vhvilrok+
Lopan (’UEI + v’fEim“) + FR3 — FoTks 4

Combining this expression with the substitution of (25) into (29) one has
Rly = epmn (9315 - 0315 ) F+
+ 1 (sinkeomg ok + Tmap — Igmaly ) vpop+

GM A Tks ] j I\ .1
+ Z R [(2 kwl _%581'1'[1];“ _5kstE)(3UJE—4UJA)TEA+

A£E TEA
1 74 7] 7 J 7is..]
+ 5(enijl + erisly ) (v — V)T + 22 EkijIETEATEATEAVA |- (40)
EA



Taking into account estimations (34) one gets the derivative of (40) within the accuracy
Mq*R? / D? as follows:

AN TS5 ~s Fns AN TSS A8 Tns m
+l . ..AisAj +Ikm n Imn ~k mn+
5 |\ €ink€smjl pWE g Wp —1lp WE ) VEUR
+ 1 (simkeoms TEET + T — Tpndly ) vpop+

GMy s S i . Ny
+>, [(2 crigls — Seais 15 — erai 1) (Buh — 40l )ripat

7“
A+£E EA
1 2is .Aij 7 7 \,.8 s J s n n
+ 5(5kijIE + EkisIE)('UE — UA)TEA + —2 5 5kijIErEATEATEAUA_
EA
1 718 ~J Tk ~k
-3 <€ink58ij1E‘swE + I o n Imn ) (UgT%A + U%TgA)] . (41)

Using (31) one gets after some algebra manipulation
e G415 418 ™
+ (0BTl - OB IE") OpF™ + enmn (S315 — SpIF) F+
GM
LI Y ot G (407 — B0R)rhad + O (403 — 303 el —
A£E EA
— 2(407 — 30T AWK + 2 ine sk (AV) — BUL )T 40N 4 EpnrEsiz (407 — 3UL)T 4R+

m N n . _,m ~J
+ 20T AL — Ok (VAT T4 + VAT S L)Y — ErnkCami (VAT 4 + VAT )05+

3 . . o
AN T J ~7 ] s ~k Kk s m m
+ 2 (5sjk5rinwE7“EA7“EA + OkrWETEATEA — WETEATEA)TEAUA]+
EA

+ g uph | (e T + 2 mi I — exmilE)0R + (chmsd” + 3ejmedly) 1] +
+ é (smksstIE wE + Igmw% Im" ok ) VEUE . (42)

To calculate M one should start with the transformation of the Newtonian part (3) re-
placing not only the BRS inertia moments by (4) but also the BRS distances in accordance
with the relations (Brumberg, 1995b)

rhp(t?) = wh(w) + 2 [vErip(Sok - v)) + ek FIrhp = Up(xp)rip—
— aBTRET AR + %T?AEGE} (43)
and |
rap(th) :wA{1+c_2 [w—gvgw?(%v% —vwi — Up(xg) — 1aEwA]} (44)
A



with Newtonian values in relativistic parts
GM 4

3
azp A

i i
waA =TEA, Wp = —Tpa =Tp —Tg, ap = WA (45)

E
and Wi = Pjw’ in accordance with (10). Transformations (4) and (43) involve the
corrections d;Q% and 6pQ%,, respectively,

Qhvy = Q) +61Q% + 0pQ% (46)
with oM
A ris A g j
A#£E A

GM,y _ .
51Q% = =3¢ e Z w—5Awf4wf4 [QUE(XE)I + 30E (VR IE" + vpIE") +
A£E A

4 (eimn I3 + gsmnfgm)] (48)

and

SpQfy =3¢ ey Y —=—

A#£E wh

WHwy [3[7E(XE) + %wflfag—i—

+w—20g‘w2”(vﬁ 1vf, )}—k wA(wAaE—I—wAaE)
A

m,,.m J .5 s .7 1. m_ m/( ,J . .8 s ]
—vgw} (wyvh +wivy) + svpwi (wyvg + wivg)+

+ F™w% (€ jmnw% + Esmnt’y) } (49)
One should add to this one more correction due to transformation (9) of the time-argument
, _ GM ;
5:Q% = 3¢ e IS <%v,29 + UE(XE)> Z w—5Awf4wf4 . (50)
A#£E A

Returning to (30) and using (31) one gets
Q’fE - @]E(N) +6:Q% +dpQk + 6,Q% + 5pQI}i; + ¢ eV Wi (w?EIg“ — w%[}f)—k

