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Some Techniques for Determining Relativistic Planetary Perturbations
in the Theories of Motion of the Major Planets

V. A. Brumberg

Institute of Applied Astronomy, St. Petersburg, Russia

Abstract Presently, the relativistic planetary perturbations in the motion of the major
planets are taken into account only implicitly in numerical integrating the equations of
motion. This paper suggests two different techniques to determine the relativistic planetary
perturbations of the first order with respect to the planetary masses as explicit functions
of time. The first technique implies the iterative solution of the planetary equations in
form of the exponential series in the mean longitudes of the planets with polynomial in
time coefficients. In such a way the relativistic planetary perturbations may be expressed
in the form compatible with the VSOP87 solution of the Bureau des Longitudes. The
key point here is to correct properly the value of the mean longitude at the zero epoch
at each step of iterations. The second technique generalizes the general planetary theory
for the relativistic planetary problem. The solution is presented here by the exponential
series in the mean longitudes, the coefficients being the series in powers of slowly varying
elements (separation of the fast and slow variables). The behaviour of the latter elements
is governed by the autonomous secular system. This technique enables one to compute the
relativistic planetary perturbations by analytical algorithms. More specifically, the paper
presents the formulas to compute the relativistic planetary perturbations independent of
planetary eccentricities and inclinations (the intermediary) as well as the matrices of the
secular system responsible for the long–term evolution of the planetary orbits within the
general relativity framework.

1. Introduction

The present paper is aimed to give algorithms to determine relativistic planetary per-
turbations in the motion of the major planets. Until recently it was sufficient to take
into account in the planetary motions only the relativistic Schwarzschild perturbations
caused by the action of the Sun. But the permanently increasing accuracy of the plan-
etary theories demands to investigate the relativistic planetary perturbations. Presently,
such perturbations are taken into account implicitly in numerical planetary ephemerides
resulted from the numerical integration of the post–Newtonian equations of the planetary
motion. However, the presentation of these perturbations as explicit functions of time
may be of obvious interest. Semi–analytical theories of the motion of the major planets
VSOP87 (Bretagnon and Francou, 1988) are based on the Newtonian planetary equations
complemented by the relativistic Schwarzschild terms alone. Therefore, the relativistic
perturbations are presented in these theories by the Schwarzschild terms proportional to
the gravitational radius of the Sun m0 = GM0/c

2 (with the solar mass M0, gravita-
tional constant G and light velocity c) and the indirect planetary terms proportional to
m0Mi (Mi — being the planetary masses) and caused by the interaction of the Newtonian
planetary perturbations and Schwarzschild terms. Our aim is to take into account the
relativistic direct planetary perturbations in the equations of motion and to determine
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eventually all relativistic terms proportional to µσ, the small parameters µ = 10−3 and
σ = 10−8 characterize, respectively, the smallness of the planetary masses with respect
to the mass of the Sun and the smallness of the relativistic effects in the solar system
(the ratio of the solar gravitational radius to the astronomical unit of length). The al-
gorithms developed below enable one to find these terms both in the form of the classic
planetary theories like VSOP87 (trigonometric series in multiples of the planetary mean
longitudes with time–polynomial coefficients) and in the form of the general planetary the-
ory (Brumberg, 1995) (trigonometric series in multiples of the planetary mean longitudes
with polynomial coefficients in terms of the slowly changing variables whose behaviour is
described by an autonomous secular system).

