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GRT Equations of the Earth’s Rotation

V.A. Brumberg

In spite of many attempts we still have no reliable GRT equations of the Earth’s rotation
to be used in practice (see, for example, Klioner, 1996 and references therein). Meanwhile
the Newtonian theory of the rigid Earth rotation is presently advanced so far that to take
into account the GRT effects is of practical necessity (Bretagnon et al., 1997).

The most modern theoretical results concerning the problem of rotation in the GRT
framework have been obtained by Damour, Soffel and Xu (1993). But for practical appli-
cation one should have a specific system of ordinary differential equations describing the
rotation of the Earth in some definite coordinate system. The first question is whether
one has to forget all results obtained in this problem in the framework of Infeld and Fock
schools and to apply inclusively the DSX approach? It seems that one cannot treat all
former results as pure formal being of no interest nowadays. First of all, the GRT approach
developed by Infeld is the most economical one as compared with all other approaches.
Indeed, the post-Newtonian equations of translatory and rotational motion of celestial
bodies may be obtained from the action principle resulting both in the field equations and
the equations of motion. It was shown by Infeld for the delta-function stress-tensor (Infeld
and Plebańsky, 1960) and extended by Brumberg (1972) for the liquid body stress-tensor.

In this approach one has to deal only with components h
(2)
00 , h

(2)
ij and h

(3)
0i whereas all

other existing techniques demand h
(4)
00 as well (numbers in parentheses indicate the order

of smallness with respect to q2/c2 or U/c2, q and U being the characteristic velocity of
the celestial bodies and Newtonian gravitational potential, respectively). The first three
components may be expressed only in terms of Newtonian potential and Newtonian vector-
potential. This means that in post-Newtonian celestial mechanics one may deal without
BD moments at all (needless to say that BD moments are useful to present the GRT
equations of motion in more compact form but they are not needed to derive these equa-
tions). This is evident for BRS treatment (one may remember that the post-Newtonian

BRS equations of light propagation do not demand h
(4)
00 as well). As for GRS treatment

is concerned one may derive GRS equations also just from the action principle written in
GRS or by transforming BRS equations using BRS→GRS post-Newtonian transformation.

In both cases the GRS component ĥ
(4)
00 is not needed. One of the consequences of this fact

is that the present IAU (1991) resolutions on reference systems and time scales should be

specified by adding only h
(3)
0i (and not h

(4)
00 ) to the explicitly given h

(2)
00 and h

(2)
ij .

There is no doubt that GRT equations of the Earth’s rotation have the simplest form
in DGRS, dynamically nonrotating GRS. It seems desirable to derive the corresponding
equations in two independent ways, i.e. directly in DGRS and in BRS accompanied by
BRS→GRS transformation. In applying latter approach one should take into account the
transformations relating BRS and GRT quantities such as angular velocity, rigid body ve-
locity distribution, quadrupole moments, mutual distances and so on (Brumberg, 1995a,b;
1997). In other words one should derive the GRT equations of the Earth’s rotation just
in the ways as were applied by Brumberg and Kopeikin (1989) to derive Earth satellite
equations of motion.
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In dealing with the BRS approach one starts with the BRS equations of the Earth
rotation (see Brumberg, 1968, 1972 with improvements in Pushkarev and Abdil’din, 1976)

dSk
E

dt
= Qk

E (1)

with
Sk
E = IiiEω

k
E − IikE ωi

E + c−2Rk
E (2)

and right-hand members Qk
E beginning with the leading Newtonian quadrupole terms

Qk
E(N) = 3εijkI

is
E

∑
A 6=E

GMA

r5EA

rsEAr
j
EA + . . . . (3)

Here and everywhere below the Einstein summation rule from 1 to 3 is applied to each
repeated latin index. Capital latin letters relate to the Earth (E) and disturbing bodies (A)
such as Sun and Moon for the first instance. The use of the Levi-Civita fully antisymmetric
symbol

εijk = 1
2 (i− j)(j − k)(k − i)

simplifies algebra manipulation due to the identity

εijkεimn = δjmδkn − δjnδkm ,

δij being the Kronecker symbol. In terms of εijk the component i of the vector product
c = a× b is ci = εijka

jbk.
The BRS quantities occurring in the Newtonian part of (2) may be expressed in terms

of their GRS counterparts as follows (Brumberg, 1995a,b):

IikE (t∗) =
[
1− 2c−2Ū(t,xE)