GM g
_2 Z A m S — EI +5jmn5kisw}}[g)x

A+E EA

m m S S m m._.S 3 S m
X [(4% — 30 )rpa — s(VATEA +VETEA) + QTTEATEAT%JAUEA] +

EA
-2 Z GMA{ »SMIETEATEA [%(3@% + 304 — Sup) — Ua(xa)]+
A+E
*rpa } 1 s 82 _ 2

+ 8]“ v UF I + 5¢ E]ﬂ IJ Urp(xg . 51

IYAYE 81‘E6$E8$E8$E 2 I~ F a axE ( ( )) ( )
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Combination of (28), (38) and (47)—(49) results in

51Q% + 6p Qb + 5:Q% + 0, Q% + ¢ 2l (wh I — whIls) =
=c” [skvavE w2 — Wk epmnvBwb ot I5 4
+ 0w (erijvp I Wl — Serijvp IR why — tepvplEwh)+
+ oo (IEmay — Igmal — sknjsmrsfgwg)} +

GM
+ 3¢ % Z o A[( 2+ 2Up(xp)) [5w)wh + 1 TEw,wiwyap+
A4E A

m

+1I wA(wAaE+wAaE) I vaA(wi‘vj—}-wjvi‘)—

5
]m i..m n 1, n n
I BV WS + IEwAwAUEwA ( VA — VR W |+

3GM
+etEm YT Aw;(fgs — IPswh). (52)
A+E Wa

Substituting into (51) this expression together with

04TEA 1
Y a = _w_g((smn(;sj + 6m56nj + 5n55mj)+
A
15 ;
+ Opjwiwy + 0w w}) — w—7ij{LwAwAwf4
A

and

0? _ 2 - _ GM 4 3
— (U = 2a%a3 2U0 Ois
Ox',0z5, (Ue(xp)) apap + E(XE)é w? ( + AwAwA)

one gets finally
Qb = Q) +¢ [gkijv%v’gf%m

i, .8 s yrk, J 1 r 7Jjs, .r 1 rs, J
—|—UE¢UE(ET¢J'UEI W — _5/€ijUEIE W — §5kijUEIE wE)+

k
Wg — WEErmnVp WEVEIE +

1 k k: jS -
+ Logup (IEmwy — Ig™w 5knj5mrslfgw}:3)]+

GM .

—2 A k k 1]

g wply —WEIE" + €jmneriswril g ) X
A#£E EA

s m 1 l
55 TEATEATEAVA|T

m m\,.S 1 s ,.m m,.s
x [(4UA — 3V )rpa — 5(VATEA T VA TEA) + 92
EA



, 3GM
+ 0726;%]']? Z S A
A+£E A

1 J s s J 2 1 .7J,.8 .m_m 1/..s..7 7.8 2
+ 3 (whag +whap)wy + swiwiwiay — g(Vivg +VRvE)wL+

1.7 .8, .2 1. m m{(,s,.7 J ..
+§vaEwA—§vaA(vAwA—|—UAwA)+

+ Jow (whvh + whoh) + 5o (VFWE) (v — vp)wludws |+
A
3GM
+ ¢ 2F™ Z " ij([?w’} — I7swh).
A£E A

From (19), (42) and (53) one has

i _ D Ak —2 ~k Tms ~m Tks\ ~s AN 7SS AS Tns
Ng = sz{QE(N) +c [(WEIE — Wyl )0p — emn (VTR — wiplE")+

3GMy - .
+ > TRy — Ik Pt
A+£E A

1 -2 r,s ~2 r. s ~n ~k m,r AN ~S T8 AT AN
+ §C (E:m]m«'UE'UEwE - €mm=UEUEwEwE + gkmrUE UEwEwE - EmanEUEwEWE

~

GM [i8 07
9 A 1 .
+e Py = [(5ink55mj + 3Eemn€ikj + EskmEing) [ Op+

A+E "rA
3 - LI (0 — 30B)risa + ¢ e (SR 1E - 0pTE ) T
_ - 3G My _ _ :
+ ¢ e I3 s [(21}% + 3034 — 2o — Ua(xa) + Ug(xp))w)wh+
A#£E A

1 J s s J 2 1. .73,.8. .m_m 1/.s,.7 ] 2
+ 3(whag +whap)wy + swiwiwiay — g(Vivg +VyvE)wi+
1,7 .8, 2 1. m, . my(,s,,.] VI
+ SvpvEwy — vFw} (viw) + vhw)+

+ 3R (W + wivh) + 5o (VEWE) (0 — vEwhwhws |

2w?
In transforming to the GRS™ quantities one has
Nb = Npy + 072 [(V 5" — QB JE) Q% — imn (U3 S5 — 0J5°)+