2. Relativistic equations of motion of the first order

To start with, we take the heliocentric equations of motion of N major planets (Brum-
berg, 1991)

R̈i =−G(M0 +Mi)
Ri

R3
i

+
∑
j ̸=i

GMj

(
Rj −Ri

R3
ij

− Rj

R3
j

)
+

+ (m0Ai0 +miA0i)Ri + (m0Bi0 +miB0i)Ṙi+

+
∑
j ̸=i

mj

[
Aij (Ri −Rj) +A0jRj +Bij(Ṙi − Ṙj) +B0jṘj

]
,

i, j = 1, . . . , N , (2.1)

with

Ri = xi − x0 , Rij = Ri −Rj , mi =
GMi

c2
. (2.2)

The formally heliocentric equations (2.1) are just the differences of the barycentric equa-
tions of motion of planet i and the Sun described in the relativistic harmonic reference
system (ct, x) with the barycentric coordinate time t = TCB as their argument. The
expressions of the coefficients of the right–hand members of these equations are given in
(Brumberg, 1991). The barycentric coordinates of the Sun x0 may be determined from
the integral

MR = − 1

2c2

[
M0

(
ẋ2
0 −

N∑
j=1

GMj

r0j

)
x0 +

N∑
i=1

Mi

(
ẋ2
i −

GM0

r0i
−
∑
j ̸=i

GMj

rij

)
xi

]
, (2.3)

R being the position vector of the Newtonian center of mass of the Sun and all planets

R =
1

M

(
M0x0 +

N∑
i=1

Mixi

)
(2.4)
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and

rij = xi − xj , M =M0 +
N∑
i=1

Mi . (2.5)

Within the practically admissible accuracy of the first order with respect to the planetary
masses there results

MR = − 1

2c2

N∑
i=1

Mi

(
Ṙ

2

i −
GM0

Ri

)
Ri , (2.6)

x0 = − 1

M

N∑
i=1

Mi

[
1 +

1

2c2

(
Ṙ

2

i −
GM0

Ri

)]
Ri . (2.7)

The coefficients Ai0 and Bi0 are demanded within the first order accuracy whereas for the
coefficients Aij , Bij , A0i and B0i the zero order accuracy is sufficient. From the rigorous
expressions of these coefficients given in (Brumberg, 1991) one has within the demanded
accuracy

Aij =
1

R3
ij

[
4ṘiṘj − Ṙ

2

i − 2Ṙ
2

j +
3

2R2
ij

(RijṘj)
2 +

4GM0

Ri
+
GM0

Rj
−

− GM0

2R3
j

(RijRi)

]
+
GM0

R3
j

(
4

Rij
− 7

2Ri

)
, (2.8)

Bij =
1

R3
ij

[
4(RijṘij) + (RijṘj)

]
, (2.9)

A0i =
1

R3
i

[
−2Ṙ

2

i +
3

2R2
i

(RiṘi)
2 +

5GM0

Ri

]
, (2.10)

B0i =
3

R3
i

(RiṘi), (2.11)

Ai0 =
1

R3
i

(
−Ṙ

2

i + 4
GM0

Ri
+ 2(Ṙiẋ0) + 5

GMi

Ri

)
+

+
∑
j ̸=i

GMj

(
1

R3
iRj

+
7

2

1

RiR3
j

+
1

2

RiRj

R3
iR

3
j

+
4

R3
iRij

− 7

2

1

R3
jRij

)
, (2.12)

Bi0 =
1

R3
i

[
4(RiṘi) + (Riẋ0)

]
. (2.13)

The right–hand members of equations (2.1) contain two small dimensionless parameters

µ = 10−3 , σ = 10−8. (2.14)
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The first parameter is to characterize the smallness of the planetary masses with respect
to the mass of the Sun. Together with the parameter µ one makes use of N × N matrix
κ = ||κ(i, j)|| with the elements

µκii =
Mi

M0
, µκij =

Mj

M0 +Mi
, i ̸= j . (2.15)

Parameter σ is to characterize the smallness of the relativistic effects in the solar system.
Introducing a characteristic length A (nearly equivalent to the astronomical unit of length)
one has

σ =
GM0

c2A
. (2.16)

The employed below the semi–major axes of the planetary orbits ai are determined from
the observed values of the mean motions ni by means of the third Kepler law

n2i a
3
i = G(M0 +Mi) . (2.17)

The coefficients (2.13) and (2.14) may be now rewritten as follows:

Ai0 = A′
i0 + µA∗

i0 , Bi0 = B′
i0 + µB∗

i0 (2.18)

with

A′
i0 =

1

R3
i

(
−Ṙ

2

i + 4
n2i a

3
i

Ri

)
, (2.19)

B′
i0 =

4

R3
i

(RiṘi) , (2.20)

A∗
i0 =

κii
R3

i

(
−2Ṙ

2

i +
GM0

Ri

)
− 2

Ṙi

R3
i

∑
j ̸=i

κjjṘj+

+ n2i a
3
i

∑
j ̸=i

κij

(
1

R3
iRj

+
7

2

1

RiR3
j

+
1

2

RiRj

R3
iR

3
j

+
4

R3
iRij

− 7

2

1

R3
jRij

)
, (2.21)

B∗
i0 = −κii

RiṘi

R3
i

− Ri

R3
i

∑
j ̸=i

κjjṘj . (2.22)

Needless to say, in using the Newtonian value for ẋ0 the quantity M is replaced herewith
by M0 within the first order accuracy. In virtue of (2.17) the coefficient (2.19) depends
implicitly on Mi. The splitting (2.18) into two parts is somewhat arbitrary. The specific
expressions (2.19) and (2.21) are chosen for the sake of convenience. The initial equations
(2.1) take now the form

R̈i = Fi , Fi = F
(i)
K + F

(i)
N + F

(i)
S + F

(i)
R (2.23)
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with Keplerian terms

F
(i)
K = −n2i a3i

Ri

R3
i

, (2.24)

Newtonian perturbing terms

F
(i)
N = n2i a

3
iµ
∑
j ̸=i

κij

(
Rj −Ri

R3
ij

− Rj

R3
j

)
, (2.25)

relativistic Schwarzschild terms

F
(i)
S = σA(A′

i0Ri +B′
i0Ṙi) (2.26)

and relativistic planetary perturbing terms

F
(i)
R =µσA

{
(A∗

i0 + κiiA0i)Ri + (B∗
i0 + κiiB0i)Ṙi+

+
∑
j ̸=i

κjj

[
Aij(Ri −Rj) +A0jRj +Bij(Ṙi − Ṙj) +B0jṘj

]}
. (2.27)

On a matter of concern, the first order relativistic planetary perturbations proportional to

µσ are due to the direct perturbing terms F
(i)
R in the right–hand members of the equations

of motion and to the interaction of perturbations caused by the terms F
(i)
N and F

(i)
S . Clearly,

to determine these perturbations one may use a variety of the theory of perturbations

techniques. If the solution of the equations (2.23) for F
(i)
R = 0 is known, e.g. in form of the

VSOP solution, then one can add to this solution the perturbations due to F
(i)
R by means

of the iteration procedure of the next section. On the other hand, it seems reasonable
to investigate these perturbations in a more sophisticated manner extending the general
planetary theory (Brumberg, 1995) for relativistic equations (2.23). This technique is
exposed starting with the section 4.

3. Iterative solution of the perturbed two–body problem

The initial equations of the perturbed two–body problem are of the form

ẍ+
GMx

r3
= X (3.1)

in combination with two similar equations for the coordinates y and z (with the right–hand

members Y and Z, respectively). Performing the transformation

x+ i y = a(1− p) exp iλ , z = aw , (3.2)

with

λ = nt+ ε , n2a3 = GM , (3.3)
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one gets the new equations

p̈+ 2 inṗ− 3

2
n2(p+ q) = n2P , (3.4)

ẅ + n2w = n2W (3.5)

with the right–hand members

P = −3

2
(p+ q) +

(
a3

r3
− 1

)
(1− p)− 1

n2a
(X + iY ) exp(− iλ), (3.6)