]
ÎikE (u)− 1

2
c−2vmE (viE Î

km
E + vkE Î

im
E )−

− c−2(εimnÎ
km
E + εkmnÎ

im
E )Fn (4)

and
ωi
E(t∗) = ω̂i

E(u) + c−2
[
−
(
1
2v

2
E + ŪE(xE)

)
ω̂i
E + εijkF

jω̂k
E + Ḟ i

]
, (5)

t∗ being a moment of TCB= t related to TCG= u by the equation

u = t∗ − c−2A , Ȧ = 1
2v

2
E + ŪE(xE) (6)

and F i representing the geodesic rotation vector. Substituting (4) and (5) into (2) one
gets

Sk
E = ÎiiE ω̂

k
E − ÎikE ω̂i

E + c−2R̂k
E . (7)

Equations (1) may be regarded as related to t∗. Changing the independent argument in
accordance with (6) one obtains the DGRS equations of the Earth’s rotation in the form

dSk
E

du
= Q̂k

E (8)
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with
Q̂k

E = Qk
E(1 + c−2Ȧ). (9)

It remains to convert these equations into GRS+ system rotating with the Earth. This
system has the same time argument u but its spatial coordinates W i are resulted from the
three-dimensional rotation

W i = P̂ikw
k . (10)

This transformation involves

T i
E = P̂ikS

k
E , M i

E = P̂ikQ̂
k
E , F i = P̂ikF

k , Ω̂i
E = P̂ikω̂

k
E (11)

and constant inertia coefficients Ĵ ij
E

Ĵ ij
E = P̂irP̂jsÎ

rs
E . (12)

Identifying the statial axes of GRS+ with the principal axes of inertia of the Earth one
gets the diagonal matrix of inertia coefficients with

Ĵ11
E = 1

2 (B + C −A), Ĵ22
E = 1

2 (C +A−B), Ĵ33
E = 1

2 (A+B − C), (13)

A, B, C being the principal moments of inertia. Functions T i
E are determined by relations

T i
E = Ĵss

E Ω̂i
E − Ĵ is

E Ω̂s
E + c−2T i

E , T i
E = P̂ikR̂

k
E (14)

and satisfy the equations
dT i

E

du
+ εijkΩ̂j

ET
k
E = M i

E . (15)

Therefore, GRT equations of the Earth’s rotation replacing the classical Euler equations
are of the form

Ĵss
E

dΩ̂i
E

du
− Ĵ is

E

dΩ̂s
E

du
− εijkĴks

E Ω̂s
EΩ̂j

E = N i
E (16)

with
N i

E = M i
E − c−2

(
Ṫ i
E + εijkΩ̂j

ET
k
E

)
. (17)

Remembering (Brumberg, 1995a) that

˙̂
Pik = εimjΩ̂

jP̂mk (18)

one finds
Ṫ i
E + εijkΩ̂j

ET
k
E = P̂ik

˙̂
Rk

E (19)

and finally

N i
E = P̂ik

(
Q̂k

E − c−2
˙̂
Rk

E

)
. (20)
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The value of Sk
E given in (Brumberg, 1968, 1972; Pushkarev and Abdil’din, 1976) should

be corrected for the difference of the BRS Earth velocity distribution from the rigid body
distribution. Indeed, the DGRS rigid body Earth velocity distribution

v̂i = εijkω̂
j
Ew

k (21)

involves the BRS distribution (Brumberg, 1995a)

vi − viE = εijkω
j
E(xk − xkE) + c−2f iE (22)

with

f iE = εijkΦj
Er

k
E −

[
1
2

(
aiEv

k
E + akEv

i
E

)
+ 1

4

(
ȧiEr

k
E + ȧkEr

i
E

)
+ Ḋik

]
rkE−

− 1
2v

i
Eεkjmv

k
Eω

j
Er

m
E + 1

2v
m
E r

m
E εijkω

j
Ev

k
E + 1

2r
m
E r

m
E εijkω

j
Ea

k
E (23)

and
Φj

E =
(
ajEr

s
E − asEr

j
E

)
ωs
E −

(
εmnsv

m
E ω

n
Er

s
E + 2amE r

m
E

)
ωj
E + 3

4εmnj ȧ
n
Er

m
E . (24)

Therefore, the contribution to Rk
E due to f iE ignored in (Brumberg, 1968, 1972; Pushkarev

and Abdil’din, 1976) is as follows:

δfR
k
E = εijk

∫
(E)

ρriEf
j
E d

3x =

= 1
2I

is
E

[
−εkij(ajEv

s
E + asEv

j
E + εsmnv

j
Ev

m
E ω

n
E) + vsE(viEω

k
E − vkEωi

E)
]
. (25)

It remains to take into account the correction terms due to pressure pij inside the Earth.
Proceeding as in (Pushkarev and Abdil’din, 1976) let us denote

p
(E)
<ij> =

∫
(E)

pijd
3x ,

p
(E)
<ijm> =

∫
(E)

(xm − xmE )pijd
3x , (26)

p
(E)
<ijmn> =

∫
(E)

(xm − xmE )(xn − xnE)pijd
3x .