3GMA s ( Jisyrrm TMmsYrst m
+ > AW W - T WA)}F +
A#£E A
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+ 3 (Qpdy - 0pJE) @V - 8VEWh — (4Vi - 3V W] }+

_ s X (2 3GM S _ -
+c e g Y o A [(QV,% +3VE - IVPVY — Ua(xa) + Up(xp) ) WAWS+
A4E A

+ L WAL + WAL W + AWAWAW R AR — L(ViVE + ViV wi +
+ 2VEVEWS — SVEWR (VAW + Vi3 +

myxsm RV sYsJ 5 myysm n n n ] s
+ SVIWE(WAVE + WAVE) + 55 (VEWE)(VE = V) WAWE W3] (55)
A
with oM
7 Ims A s n
Niny = 3cimnd5° Y SSEWAWE (56)
A#£E A

In addition to the GRS quantities introduced above in (10), (11) and (45) the right-hand
member (55) contains also

Vi = Pk, Vi = Pyl Al = Pial. (57)

It is easy to see that for the spherically symmetrical Earth with jg = 0;; Jg the right-
hand sides (55) vanish as stated in (Brumberg, 1995a). Moreover, the coefficient in F™
vanishes in virtue of equations (16) taken in the Newtonian approximation. The terms
of order ¢c=2M¢* quadratic in the angular Earth velocity vanish as well. It may be easily
checked that the terms of the order ¢=2Mq*R/D staying under the sum Z(l) mutually
cancel. The terms of order ¢ 2M¢*R?/D? depending on the derivatives of the angular
Earth velocity were cancelled in combining (42) and (53). The direct GRT perturbations
in (55) are given by the terms of order c=2M¢*R?/D? staying under the summation sign
2(2). Hence, the right-hand member (55) consists of the Newtonian part (56) (needless to
say that this Newtonian part of order M¢?R?/D? given here only in the quadrupole ap-
proximation should be computed in actual calculations with the whole necessary accuracy
quite independently of relativistic terms) and the relativistic perturbations under the sign

2(2). In result, the first of equations (16) takes the form

dQlE N2 A3 1
with
_ GM 4 o
A+E

- - )
~ Oaloca) + Ulxe) + SWEAR + 5oy (VEWR)VE = VENWR| Wi+
A
| BOVEAL < WhAD) — 03V + VIVE) + VEVE wi+
+ SVIWE(WAVE + WiVE) — sVEWE (VAW + ViW3) } (59)
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GMyu

Az%E A
and GM GM
Ua(xa) =Y —2,  Uplxp)=y —2. (61)
TAB TEA
B#A A#E

Two other equations of (16) are obtained by the circular permutation of indices 1, 2 and
3 and letters A, B, C denoting the Earth principal inertia moments (not to be mixed with
letters A and B designating celestial bodies such as Earth (E), Sun (S) and Moon (M) ).

Equations (58) are obtained here only up to the order ¢c=2Mq*R?/D? inclusively in
the relativistic right-hand members taking into account only quadrupole inertia moments
of the Earth and treating the Sun and the Moon as point masses. This seems to be
quite sufficient for the present day applications. The technique employed in deriving these
equations enables one easily to modify them. For example, if one still prefers to deal with

TCB it is necessary to remove the correction (50) from the right-hand members starting
with (53).

Conclusion

This paper may be regarded as an up-to-date version of the old results by the author
(Brumberg, 1962, 1972). The equations given there were written in terms of the BRS
quantities. The contributions due to the Earth’s pressure were given only in the integral
form and actually were neglected in the final equations. In particular, this is the reason of
the appearance in the right-hand members of a large term of order ¢ 2M¢*. In the present
paper this term occurs in (30) and then cancels due to §,Q% correction in (52). Pushkarev
and Abdil’din (1976) demonstrated the importance of the Earth’s pressure contributions
removing this term from the equations of rotation of the spherically symmetric Earth.
Written, as before, in terms of the BRS quantities their equations still contain a lot of non-
physical terms (in particular, spherical symmetry was considered by them just in BRS).
The present paper improves the results (Brumberg, 1968, 1972; Pushkarev and Abdil’din,
1976) by more rigorous treatment of the pressure contributions and by expressing the final
equations in terms of the GRS quantities (including the GRS framework for rigid body
velocity distribution, Earth’s moments of inertia and angular velocity). Of course, it is
desirable to derive the GRT Earth’s rotation equations by some other technique and to
compare the final results. At the same time. the equations given here may be already
directly applied to take into account the GRT corrections in the practical analysis of the
Earth’s rotation problem.
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