W = −
(
a3

r3
− 1

)
w +

1

n2a
Z , (3.7)

with q = p̄. Here and below the bar means a complex conjugate quantity. These equations

can be solved by iterations as described in section 7.2 of (Brumberg, 1995). Indeed, if some

approximate solution of the equations (3.4) and (3.5) is substituted into the right–hand

members of these equations then a more accurate solution can be found by quadratures

resulted from the iterative equations

p = in

[
3

4
exp(− iλ)

∫
(3P+ − P̄+) exp iλ dt+

+
1

4
exp iλ

∫
(3P̄+ − P+) exp(− iλ) dt− 2

∫
P+ dt

]
−

− 3

2
n2i

∫ ∫
(P+ − P̄+) dt dt− 1

3
P ∗ + p̃ , (3.8)

w =
1

2
in

[
exp(− iλ)

∫
W exp iλ dt− exp iλ

∫
W exp(− iλ) dt

]
+ w̃ . (3.9)

Here P ∗ stands for the constant (not dependent on time) part of P , so that

P = P ∗ + P+ . (3.10)

The derivatives ṗ and ẇ are determined by

ṗ =n2
[
3

4
exp(− iλ)

∫
(3P+ − P̄+) exp iλ dt−

− 1

4
exp iλ

∫
(3P̄+ − P+) exp(− iλ) dt− 3

2

∫
(P+−P̄+) dt

]
+ ˙̃p , (3.11)

ẇ =
1

2
n2
[
exp(− iλ)

∫
W exp iλ dt+ exp iλ

∫
W exp(− iλ) dt

]
+ ˙̃w . (3.12)
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The functions p̃, w̃, ˙̃p and ˙̃w represent the general solution of the homogeneous equations

related to (3.4) and (3.5). This general solution is described by the expressions

p = A exp iλ− 3Ā exp(− iλ) + i n(B + 3Ct)− 2C , (3.13)

w = D exp iλ+ D̄ exp(− iλ) , (3.14)

ṗ = i n
[
A exp iλ+ 3Ā exp(− iλ) + 3C

]
, (3.15)

ẇ = i n
[
D exp iλ− D̄ exp(− iλ)

]
. (3.16)

Here A and D are complex arbitrary constants, B and C are real constants. In the

expressions of p̃, w̃, ˙̃p and ˙̃w the constants B and C are annulled. The constants A and D

together with the constants n and ε present a full set of six real arbitrary constants in the

solution of the equations (3.4) and (3.5). The meaning of the constants A and D is evident

from the initial terms of their expressions in terms of the traditional Kepler elements e, i,

π, Ω

A = −1

2
e exp(− iπ) , D = −1

2
i sin i exp(− i Ω) . (3.17)

Performing iterations by means of (3.8) and (3.9) is possible provided that the constant

part P ∗ of P is real, i.e.

ℑ(P ∗) = 0 . (3.18)

Let’s consider new equations

ẍ′ +
GMx′

r′3
= X ′ (3.19)

with the right–hand members

X ′ = X + δX . (3.20)

In case of the VSOP solution the right–hand members X involve the Newtonian plan-

etary perturbations and Schwarzschild terms whereas the additive right–hand members

δX represent the relativistic planetary disturbing terms. Similar to (3.2) and (3.3) the

transformation of the variables

x′ + i y′ = a(1− p′) exp iλ′ , z′ = aw′ , (3.21)

with

λ′ = nt+ ε′ , (3.22)

results in new equations

p̈ ′ + 2 inṗ ′ − 3

2
n2(p ′ + q′) = n2P ′ , (3.23)

ẅ′ + n2w′ = n2W ′ (3.24)
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with the right–hand members

P ′ = −3

2
(p′ + q′) +

(
a3

r′3
− 1

)
(1− p′)− 1

n2a
(X ′ + iY ′) exp(− iλ′), (3.25)

W ′ = −
(
a3

r′3
− 1

)
w′ +

1

n2a
Z ′ . (3.26)