From the general expressions for Sk
E and Qk

E given in (Brumberg, 1968, 1972) it is seen
that the corrections due to pressure are

c2δpS
k
E = εkij

(
vmE p

(E)
<imj> + εmnsω

n
Ep

(E)
<imjs>

)
(27)

and

c2δpQ
k
E = εkij

∑
A6=E

GMA

r3EA

(
p
(E)
<ssi>r

j
EA +

3

r2EA

p
(E)
<ssjn>r

i
EAr

n
EA

)
+

+ εkij

(
vmE v

i
Ep

(E)
<jm> + εmnsω

n
Ev

i
Ep

(E)
<jms>

)
. (28)
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Combining these corrections with the value of Sk
E and Qk

E found in (Brumberg, 1968, 1972;
Pushkarev and Abdil’din, 1976) one gets for the post-Newtonian quadrupole approximation
(omitting all terms dependent only on the internal structure of the Earth to affect its mass
and quadrupole moments and treating the Sun and the Moon as the point masses)

Rk
E = δfR

k
E + c2δpS

k
E + 1

2v
2
E(IiiEω

k
E − IikE ωi

E) + εsmnv
m
E ω

n
EεijkI

is
E v

j
E+

+
∑
A 6=E

GMA

rEA

[
3(IiiEω

k
E − IikE ωi

E)− 1

r2EA

εkij(3v
j
E − 4vjA)IisE r

s
EA−

− 1

2r2EA

εkijI
is
E (vsAr

j
EA + vjAr

s
EA) +

3

2r4EA

εkijI
is
E r

j
EAr

s
EAr

n
EAv

n
A

]
(29)

and

Qk
E = Qk

E(N) + δpQ
k
E + c−2εlmnv

m
E ω

n
Ev

s
E

(
ωs
EI

lk
E − ωk

EI
ls
E

)
+

+ c−2
∑
A 6=E

GMA

r3EA

{
(4vmA − 3vmE )(ωm

E I
sk
E − ωk

EI
sm
E + εjmnεkisω

n
EI

ij
E )rsEA+

+ 1
2εkij İ

is
E

(
−vsAr

j
EA − v

j
Ar

s
EA +

3

r2EA

rsEAr
j
EAr

n
EAv

n
A

)}
+

+ c−2
∑
A 6=E

GMA

{
3

r5EA

εkijI
is
E r

s
EAr

j
EA

[
1
2 (3v2E + 3v2A − 8vnEv

n
A)− ŪA(xA)

]
+

+ 1
2εkijv

m
A v

s
EI

in
E

∂4rEA

∂xjE∂x
s
E∂x

m
E ∂x

n
E

}
+ 1

2c
−2εkijI

js
E

∂2

∂xiE∂x
s
E

(
ŪE(xE)

)2
. (30)

Before proceeding further let us remind the Newtonian relation

İijE = (εkinI
kj
E + εkjnI

ki
E )ωn

E (31)

(applied in fact to DGRS quantities) and the expression for the geodesic rotation

Ḟ k = 1
2εkij

∑
A6=E

GMA

r3EA

(
3vjE − 4vjA

)
riEA (32)

or else

εknmḞ
m = 1

2

∑
A 6=E

GMA

r3EA

[
(4vkA − 3vkE)rnEA − (4vnA − 3vnE)rkEA

]
. (33)

Then one should estimate the analytical order of smallness of the corresponding terms.
If M is a characteristic mass of a body, R is its characteristic size, q is its characteristic
velocity and D is a characteristic distance between bodies, then evidently

GMA ∼ q2D, ωE ∼ q/R, ω̇E ∼ q2/D2 , IE ∼MR2 , İE ∼MqR . (34)
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Rk
E and T i

E should be determined up to the order Mq3R3/D2 inclusively in correspondence
to the order c−2Mq4R2/D2 in Qk

E and N i
E . The pressure integrals may be taken by a

technique due to Fock (1955). On the one hand one has the Newtonian internal equations
of motion

ρẍiE−ρ
∂ŪE(xE)

∂xiE
− ρ∂uE

∂xi
+

+ ρ
(
εinsω̇

n − ω2
Eδis + ωi

Eω
s
E −

∂2ŪE(xE)

∂xiE∂x
s
E

)
(xs − xsE) =

∂pir
∂xr

. (35)

The first two terms mutually cancel within adopted accuracy. The third term affecting the
internal structure terms may be removed in the process of integration. On the other hand
there exist identities

