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Abstract.

The paper presents a slight modification of algorithms exposed in (Brumberg, 1991; Bu-
reau des Longitudes, 1997) for relativistic reduction of high precision space astrometry
observations.

1. Introduction

In anticipation of realization of space astrometry projects intended for microarcsecond
accuracy it seems reasonable to specify algorithms of relativistic reduction of such ob-
servations. Just as in Newtonian astrometry there might be various options to treat
this problem. This paper is aimed to develop and improve the algoritms exposed ear-
lier in (Brumberg, 1991; Bureau des Longitudes, 1997) and slightly different from those
of (Brumberg et al., 1990; Klioner and Kopeikin, 1992). In doing it we’ve tried to retain
the universal form of the algorithms as much as possible (to facilitate the consideration of
different perturbing effects in the light propagation) avoiding at the same time any specific
general relativistic techniques.

2. Hierarchy of Reference Systems

As a starting point we will use the hierarchy of relativistic reference systems (RS) involving
barycentric (BRS), geocentric (GRS) and satellite (SRS) reference systems as exposed, for
instance, in Section 2 of (Brumberg, 1995). This hierarchy may be illustrated as follows:

BRS −→


DGRS (q = 1) −→

{
SRS1 (q̂ = 1, q̃ = 1)
SRS2 (q̂ = 0, q̃ = 1)

KGRS (q = 0) −→

SRS3 (q̂ = 1, q̃ = 1)
SRS4 (q̂ = 0, q̃ = 1)
SRS5 (q̂ = 0, q̃ = 0)

(2.1)

A single RS at the barycenric level with some given orientation of the spatial axes (BRS)
generates at the geocentric level two different systems, dynamically nonrotating system
(DGRS) and kinematically nonrotating system (KGRS). One may treat these systems as
one system supplied by numerical parameter q taking values 1 or 0, correspondingly. In
its turn each of this system generates at the satellite level (related to a satellite orbiting
the Earth) two systems, dynamically (DSRS) or kinematically (KSRS) nonrotating with
respect to the generating GRS. One may again distinguish these systems by values 1 or 0
of numerical parameter q̂. Transformations BRS→ GRS and GRS→ SRS represent gene-
ralized Lorentz transformations. Even in case of special relativity two consequent Lorentz
transformations without rotation (BRS → KGRS and KGRS → SRS4) result in spatial
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rotation of the final system (SRS4) with respect to the initial one (BRS). The expression
for this rotation in the general relativity case was derived in (Klioner, 1993). Considera-
tion of this rotation leads to the fifth system at the satellite level, SRS5, kinematically
nonrotating with respect to BRS. To describe all five satellite systems as one system one
has to introduce additive numerical parameter q̃ equal to 1 for all four preceding systems
and vanishing for SRS5.

3. Measurable vs. Coordinate Light Direction

Any relativistic RS may be described by metric of the type

ds2 = gµνdx
µdxν , x0 = ct , (3.1)

greek indices running values from 0 to 3 with summation over repeating indices. Even in
case of Newtonian rotation of the spatial axes coefficients gµν are supposed to differ from
their Minkowski values ηµν (special relativity flat space–time) by small corrections hµν

gµν = ηµν + hµν , (3.2)

η00 = 1 , η0i = 0 , ηij = δij , (3.3)

h00 , hij ∼ O(c−2), h0i ∼
{

O(c−1) for rotating RS ,
O(c−3) for nonrotating RS ,

latin indices running values from 1 to 3. Four–dimensional quadratic form (3.1) may be
reduced locally to the algebraic sum of squares. At first, one has

ds2 = c2dτ2 − dl2 (3.4)

with

dτ =
1
√
g00

g0αdx
α (3.5)

and
dl2 = γikdx

idxk (3.6)

where

γik =
1

g00
g0ig0k − gik . (3.7)