The mean motion n is always regarded as an observed quantity, its value being independent

of the perturbations taken into account. On the contrary, ε′ ̸= ε in the general case. The

functions p′, w′ and ε′are considered as the new variables. Putting

p′ = p+ δp , w′ = w + δw , ε′ = ε+ δε , λ′ = λ+ δλ , δλ = δε , (3.27)

one gets the equations to determine δp and δw

δp̈+ 2 inδṗ− 3

2
n2(δp+ δq) = n2δP , (3.28)

δẅ + n2δw = n2δW (3.29)

with the right–hand members

δP = P ′ − P , δW =W ′ −W . (3.30)

The value of δε remains arbitrary so far. To begin iterations, the right–hand member δP

is to be computed with δε = 0. Then the quantity δε is chosen to provide vanishing of the

imaginary part of the constant term of this right–hand member i.e.

ℑ(δP ∗) = 0 . (3.31)

As seen from the structure of the right–hand member it is always possible. Indeed, from

(3.2) and (3.21) there results

r2 = a2
[
(1− p)(1− q) + w2

]
, (3.32)

r′
2
= a2

[
(1− p′)(1− q′) + w′2

]
. (3.33)

It is easy to find (
r′

a

)2

=
( r
a

)2
(1− S) ,

S =
(a
r

)2 [
(1− q)δp+ (1− p)δq − 2wδw − δpδq − (δw)2

]
(3.34)

and ( a
r′

)3
=
(a
r

)3
(1 + T ) , T = (1− S)

− 3
2 − 1 =

∞∑
k=1

(
3
2

)
k

(1)k
Sk . (3.35)
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One has therefore

δP =− 3

2
(δp+ δq) + (1− p)

(a
r

)3
T −

[(a
r

)3
(1 + T )− 1

]
δp−

− 1

n2a
(X + iY ) exp(− iλ)[exp(− i δλ)− 1]−

− 1

n2a
(δX + i δY ) exp(− iλ′), (3.36)

δW = −w
(a
r

)3
T −

[(a
r

)3
(1 + T )− 1

]
δw +

1

n2a
δZ . (3.37)

Thus, if the condition (3.31) is not fulfilled under δε = 0 then one should determine δε

from (3.36) to satisfy this condition. At the first step of iterations

δP = − 1

n2a
(δX + i δY ) exp(− iλ) +

1

n2a
(X + iY ) exp(− iλ) i δε . (3.38)

Therefore, the initial value for δε should be

δε =
−n2aℑ(P ∗) + ℑ

{
(δX + i δY ) exp(− iλ)

}∗
ℜ
{
(X + iY ) exp(− iλ)

}∗ , (3.39)

the asterisk denoting the constant part of the quantity in braces. The iterations exposed

above are applied to the equations (3.28) and (3.29). In the process of iterations the value

of δε may be improved, if necessary.The first term in the numerator of (3.39) is not needed

if the initial approximate solution of the equations (3.4) and (3.5) satisfies the condition

(3.18). On the other hand, the correction (3.39) with δX = δY = 0 provides the validity

of the condition (3.18) for the initial solution.

In performing the iterations of the present section to determine the relativistic plane-

tary perturbations within the VSOP solution one has to deal with polynomial–exponential

series of the type

S =
∑
k

Sk(t) exp i(kλ) , (3.40)

where k is a multi–index k = (k1, . . . , kN ), λ being a vector with components λ1, . . . , λN
and (kλ) = k1λ1 + · · · + kNλN . The coefficients Sk(t) are polynomials in t with complex

coefficients. The polynomial structure of these coefficients is related to the secular motions

of the perihelia and nodes of the planetary orbits. The further sections of the present paper

deal with the problem of the relativistic planetary perturbations within the framework of

the general planetary theory.
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4. Relativistic general planetary theory

The initial variables of the general planetary theory (GPT) (Brumberg, 1995) result

from the transformation of the planetary heliocentric rectangular coordinates xi, yi, zi and

velocity components ẋi, ẏi, żi as follows:

xi + i yi = ai(1− pi) exp iλi , zi = aiwi , (4.1)