2pik + xi
∂pkr
∂xr

+ xk
∂pir
∂xr

=
∂

∂xr

(
xipkr + xkpir

)
, (36)

2xjpik + xj
(
xi
∂pkr
∂xr

+ xk
∂pir
∂xr

)
− xixk ∂pjr

∂xr
=

∂

∂xr

(
xjxipkr + xjxkpis − xixkpjs

)
, (37)

and so on. In actually using these identities xi should be relaced by xi−xiE . The right-hand
members of (36), (37), etc., give no effect in integration. Moreover, within the quadrupole
approximation only < pik > has an actual contribution. There results

p<ik> = IikE ω
2
E − 1

2ω
s
E

(
IisE ω

k
E + IksE ωi

E

)
− 1

2

(
IisE εkns + IksE εins

)
ω̇n
E+

+
∑
A6=E

GMA

r3EA

[
−IikE +

3

2r2EA

rsEA

(
IisE r

k
EA + IksE riEA

)]
. (38)

Performing transformation (4) and (5) into (2) one gets the correction

c2δSk
E =

[
1
2v

2
E + 3ŪE(xE)

](
ÎksE ω̂s

E − ÎssE ω̂k
E

)
− vrEvsE ÎrsE ω̂k

E+

+ 1
2v

m
E ω̂

n
E

(
vnE Î

km
E + vkE Î

mn
E

)
+ Ḟ k ÎssE − Ḟ sÎksE +

+
(
εkmnÎ

ss
E − εkmsÎ

ns
E

)
ω̂n
EF

m. (39)

Combining this expression with the substitution of (25) into (29) one has

R̂k
E = εkmn

(
ω̂n
E Î

ss
E − ω̂s

E Î
ns
E

)
Fm+

+ 1
2

(
εinkεsmj Î

is
E ω̂

j
E + ÎkmE ω̂n

E − Îmn
E ω̂k

E

)
vmE v

n
E+

+
∑
A6=E

GMA

r3EA

[(
1
2εkij Î

ss
E − 1

2εsij Î
ks
E − εksj ÎisE

)
(3vjE − 4vjA)riEA+

+ 1
2 (εkij Î

is
E + εkisÎ

ij
E )(vjE − v

j
A)rsEA +

3

2r2EA

εkij Î
is
E r

j
EAr

s
EAr

n
EAv

n
A

]
. (40)
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Taking into account estimations (34) one gets the derivative of (40) within the accuracy
Mq4R2/D2 as follows:

˙̂
Rk

E = εkmn

(
ω̂n
E

˙̂
IssE − ω̂s

E
˙̂
InsE + ˙̂ωn

E Î
ss
E − ˙̂ωs

E Î
ns
E

)
Fm+

+ εkmn

(
ω̂n
E Î

ss
E − ω̂s

E Î
ns
E

)
Ḟm+

+ 1
2

(
εinkεsmj

˙̂
IisE ω̂

j
E +

˙̂
IkmE ω̂n

E −
˙̂
Imn
E ω̂k

E

)
vmE v

n
E+

+ 1
2

(
εinkεsmj Î

is
E

˙̂ωj
E + ÎkmE

˙̂ωn
E − Îmn

E
˙̂ωk
E

)
vmE v

n
E+

+
∑
A6=E

GMA

r3EA

[(
1
2εkij

˙̂
IssE − 1

2εsij
˙̂
IksE − εksj

˙̂
IisE
)
(3vjE − 4vjA)riEA+

+ 1
2 (εkij

˙̂
IisE + εkis

˙̂
IijE )(vjE − v

j
A)rsEA +

3

2r2EA

εkij
˙̂
IisEr

j
EAr

s
EAr

n
EAv

n
A−

− 1
2

(
εinkεsmj Î

is
E ω̂

j
E + ÎkmE ω̂n

E − Îmn
E ω̂k

E

) (
vmE r

n
EA + vnEr

m
EA

)]
. (41)