By substituting (3.2) into (3.5) and (3.7) one yields

dτ = (1 + h00)1/2cdt+ (1 + h00)−1/2h0idx
i (3.8)

and
γik = δik − hik + (1 + h00)−1h0ih0k . (3.9)

The three–dimensional quadratic form (3.6) may be easily reduced to the sum of squares

dl2 = δikdx
(i)dx(k) (3.10)
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by linear transformation

dx(i) = dxi + λijdx
j (3.11)

with symmetrical coefficients λij to be determined from the equations

2λik + λmiλmk = −hik + (1 + h00)−1h0ih0k . (3.12)

Metric (3.4) with (3.10) presented locally as Minkowski metric enables one to find the
measurable light direction in the form

p(i) = c−1 dx
(i)

dτ
. (3.13)

These components are to be compared with the components ẋi of the coordinate light
velocity in the field (3.1). Using (3.8) and (3.13) one obtains

p(i) =
c−1(ẋi + λij ẋ

j)

(1 + h00)1/2 + c−1(1 + h00)−1/2h0kẋk
(3.14)

and

c−1ẋi =
p(i) − λijp(j)

(1 + h00)−1/2 − (1 + h00)−1h0kp(k)
. (3.15)

Until now all the above formulas are rigorous. The approximate solution of (3.12) results
in

λik =− 1
2hik + 1

2h0ih0k −
1
8himhkm −

1
2h00h0ih0k+

+ 1
8 (h0ihkm + h0khim)h0m − 1

8h0ih0kh0mh0m + O(c−6). (3.16)

In case of nonrotating RS all terms containing h0i should be omitted. For nonrotating
systems in harmonic coordinates within the post-Newtonian approximation one has

hij = δijh00 (3.17)

and

λik = − 1
2δikh00 + O(c−4), (3.18)

p(i) = (1− h00)c−1ẋi + O(c−4), (3.19)

c−1ẋi = (1 + h00)p(i) + O(c−4). (3.20)

4. General Reduction

First of all, to distinguish between BRS, GRS and SRS quantities let us mark GRS and
SRS quantities by hat and tilde, respectively.
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The starting point in the general reduction technique developed in (Brumberg, 1991) is
the solution of the BRS equations of the light propagation. This solution may be presented
in the form

x(t) = x0 + c(t− t0)σ + ∆x , (4.1)

ẋ(t) = cσ + ∆ẋ , (4.2)

x(t0) = x0 , ẋ(−∞) = cσ , σ2 = 1 , (4.3)

x0 and σ being two arbitrary vectorial constants. Here ∆x and ∆ẋ stand for general
relativity terms. Their expressions may be found in (Brumberg et al., 1990; Klioner and
Kopeikin, 1992) but one may use any other suitable expressions for these quantities as well.
The technique exposed below does not demand their explicit expressions. As exposed in
Section 3 one may relate BRS coordinate light velocity ẋi and BRS measurable light
direction p(i) resulting in virtue of (4.2) in the BRS (t , xi) reduction formula:

vi =
dxi

dt
, p(i) = σi + δp(i) . (4.4)

In the same manner the technique of Section 3 enables one to relate GRS coordinate
light velocity v̂i and GRS measurable light direction p̂(i). On the other hand, BRS→GRS
transformation involves the relationship between vi and v̂i. In result, one gets the GRS
(t̂ , x̂i , q) reduction formula:

v̂i =
dx̂i

dt̂
= vi + δv̂i , p̂(i) = p(i) + δp̂(i) . (4.5)

Repeating this procedure once more one relate SRS coordinate light velocity ṽi and SRS
measurable light direction p̃(i). On the other hand, GRS→SRS transformation involves the
relationship between v̂i and ṽi. In result, one gets the SRS (t̃ , x̃i , q̂ , q̃) reduction formula:

ṽi =
dx̃i

dt̃
= v̂i + δṽi , p̃(i) = p̂(i) + δp̃(i) . (4.6)

Combination of (4.4)–(4.6) leads to the final reduction formula:

p̃(i) = σi + δp(i) + δp̂(i) + δp̃(i) (4.7)

relating the actually observed light direction p̃(i) and the coordinate light direction σi. In
what follows we will give correction terms δp(i), δp̂(i), δp̃(i) as well as auxiliary corrections
δv̂i, δṽi. The rigorous expressions (3.12), (3.14), (3.15) enable one to compute these
quantities within the accuracy of BRS→GRS and GRS→SRS transformations. To have
simple analytical formulas for fast evaluation of the relativistic effects we give below the
post–Newtonian expressions based on (3.18)–(3.20).