ẋi + i ẏi = ai [−ṗi + ini(1− pi)] exp iλi , żi = aiẇi , (4.2)

with

λi = nit+ εi , n2
i a

3
i = G(M0 +Mi) . (4.3)

The new equations of motion are

p̈i + 2 iniṗi −
3

2
n2i (pi + qi) = n2iPi , (4.4)

ẅi + n2iwi = n2iWi . (4.5)

The right–hand members Pi and Wi are related to the initial components Xi, Yi, Zi of

the disturbing accelerations F
(i)
N +F

(i)
S +F

(i)
R by means of (3.6) and (3.7) with attributing

index i to all variables. The first step in GPT is to find an intermediary, i.e. a particular

planar quasi–periodic solution

pi = p
(0)
i , wi = 0 , (4.6)

not dependent on the eccentricities and inclinations of the planetary orbits. This solution is

presented by the trigonometric series in multiples of the differences of the mean longitudes

λi with the coefficients dependent on the mean motions ni and the major semi–axes ai
and expanded in powers of the small parameters µ and σ. Putting

pi = p
(0)
i + δpi (4.7)

and separating explicitly the terms linear in the eccentricities and inclinations one has

Pi = P
(0)
i −

N∑
j=1

(
Kijδpj + Lijδqj −

1

inj
K ′

ijδṗj +
1

inj
L′
ijδq̇j

)
+ P ∗

i (4.8)

and

Wi = −
N∑
j=1

(
Mijwj −

1

inj
M ′

ijẇj

)
+W ∗

i , (4.9)

N still standing for the number of the planets. The coefficients Kij , Lij , Mij , K
′
ij , L

′
ij ,

M ′
ij are functions of intermediary starting with the first order terms with respect to the

parameters µ and σ. The functions P ∗
i andW ∗

i are at least of the second order of smallness
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with respect to the eccentricities and inclinations. The new equations of motion may be

described in the form

δp̈i + 2 iniδṗi+n
2
i

N∑
j=1

[(
−3

2
δij +Kij

)
δpj +

(
−3

2
δij + Lij

)
δqj−

− 1

inj
K ′

ijδṗj +
1

inj
L′
ijδq̇j

]
= n2iP

∗
i (4.10)

and

ẅi + n2i

N∑
j=1

[(
δij +Mij

)
wj −

1

inj
M ′

ijẇj

]
= n2iW

∗
i (4.11)

or in the matrix form

V̇ = AV +B (4.12)

with block matrices

V =

(
V ′

V ′′

)
, A =

(
A′ 0
0 A′′

)
, B =

(
B′

B′′

)
, (4.13)

where

V ′ =


δp
δq
δṗ
δq̇

 , V ′′ =

(
w
ẇ

)
, B′ =


0
0

N 2P ∗

N 2P̄ ∗

 , B′′ =

(
0

N 2W ∗

)
(4.14)

and

A′′ =

(
0 E

−N 2(E +M) − iN 2M ′N−1

)
. (4.15)

As for 4× 4 block matrix A′ is concerned, it contains 6 zero and 2 diagonal unit blocks

A11 = A12 = A14 = A21 = A22 = A23 = 0 , A13 = A24 = E

as well as following blocks in the third line

A31 = N 2

(
3

2
E −K

)
, A33 = − iN

(
2E +NK ′N−1

)
,

A32 = N 2

(
3

2
E − L

)
, A34 = iN 2L′N−1 .

(4.16)

The elements of the fourth line are obtained from these elements by complex conjugation

A41 = Ā32 , A42 = Ā31 , A43 = Ā34 , A44 = Ā33 .
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Here E stands for N×N unit matrix, N is N×N diagonal matrix of the mean motions, δp,

δq, w, δṗ, δq̇, ẇ, P ∗ and W ∗ are N–vectors of the corresponding variables and right–hand

members, the bar denotes as before a complex conjugate quantity. K, L, M , K ′, L′ and

M ′ are N × N matrices of the coefficients Kij , Lij , Mij , K
′
ij , L

′
ij and M ′

ij , respectively,

with M̄ =M and M̄ ′ = −M ′.