Using (31) one gets after some algebra manipulation

˙̂
Rk

E = εkmn

(
ω̂n
E Î

ss
E − ω̂s

E Î
ns
E

)
Ḟm+

+
(
ω̂m
E Î

ks
E − ω̂k

E Î
ms
E

)
ω̂s
EF

m + εkmn

(
˙̂ωn
E Î

ss
E − ˙̂ωs

E Î
ns
E

)
Fm+

+ 1
2 Î

rs
E

∑
A6=E

GMA

r3EA

[
δkr(4vnA − 3vnE)rsEAω̂

n
E + δkr(4vsA − 3vsE)rnEAω̂

n
E−

− 2(4vrA − 3vrE)rsEAω̂
k
E + 2εrinεsjk(4vjA − 3vjE)riEAω̂

n
E + εknrεsij(4v

j
A − 3vjE)riEAω̂

n
E+

+ 2vrAr
s
EAω̂

k
E − δkr(vsAr

n
EA + vnAr

s
EA)ω̂n

E − εrnkεsmj(v
m
A r

n
EA + vnAr

m
EA)ω̂j

E+

+
3

r2EA

(
εsjkεrinω̂

n
Er

i
EAr

j
EA + δkrω̂

j
Er

j
EAr

s
EA − ω̂k

Er
k
EAr

s
EA

)
rmEAv

m
A

]
+

+ 1
2v

m
E v

n
Eω̂

j
E

[(
εrkj Î

rm
E + 2εrmj Î

rk
E − εkmiÎ

ij
E

)
ω̂n
E +

(
εkmsω̂

j + 3εjmsω̂
k
E

)
ÎnsE

]
+

+ 1
2

(
εinkεsmj Î

is
E

˙̂ωj
E + ÎkmE

˙̂ωn
E − Îmn

E
˙̂ωk
E

)
vmE v

n
E . (42)

To calculate M i
E one should start with the transformation of the Newtonian part (3) re-

placing not only the BRS inertia moments by (4) but also the BRS distances in accordance
with the relations (Brumberg, 1995b)

riAE(t∗) = wi
A(u) + c−2

[
vmE r

m
AE( 1

2v
i
E − viA) + εijkF

jrkAE − ŪE(xE)riAE−

− amE rmAEr
i
AE + 1

2r
2
AEa

i
E

]
(43)

and

rAE(t∗) = wA

{
1 + c−2

[ 1

w2
A

vmEw
m
A ( 1

2v
n
E − vnA)wn

A − ŪE(xE)− 1
2a

m
Ew

m
A

]}
(44)
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with Newtonian values in relativistic parts

wA = rEA , wi
A = −riEA = xiA − xiE , aiE =

∑
A6=E

GMA

w3
A

wi
A (45)

and W i
A = P̂ikw

k
A in accordance with (10). Transformations (4) and (43) involve the

corrections δIQ
k
E and δDQ

k
E , respectively,

Qk
E(N) = Q̂k

E(N) + δIQ
k
E + δDQ

k
E (46)

with

Q̂k
E(N) = 3εijk Î

is
E

∑
A6=E

GMA

w5
A

ws
Aw

j
A + . . . , (47)

δIQ
k
E = −3c−2εijk

∑
A6=E

GMA

w5
A

wj
Aw

s
A

[
2ŪE(xE)IisE + 1

2v
m
E

(
viEI

sm
E + vsEI

im
E

)
+

+ Fn
(
εimnI

sm
E + εsmnI

im
E

)]
(48)

and

δDQ
k
E = 3c−2εijkI

is
E

∑
A6=E

GMA

w5
A

{
wj

Aw
s
A

[
3ŪE(xE) + 1

2w
m
A a

m
E +

+
5

w2
A

vmEw
m
A

(
vnA − 1

2v
n
E)
]

+ 1
2w

2
A(wj

Aa
s
E + ws

Aa
j
E)−

− vmEwm
A (wj

Av
s
A + ws

Av
j
A) + 1

2v
m
Ew

m
A (wj

Av
s
E + ws

Av
j
E)+

+ Fmwn
A(εjmnw

s
A + εsmnw

j
A)

}
. (49)

One should add to this one more correction due to transformation (9) of the time-argument

δtQ
k
E = 3c−2εijkI

is
E

(
1
2v

2
E + ŪE(xE)

) ∑
A6=E

GMA

w5
A

ws
Aw

j
A . (50)

Returning to (30) and using (31) one gets

Q̂k
E = Q̂k

E(N) + δIQ
k
E + δDQ

k
E + δtQ

k
E + δpQ

k
E + c−2εlmnv

m
E ω

n
Ev

s
E

(
ωs
EI

lk
E − ωk

EI
ls
E

)
+

+ c−2
∑
A6=E

GMA

r3EA

(ωm
E I

sk
E − ωk

EI
sm
E + εjmnεkisω

n
EI

ij
E )×

×
[
(4vmA − 3vmE )rsEA − 1

2 (vsAr
m
EA + vmA r

s
EA) +

3

2r2EA

rsEAr
m
EAr

l
EAv

l
A

]
+

+ c−2
∑
A6=E

GMA

{
3

r5EA

εkijI
is
E r

s
EAr

j
EA

[
1
2 (3v2E + 3v2A − 8vnEv

n
A)− ŪA(xA)