An equivalent reduction formula slightly different from (4.7) by its form is presented
in (Brumberg et al., 1990; Klioner and Kopeikin, 1992).
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Formula (4.7) is directly valid for observations from an Earth’s artificial satellite. It
may be easily modified for other cases as, for instance, observations from an interplanetary
probe. In the latter case it is sufficient to do only one transformation from BRS to the
system related to such probe.

5. BRS Reduction

Rewritting (4.2) in the form
c−1ẋi = σi + c−1∆ẋi (5.1)

one finds the relativistic term of the BRS reduction formula (4.4)

δp(i) = −h00σi + c−1∆ẋi . (5.2)

If necessary, one should transform σi to take into account parallax and proper motion
corrections. This question is considered below in Section 8.

6. GRS Reduction

Applied to GRS quantities the equation (3.19) involves

p̂(i) = (1− ĥ00)c−1v̂i (6.1)

and then
p̂(i) = (1 + h00 − ĥ00)p(i) + c−1δv̂i . (6.2)

BRS→GRS transformation involves (Brumberg, 1995a)

δv̂i =− viE + (c−1vkvkE)c−1vi + c−1[(c−1vkvkE)2c−1vi − 1
2c

−1viv2E−
− 1

2v
i
E(c−1vkvkE) + (qF ik + 2Dik + 2Dikmx̂m)c−1vk + akE x̂

kc−1vi]. (6.3)

By substituting this expression into (6.2) one gets

p̂(i) =(1 + h00 − ĥ00)p(i) + c−1[p× (p× vE)](i) + c−2(pvE)[p× (p× vE)](i)−
− 1

2c
−2[vE × (p× vE)](i) + c−2(qF ik + 2Dik + 2Dikmx̂m)p(k)+

+ c−2akE x̂
kp(i) . (6.4)

In virtue of the relation
h00 − ĥ00 = −2ŪE(xE)− 2akE x̂

k (6.5)

one obtains the GRS reduction formula

δp̂(i) =c−1[p× (p× vE)](i) + c−2(pvE)[p× (p× vE)](i)−
− 1

2c
−2[vE × (p× vE)](i) + c−2qF ikp(k) + c−2(akE x̂

i − aiE x̂k)p(k) . (6.6)

In (6.4) we have used
Dik(t) = δikŪE(xE) (6.7)
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and
Dikm(t) = 1

2 (δika
m
E + δima

k
E − δkmaiE) (6.8)

where ŪE(x) stands for the Newtonian potential of all solar system bodies excepting the
Earth, xiE , viE and aiE being Earth’s BRS position, velocity and acceleration, respectively,
with

aiE = ŪE,i(xE)−Qi , (6.9)

Qi being nongeodesic acceleration in the Earth’s BRS motion. Besides,

Ḟ ij = 3
2 (viEa

j
E − v

j
Ea

i
E)− 2

[
Ū iE,j(xE)− Ū jE,i(xE)

]
+ 2(viEQj − v

j
EQi), (6.10)

Ū iE(x) denoting the Newtonian vector–potential of all solar system bodies excepting the
Earth. Comma in (6.9) and (6.10) denotes the partial derivative with respect to the
variable separated by comma.