In accordance with the GPT technique the transformation

V = JX , X = J−1V , (4.17)

with the matrix J of the same block structure as A

J ′ =


E −2

3 E −1
2 E

3
2 E

−E −2
3 E

3
2 E −1

2 E

0 iN − i
2N − 3 i

2 N

0 − iN 3 i
2 N i

2N

 , J ′′ =

(
E E

iN − iN

)
, (4.18)

J ′−1
=



1
2E −1

2E − iN−1 − iN−1

−3E −3E 3 i
2 N−1 −3 i

2 N−1

−3
2E −3

2E
i
2 N

−1 −3 i
2 N−1

−3
2E −3

2E
3 i
2 N−1 − i

2 N
−1

 , J ′′−1
=

(
1
2E − i

2N
−1

1
2E

i
2N

−1

)
(4.19)

and new variables

X =


ξ
η
u
ū
v
v̄

 , ξ̄ = −ξ , η̄ = η , (4.20)

reduces the system (4.12) to the quasi–Jordan form

Ẋ = iN [(P +Q)X +R] (4.21)

with a constant Jordan matrix

P =


0 E 0 0 0 0
0 0 0 0 0 0
0 0 E 0 0 0
0 0 0 −E 0 0
0 0 0 0 E 0
0 0 0 0 0 −E

 , (4.22)

the right–hand members

R = − iN−1J−1B (4.23)
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and quasi–periodic matrix

Q = − iN−1J−1AJ − P . (4.24)

The diagonal matrix N in (4.21), (4.23) and (4.24) is to be treated as a block–factor. The

quantities X = ∥Xκ∥ and R = ∥Rκ∥ (κ = 1, 2, . . . , 6) represent the block vectors where

each block is a N–vector of the corresponding variables

X1 = ξ , X2 = η , X3 = u , X5 = v (4.25)

and
R1 = −(P ∗ + P̄ ∗) , R3 = 1

2 (P
∗ − 3P̄ ∗) ,

R2 = 3
2 (P

∗ − P̄ ∗) , R5 = −1
2W

∗ .
(4.26)

One has therewith

X̄1 = −X1, X̄2 = X2, X4 = X̄3, X6 = X̄5 (4.27)

and

R̄1 = R1, R̄2 = −R2, R4 = −R̄3, R6 = −R̄5 . (4.28)

The matrices P = ∥Pκν∥ and Q = ∥Qκν∥ (κ, ν = 1, 2, . . . , 6) are composed by square

blocks, all of which representing N × N matrix. P is a constant Jordan matrix with

non–zero blocks

P12 = P33 = P55 = E , P44 = P66 = −E . (4.29)

Q is a quasi–periodic matrix consisting of 36 square blocks. 16 blocks with indices (κ, 5),

(κ, 6), (5, κ) and(6, κ) for κ = 1, 2, 3, 4 are zero blocks. 12 essential blocks have the values