]
+

+ 1
2εkijv

m
A v

s
EI

in
E

∂4rEA

∂xjE∂x
s
E∂x

m
E ∂x

n
E

}
+ 1

2c
−2εkijI

js
E

∂2

∂xiE∂x
s
E

(
ŪE(xE)

)2
. (51)
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Combination of (28), (38) and (47)–(49) results in

δIQ
k
E + δDQ

k
E + δtQ

k
E + δpQ

k
E + c−2εlmnv

m
E ω

n
Ev

s
E

(
ωs
EI

lk
E − ωk

EI
ls
E

)
=

= c−2
[
εkijv

i
Ev

m
E I

jm
E ω2

E − ωk
Eεrmnv

m
E ω

n
Ev

s
EI

rs
E +

+ viEω
s
E

(
εrijv

s
EI

rk
E ωj

E −
1
2εkijv

r
EI

js
E ω

r
E − 1

2εkijv
r
EI

rs
E ω

j
E

)
+

+ 1
2v

m
E v

n
E

(
IkmE ω̇n

E − Imn
E ω̇k

E − εknjεmrsI
js
E ω̇

r
E

)]
+

+ 3c−2εijk
∑
A6=E

GMA

w5
A

[(
1
2v

2
E + 2ŪE(xE)

)
IisEw

j
Aw

s
A + 1

2I
is
Ew

j
Aw

s
Aw

m
A a

m
E +

+ 1
2I

is
Ew

2
A(wj

Aa
s
E + ws

Aa
j
E)− IisE vmEwm

A (wj
Av

s
A + ws

Av
j
A)−

− 1
3I

jm
E viEv

m
Ew

2
A +

5

w2
A

IisEw
j
Aw

s
Av

m
Ew

m
A

(
vnA − 1

2v
n
E)wn

A

]
+

+ c−2Fm
∑
A6=E

3GMA

w5
A

ws
A(IksE wm

A − Ims
E wk

A). (52)

Substituting into (51) this expression together with

∂4rEA

∂xjE∂x
s
E∂x

m
E ∂x

n
E

= − 1

w3
A

(δmnδsj + δmsδnj + δnsδmj)+

+
3

w5
A

(
δmnw

s
Aw

j
A + δmsw

n
Aw

j
A + δnsw

m
Aw

j
A + δmjw

n
Aw

s
A+

+ δnjw
m
Aw

s
A + δsjw

m
Aw

n
A

)
− 15

w7
A

wm
Aw

n
Aw

s
Aw

j
A

and

∂2

∂xiE∂x
s
E

(
ŪE(xE)

)2
= 2aiEa

s
E + 2ŪE(xE)

∑
A6=E

GMA

w3
A

(
−δis +

3

w2
A

wi
Aw

s
A

)

one gets finally

Q̂k
E = Q̂k

E(N) + c−2
[
εkijv

i
Ev

m
E I

jm
E ω2

E − ωk
Eεrmnv

m
E ω

n
Ev

s
EI

rs
E +

+ viEω
s
E

(
εrijv

s
EI

rk
E ωj

E −
1
2εkijv

r
EI

js
E ω

r
E − 1

2εkijv
r
EI

rs
E ω

j
E

)
+

+ 1
2v

m
E v

n
E

(
IkmE ω̇n

E − Imn
E ω̇k

E − εknjεmrsI
js
E ω̇

r
E

)]
+

+ c−2
∑
A6=E

GMA

r3EA

(ωm
E I

sk
E − ωk

EI
sm
E + εjmnεkisω

n
EI

ij
E )×

×
[
(4vmA − 3vmE )rsEA − 1

2 (vsAr
m
EA + vmA r

s
EA) +

3

2r2EA

rsEAr
m
EAr

l
EAv

l
A

]
+
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+ c−2εkijI
is
E

∑
A 6=E

3GMA

w5
A

[(
2v2E + 3

2v
2
A − 7

2v
m
E v

m
A − ŪA(xA) + ŪE(xE)

)
wj

Aw
s
A+

+ 1
3 (wj

Aa
s
E + ws

Aa
j
E)w2

A + 1
2w

j
Aw

s
Aw

m
A a

m
E − 1

6 (vsAv
j
E + vjAv

s
E)w2

A+

+ 1
3v

j
Ev

s
Ew

2
A − 1

2v
m
Ew

m
A

(
vsAw

j
A + vjAw

s
A

)
+

+ 1
2v

m
Aw

m
A (wj

Av
s
E + ws

Av
j
E) +

5

2w2
A

(vmEw
m
A )(vnA − vnE)wn

Aw
j
Aw

s
A

]
+

+ c−2Fm
∑
A6=E

3GMA

w5
A

ws
A(IksE wm

A − Ims
E wk

A). (53)