7. SRS Reduction

By applying now (3.19) to SRS one has

p̃(i) = (1− h̃00)c−1ṽi (7.1)

and then
p̃(i) = (1 + ĥ00 − h̃00)p̂(i) + c−1δṽi . (7.2)

GRS→SRS transformation involves (Brumberg, 1995a)

δṽi =− v̂iS + (c−1v̂kv̂kS)c−1v̂i + c−1
{

(c−1v̂kv̂kS)2c−1v̂i − 1
2c

−1v̂iv̂2S−
− 1

2 v̂
i
S(c−1v̂kv̂kS) +

[
q̂Rik + (q̃ − 1)Kik + 2Dik + 2Dikmx̃m

]
c−1v̂k+

+ âkS x̃
kc−1v̂i

}
. (7.3)

Combining (7.2) and (7.3) one gets

p̃(i) =(1 + ĥ00 − h̃00)p̂(i) + c−1[p̂× (p̂× v̂S)](i) + c−2(p̂v̂S)[p̂× (p̂× v̂S)](i)−
− 1

2c
−2
[
v̂S × (p̂× v̂S)](i) + c−2

[
q̂Rik + (q̃ − 1)Kik + 2Dik+

+ 2Dikmx̃m
]
p̂(k) + c−2âkS x̃

kp̂(i). (7.4)

By means of the relation

ĥ00 − h̃00 = −2
[
ÛE(x̂S) +Qkx̂

k
S + T (x̂S)

]
− 2âkS x̃

k (7.5)

one gets the SRS reduction formula

δp̃(i) =c−1[p̂× (p̂× v̂S)](i) + c−2(p̂v̂S)[p̂× (p̂× v̂S)](i)−
− 1

2c
−2[v̂S × (p̂× v̂S)](i) + c−2

[
q̂Rik + (q̃ − 1)Kik

]
p̂(k)+

+ c−2(âkS x̃
i − âiS x̃k)p̂(k) . (7.6)
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In (7.4) one meets the coefficients

Dik(t̂) =
[
ÛE(x̂S) +Qmx̂

m
S + T (x̂S)

]
(7.7)

and
Dikm(t̂) = 1

2 (δikâ
m
S + δimâ

k
S − δkmâiS) (7.8)

with the GRS tidal potential

T (x̂) = ŪE(xE + x̂)− ŪE(xE)− ŪE,j(xE)x̂j (7.9)

and geocentric satellite acceleration âiS . Introducing the quantity

Ei = −âiS + ÛE,i(x̂S) +Qi + ŪE,i(xE + x̂S)− ŪE,i(xE) (7.10)

one may present the t̂–derivative of the topocentric–type precession in the form

Ṙij = 3
2 (v̂iS â

j
S − v̂

j
S â

i
S) + (ȧiE x̂

j
S − ȧ

j
E x̂

i
S)− 2[Û iE,j(x̂S)− Û jE,i(x̂S)]+

+ 2[viEŪE,jk(xE)− vjEŪE,ik(xE)− Ū iE,jk(xE) + Ū jE,ik(xE)]x̂kS+

+ 2(v̂iSEj − v̂
j
SEi), (7.11)

ÛE(x̂) and Û iE(x̂) being the GRS geopotential and vector–geopotential. For SRS the
quantity Ei vanishes resulting to the Newtonian GRS satellite equations of motion. If S
denotes a point on the surface of the Earth then Ei does not vanish and the right–hand of
(7.11) relates just to the topocentric precession. The purely kinematical precession caused
by two subsequent BRS→GRS and GRS→SRS transformations (Klioner, 1993) is given
by

Kij = x̂iSa
j
E − x̂

j
Sa

i
E + 1

2 (v̂iSv
j
E − v̂

j
Sv

i
E). (7.12)

8. Parallax and Proper Motion

Corrections for parallax and proper motion may be taken just as in Newtonian astrometry.
We reproduce in this section the derivation in vectorial form of (Brumberg et al., 1990;
Klioner and Kopeikin, 1992). These corrections are related to the boundary problem of
light propagation. Denoting

R(t , t0) = x− x0 (8.1)

one may rewrite (4.1) in the form

c(t− t0)σ = R−∆x , ∆x(t0) = 0 . (8.2)

Hence,

c(t− t0) = R

[
1− 2

R2
R∆x +

1

R2
(∆x)2

]1/2
. (8.3)
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Introducing the unit vector directed to the light source

k = −R

R
(8.4)

one gets from (8.2) and (8.3)

c(t− t0) = R

[
1 +

1

R
k∆x +

1

2R2
(∆x× k)2 + . . .

]
(8.5)

and

σ =− k− 1

R
[k× (∆x× k)] +

1

2R2
(∆x× k)2k+

+
1

R2
(k∆x)[k× (∆x× k)] + . . . . (8.6)

It is appropriate to remind here the leading relativistic terms in light propagation (Brum-
berg, 1991)

∆x = 2
∑
A

mA

[
σ × (r0A × σ)

r0A − σr0A
− σ × (rA × σ)

rA − σrA
− σ ln

rA + σrA
r0A + σr0A

]
(8.7)

and

∆ẋ = −2c
∑
A

mA

rA

[
σ +

σ × (rA × σ)

rA − σrA

]
. (8.8)

Here

mA =
GMA

c2
, rA = x− xA , r0A = x0 − xA , (8.9)

MA being mass of body A. Summation in (8.7) and (8.8) is performed over all solar system
bodies marked by capital latin letters. Relativistic terms due to the nonsphericity of the
bodies and their rotation as well as the second order monopole terms (post–post–Newtonian
terms) may be added, by example, from (Brumberg et al., 1990; Klioner and Kopeikin,
1992) or elsewhere. Correction for parallax is introduced under the condition

|x| � |x0| ≡ ρ . (8.10)

In this case

k =
x0

ρ
− 1

ρ3
[x0 × (x× x0)]− 1

2ρ5
(x× x0)2x0−

− 1

ρ5
(xx0)[x0 × (x× x0)] + . . . . (8.11)

Proper motion correction is introduced to take into account the time interval between the
initial epoch of emission t∗0 and the moment t0 of the light emission. One has therewith

x0(t0) = x∗
0 + ẋ∗

0∆t0 + 1
2 ẍ

∗
0(∆t0)2 + . . . (8.12)
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with
∆t0 = t0 − t∗0 , x∗

0 = x0(t∗0), ẋ∗
0 = ẋ0(t∗0), ẍ∗

0 = ẍ0(t∗0). (8.13)

Putting

ρ∗ = |x∗
0|, k0 =

x∗
0

ρ∗
(8.14)

and using auxiliary expansions

1

ρ
=

1

ρ∗

{
1− 1

ρ∗
k0ẋ

∗
0∆t0 +

1

2ρ∗

[ 3

ρ∗
(k0ẋ

∗
0)2 − 1

ρ∗
(ẋ∗

0)2 − k0ẍ
∗
0

]
(∆t0)2 + . . .

}
,

and
x0

ρ
=k0 +

1

ρ∗
[k0 × (ẋ∗

0 × k0)]∆t0 +
1

ρ∗

{
1
2 [k0 × (ẍ∗

0 × k0)]−

− 1

ρ∗
(k0ẋ

∗
0)[k0 × (ẋ∗

0 × k0)]− 1

2ρ∗
(k0 × ẋ∗

0)2k0

}
(∆t0)2 + . . .

one gets

k =k0 −
1

ρ∗
[k0 × (x× k0)]− 1

2ρ∗2
(x× k0)2k0 −

1

ρ∗2
(xk0)[k0 × (x× k0)]+

+
1

ρ∗

{
[k0 × (ẋ∗

0 × k0)] +
1

ρ∗
(xk0)[k0 × (ẋ∗

0 × k0)]+

+
1

ρ∗
(ẋ∗

0k0)[k0 × (x× k0)] +
1

ρ∗
k0

(
x[k0 × (ẋ∗

0 × k0)]
)}

∆t0+

+
1

ρ∗

{
1
2 [k0 × (ẍ∗

0 × k0)]− 1

ρ∗
(ẋ∗

0k0)[k0 × (ẋ∗
0 × k0)]−

− 1

2ρ∗
(x× k∗

0)2k0

}
(∆t0)2 + . . . . (8.15)