From (19), (42) and (53) one has

N i
E = P̂ik

{
Q̂k

E(N) + c−2
[(
ω̂k
E Î

ms
E − ω̂m

E Î
ks
E

)
ω̂s
E − εkmn

(
˙̂ωn
E Î

ss
E − ˙̂ωs

E Î
ns
E

)
+

+
∑
A6=E

3GMA

w5
A

ws
A(ÎksE wm

A − Îms
E wk

A)
]
Fm+

+ 1
2c
−2
(
εmkrv

r
Ev

s
Eω̂

2
E − εmnrv

r
Ev

s
Eω̂

n
Eω̂

k
E + εknrv

m
E v

r
Eω̂

n
Eω̂

s
E − εmknv

r
Ev

s
Eω̂

r
Eω̂

n
E

)
Îms
E +

+ c−2
∑
A 6=E

GMA

r3EA

[(
εinkεsmj + 1

2εsmnεikj + εskmεinj
)
ÎisE ω̂

j
E+

+ 1
2 Î

kn
E ω̂m

E − 1
2 Î

km
E ω̂n

E

]
(4vmA − 3vmE )rnEA + c−2εknm

(
ω̂n
E Î

ss
E − ω̂s

E Î
ns
E

)
Ḟm+

+ c−2εkrj Î
rs
E

∑
A6=E

3GMA

w5
A

[(
2v2E + 3

2v
2
A − 7

2v
m
E v

m
A − ŪA(xA) + ŪE(xE)

)
wj

Aw
s
A+

+ 1
3 (wj

Aa
s
E + ws

Aa
j
E)w2

A + 1
2w

j
Aw

s
Aw

m
A a

m
E − 1

6 (vsAv
j
E + vjAv

s
E)w2

A+

+ 1
3v

j
Ev

s
Ew

2
A − 1

2v
m
Ew

m
A

(
vsAw

j
A + vjAw

s
A

)
+

+ 1
2v

m
Aw

m
A (wj

Av
s
E + ws

Av
j
E) +

5

2w2
A

(vmEw
m
A )(vnA − vnE)wn

Aw
j
Aw

s
A

]
. (54)

In transforming to the GRS+ quantities one has

N i
E = N i

E(N) + c−2
[(

Ω̂i
E Ĵ

ms
E − Ω̂m

E Ĵ
is
E

)
Ω̂s

E − εimn

( ˙̂
Ωn

E Ĵ
ss
E −

˙̂
Ωs

E Ĵ
ns
E

)
+

+
∑
A6=E

3GMA

w5
A

W s
A(Ĵ is

EW
m
A − Ĵms

E W i
A)
]
Fm+

+ 1
2c
−2
(
εmirV

r
EV

s
EΩ2

E − εmnrV
r
EV

s
EΩn

EΩi
E + εinrV

m
E V r

EΩn
EΩs

E − εminV
r
EV

s
EΩr

EΩn
E

)
Jms
E +

+ c−2
∑
A6=E

(1)GMA

w3
A

{[(
εsjmεkni + 1

2εsmnεkji + εsimεkjn
)
Ω̂j

E Ĵ
ks
E +

+ 1
2 Ω̂n

E Ĵ
im
E − 1

2 Ω̂m
E Ĵ

in
E

]
(4V m

A − 3V m
E )Wn

A+
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+ 1
2

(
Ω̂n

E Ĵ
ss
E − Ω̂s

E Ĵ
ns
E

) [
(4V n

A − 3V n
E )W i

A − (4V i
A − 3V i

E)Wn
A

]}
+

+ c−2εirj Ĵ
rs
E

∑
A 6=E

(2) 3GMA

w5
A

[(
2V 2

E + 3
2V

2
A − 7

2V
m
E V m

A − ŪA(xA) + ŪE(xE)
)
W j

AW
s
A+

+ 1
3 (W j

AA
s
E +W s

AA
j
E)w2

A + 1
2W

j
AW

s
AW

m
A A

m
E − 1

6 (V s
AV

j
E + V j

AV
s
E)w2

A+

+ 1
3V

j
EV

s
Ew

2
A − 1

2V
m
E Wm

A

(
V s
AW

j
A + V j

AW
s
A

)
+

+ 1
2V

m
A Wm

A (W j
AV

s
E +W s

AV
j
E) +

5

2w2
A

(V m
E Wm

A )(V n
A − V n

E )Wn
AW

j
AW

s
A

]
(55)

with

N i
E(N) = 3εimnĴ

ms
E

∑
A 6=E

GMA

w5
A

W s
AW

n
A + . . . . (56)