Introducing now the vector of parallax

π =
1

ρ∗
[k0 × (x× k0)] (8.16)

and vector of proper motion
µ = k0 × (k̇0 × k0) (8.17)

and using the evident relations

k0π = 0 , k0µ = 0

as well as the derivatives

k̇0 =
1

ρ∗
[k0 × (ẋ∗

0 × k0)] (8.18)

and

µ̇ =
1

ρ∗

{
[k0 × (ẍ∗

0 × k0)]− 1

ρ∗
(k0 × ẋ∗

0)2k0 −
2

ρ∗
(k0ẋ

∗
0)[k0 × (ẋ∗

0 × k0)]
}

(8.19)
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one may present (8.15) in the more compressed form

k =
(
1 + πµ∆t0 − 1

2π
2
)
k0 +

(
1 +

1

ρ∗
xk0

)
µ∆t0−

−
(
1 +

1

ρ∗
xk0 −

1

ρ∗
ẋ∗
0k0∆t0

)
π + 1

2 µ̇(∆t0)2 + . . . . (8.18)

It remains to eliminate the unmeasurable time interval ∆t0 at the point of the light emission
by means of the transformation ∆t0 → ∆t = t−t∗, t∗ being the BRS moment corresponding
to t∗0 at the point of the light reception. The expression for the measurable time interval
∆t at the point of observation may be found from the simple relations of light propagation.
One has

t− t0 = c−1R+ . . . , R = x− x0(t0) = x− x∗
0 − ẋ∗

0∆t0 + . . . (8.19)

and
t∗ − t∗0 = c−1R∗ + . . . , R∗ = x∗ − x∗

0 , x∗ = x(t∗) (8.20)

with
R = ρ∗ + k0ẋ

∗
0∆t0 − xk0 + . . . , R∗ = ρ∗ − x∗k0 + . . . . (8.21)

Taking the difference of (8.19) and (8.20) one gets

∆t−∆t0 = c−1(R−R∗) + . . . = c−1k0(ẋ∗
0∆t0 − x + x∗) + . . . (8.22)

and finally
∆t0 = (1 + c−1k0ẋ

∗
0)−1(∆t+ c−1k0x− c−1k0x

∗). (8.23)

Combination of (8.6), (8.18) and (8.23) enables one to include completely the parallax and
proper motion corrections.

9. Geocentric position vectors in BRS and GRS

In addition, it may be reasonable to consider here in more detail as compared with (Bureau
des Longitudes, 1997) the relationship between geocentric position vectors in BRS and
GRS. Let BRS and GRS metrics be represented, respectively, by

ds2 = gµνdx
µdxν , x0 = ct (9.1)

and
ds2 = ĝµνdw

µdwν , w0 = cu . (9.2)

BRS→GRS transformation (direct transformation) has the form

u = t− c−2[A(t) + vkEr
k
E ] + . . . , (9.3)

wi = riE + c−2
{[

1
2v
i
Ev

k
E + qF ik(t) +Dik(t)

]
rkE +Dikm(t)rkEr

m
E

}
+ . . . (9.4)
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with

riE = xi − xiE(t), viE = ẋiE(t) (9.5)

and

Ȧ(t) = 1
2v

2
E + ŪE(xE). (9.6)

GRS→BRS transformation (inverse transformation) has the form

t = u+ c−2[A(t) + vkEw
k] + . . . , (9.7)

xi = xiE(t) + wi − c−2
[(

1
2v
i
Ev

k
E + qF ik +Dik

)
wk +Dikmwkwm

]
+ . . . . (9.8)