In addition to the GRS+ quantities introduced above in (10), (11) and (45) the right-hand
member (55) contains also

V i
A = P̂ikv

k
A , V i

E = P̂ikv
k
E , Ai

E = P̂ika
k
E . (57)

It is easy to see that for the spherically symmetrical Earth with Ĵ ij
E = δij ĴE the right-

hand sides (55) vanish as stated in (Brumberg, 1995a). Moreover, the coefficient in Fm

vanishes in virtue of equations (16) taken in the Newtonian approximation. The terms
of order c−2Mq4 quadratic in the angular Earth velocity vanish as well. It may be easily

checked that the terms of the order c−2Mq4R/D staying under the sum
∑(1)

mutually
cancel. The terms of order c−2Mq4R2/D2 depending on the derivatives of the angular
Earth velocity were cancelled in combining (42) and (53). The direct GRT perturbations
in (55) are given by the terms of order c−2Mq4R2/D2 staying under the summation sign∑(2)

. Hence, the right-hand member (55) consists of the Newtonian part (56) (needless to
say that this Newtonian part of order Mq2R2/D2 given here only in the quadrupole ap-
proximation should be computed in actual calculations with the whole necessary accuracy
quite independently of relativistic terms) and the relativistic perturbations under the sign∑(2)

. In result, the first of equations (16) takes the form

A
dΩ̂1

E

du
+ (C −B)Ω̂2

EΩ̂3
E = N1

E (58)

with

N1
E = N1

E(N) + 3(C −B)c−2
∑
A6=E

GMA

w5
A

{[
2V 2

E + 3
2V

2
A − 7

2V
m
E V m

A −

− ŪA(xA) + ŪE(xE) + 1
2W

m
A A

m
E +

5

2w2
A

(V m
E Wm

A )(V n
A − V n

E )Wn
A

]
W 2

AW
3
A+

+

[
1
3

(
W 2

AA
3
E +W 3

AA
2
E

)
− 1

6

(
V 2
AV

3
E + V 3

AV
2
E

)
+ 1

3V
2
EV

3
E

]
w2

A+

+ 1
2V

m
A Wm

A

(
W 2

AV
3
E +W 3

AV
2
E

)
− 1

2V
m
E Wm

A

(
V 2
AW

3
A + V 3

AW
2
A

)}
, (59)
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N1
E(N) = 3(C −B)

∑
A 6=E

GMA

w5
A

W 2
AW

3
A + . . . (60)

and

ŪA(xA) =
∑
B 6=A

GMB

rAB
, ŪE(xE) =

∑
A6=E

GMA

rEA
. (61)

Two other equations of (16) are obtained by the circular permutation of indices 1, 2 and
3 and letters A, B, C denoting the Earth principal inertia moments (not to be mixed with
letters A and B designating celestial bodies such as Earth (E), Sun (S) and Moon (M) ).

Equations (58) are obtained here only up to the order c−2Mq4R2/D2 inclusively in
the relativistic right-hand members taking into account only quadrupole inertia moments
of the Earth and treating the Sun and the Moon as point masses. This seems to be
quite sufficient for the present day applications. The technique employed in deriving these
equations enables one easily to modify them. For example, if one still prefers to deal with
TCB it is necessary to remove the correction (50) from the right-hand members starting
with (53).

Conclusion

This paper may be regarded as an up-to-date version of the old results by the author
(Brumberg, 1962, 1972). The equations given there were written in terms of the BRS
quantities. The contributions due to the Earth’s pressure were given only in the integral
form and actually were neglected in the final equations. In particular, this is the reason of
the appearance in the right-hand members of a large term of order c−2Mq4. In the present
paper this term occurs in (30) and then cancels due to δpQ

k
E correction in (52). Pushkarev

and Abdil’din (1976) demonstrated the importance of the Earth’s pressure contributions
removing this term from the equations of rotation of the spherically symmetric Earth.
Written, as before, in terms of the BRS quantities their equations still contain a lot of non-
physical terms (in particular, spherical symmetry was considered by them just in BRS).
The present paper improves the results (Brumberg, 1968, 1972; Pushkarev and Abdil’din,
1976) by more rigorous treatment of the pressure contributions and by expressing the final
equations in terms of the GRS quantities (including the GRS framework for rigid body
velocity distribution, Earth’s moments of inertia and angular velocity). Of course, it is
desirable to derive the GRT Earth’s rotation equations by some other technique and to
compare the final results. At the same time. the equations given here may be already
directly applied to take into account the GRT corrections in the practical analysis of the
Earth’s rotation problem.
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