Expression (9.8) is not rigorous inverse transformation because its Newtonian right-hand
member is not expressed in terms of u (it does not matter for post-Newtonian terms).
Let t∗ be the BRS moment of time corresponding to event with the GRS coordinates
(u,wi = 0) (Klioner and Voinov, 1993). Then u and t∗ are related by the time equation

u = t∗ − c−2A(t∗) + . . . . (9.9)

Hence,

t− t∗ = c−2vkEw
k + . . . . (9.10)

Expanding the first term in the right-hand member of (9.8) in the vicinity of t∗ one gets

xi = xiE(t∗) + wi + c−2
[(

1
2v
i
Ev

k
E − qF ik −Dik

)
wk −Dikmwkwm

]
+ . . . . (9.11)

By applying the same expansion to the first term of the right-hand member of the direct
transformation (9.4) one has

wi = xi − xiE(t∗) + c−2
[(
− 1

2v
i
Ev

k
E + qF ik +Dik

)
rkE +DikmrkEr

m
E

]
+ . . . . (9.12)

Geocentric position vector of some ground station has GRS coordinates wi taken at some
TCG moment u or BRS coordinates xi − xiE taken at moment t∗ of TCB time t. Both
from (9.11) and (9.12) one gets the same result

xi−xiE(t∗) = [1−c−2ŪE(xE)]wi+ 1
2c

−2(vkEw
k)viE−c−2(qF ikwk+Dikmwkwm)+. . . (9.13)

or

wi = [1 + c−2ŪE(xE)](xi − xiE(t∗))− 1
2c

−2(vkEr
k
E)viE + c−2(qF ikrkE +DikmrkEr

m
E ) + . . . .

(9.14)
By introducing functions ziE = ziE(u)

ziE(u) = xiE(t∗) (9.15)
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one may characterize the motion of the geocenter E in terms of TCB–functions xiE(t) in
direct transformation (9.3), (9.4) or in terms of TCG–functions ziE(u) in inverse transfor-
mation (9.7), (9.11). The inverse transformation of such form is used in DSX approach
(Damour et al., 1991–1994). The inverse transformation is served, for example, to trans-
form the GRS time–space coordinates (u,wi) of the terrestrial ground stations into their
BRS space–time coordinates (t, xi). More general relationships for BRS and GRS coordi-
nate differences between moving celestial bodies are given in (Brumberg, 1995b).

10. Conclusion

The main result of the paper consists in the satellite observation reduction formula (4.7)
with (8.6), (8.18) and (8.23) relating the measurable light direction p̃(i) at BRS moment
t with the satellite catalog direction k0 to the light source for the initial epoch t∗0. It is
assumed that the spatial axes of SRS (a satellite catalog) do not rotate in Newtonian sense
with respect to global BRS or GRS but to specify the relativistic orientation of the SRS axes
one should fix characterizing constants q, q̂, q̃. The underlying theory of reference systems
and their transformations involved in the derivation of (4.7) is described in (Brumberg,
1995a). The technique of this paper may be combined as well with different solutions of
the GRT problem of light propagation including, for example, a solution proposed recently
by Kopeikin and Schäfer (1999).
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rando and W. Thuillot).

Damour T., Soffel M. and Xu C., 1991–1994. General–Relativistic Celestial Mechanics,
I–IV. Phys. Rev. D, 43, 3273–3397, 1991; 45, 1017–1044, 1992; 47, 3124–3135, 1993;
49, 618–635, 1994.

12



Klioner S.A. and Kopeikin S.M., 1992. Microarcsecond Astrometry in Space: Relativistic
Effects and Reduction of Observations. Astron. J., 104, 897–914.

Klioner S.A., 1993. On the Hierarchy of Relativistic Kinematically Nonrotating Reference
Systems. Astron. Astrophys., 279, 273–277.

Klioner S.A. and Voinov A.V. 1993. Relativistic Theory of Astronomical Reference Systems
in Closed Form. Phys. Rev. D 48, 1451–1461.
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