Q11 = K − L− K̄ + L̄ ,

Q12 = −2
3 (K + L+ K̄ + L̄)− (K ′ + L′ + K̄ ′ + L̄′) ,

Q21 = 3
2 (−K + L− K̄ + L̄),

Q22 = K + L− K̄ − L̄+ 3
2 (K

′ + L′ − K̄ ′ − L̄′) ,

Q13 = 1
2 (−K + 3L+ 3K̄ − L̄) + 1

2 (K
′ + 3L′ + 3K̄ ′ + L̄′) ,

Q23 = 3
4 (K − 3L+ 3K̄ − L̄) + 3

4 (−K
′ − 3L′ + 3K̄ ′ + L̄′) ,

Q31 = 1
2 (−K + L− 3K̄ + 3L̄) ,

Q32 = 1
3 (K + L− 3K̄ − 3L̄) + 1

2 (K
′ + L′ − 3K̄ ′ − 3L̄′) ,

Q33 = 1
4 (K − 3L+ 9K̄ − 3L̄) + 1

4 (−K
′ − 3L′ + 9K̄ ′ + 3L̄′) ,

Q34 = 1
4 (−3K + L− 3K̄ + 9L̄) + 1

4 (−3K ′ − L′ + 3K̄ ′ + 9L̄′) ,

Q55 = 1
2 (M −M ′) ,

Q56 = 1
2 (M +M ′) .

(4.30)
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The remaining 8 blocks satisfy the conjugation conditions

Q14 = Q̄13 , Q24 = −Q̄23 , Q41 = Q̄31 , Q42 = −Q̄32 ,

Q43 = −Q̄34 , Q44 = −Q̄33 , Q65 = −Q̄56 , Q66 = −Q̄55 .
(4.31)

The equations (4.21) have the same form as in the Newtonian GPT and all subsequent

steps may be performed just as in the Newtonian case (Brumberg, 1995). For our purposes

it is sufficient to consider only the intermediary and the secular system in the linear (with

respect to the eccentricities and inclinations) approximation.

5. Right–hand members of the equations of motion

Originally, the right–hand members (4.4) and (4.5) are represented by the series

Pi = P
00

i + µP
10

i + σ P
01

i + µσ P
11

i + . . . (5.1)

and

Wi =W
00

i + µW
10

i + σW
01

i + µσW
11

i + . . . . (5.2)

The free terms and the coefficients in µ of these series are given in different forms in

(Brumberg. 1995). The Schwarzschild and relativistic planetary terms are

P
01

i = − A

n2i

[
A′

i0(1− pi) + iniB
′
i0

(
1− pi −

ṗi
ini

)]
, (5.3)

W
01

i =
A

n2i
(A′

i0wi +B′
i0ẇi) , (5.4)

P
11

i =− A

n2i

{
(A∗

i0 + κiiA0i)(1− pi) + ini (B
∗
i0 + κiiB0i)

(
1− pi −

ṗi
ini

)
+

+
∑
j ̸=i

κjj

[
Aij(1− pi) + (A0j −Aij)

aj
ai

(1− pj)ζ
−1
ij +

+ iniBij

(
1− pi −

ṗi
ini

)
+ inj(B0j −Bij)

aj
ai

(
1− pj −

ṗj
inj

)
ζ−1
ij

]}
(5.5)

and

W
11

i =
A

n2i

{
(A∗

i0 + κiiA0i)wi + (B∗
i0 + κiiB0i)ẇi+

+
∑
j ̸=i

κjj

[
Aijwi +Bijẇi + (A0j −Aij)

aj
ai
wj + (B0j −Bij)

aj
ai
ẇj

]}
, (5.6)
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with

ζij = exp i(λi − λj) . (5.7)

Separating the intermediate solution (4.6) and substituting (4.7) one gets each of the
given above coefficients A and B as the sum of the part A(0) or B(0) dependent only on
the intermediary and the part δA or δB dependent on the eccentricities and inclinations.
This paper treats any relativistic terms only within the first power with respect to the
eccentricities and inclinations. In result, the expressions (5.3)–(5.6) take the form

P
01

i =− A

n2i

[
A

′(0)
i0

(
1− p

(0)
i

)
+ iniB

′(0)
i0

(
1− p

(0)
i − ṗ

(0)
i

ini

)
−

−A
′(0)
i0 δpi − iniB

′(0)
i0

(
δpi +

δṗi
ini

)
+

(
1− p

(0)
i

)
δA′

i0+

+ ini

(
1− p

(0)
i − ṗ

(0)
i

ini

)
δB′

i0

]
, (5.8)

W
01

i =
A

n2i

(
A

′(0)
i0 wi +B

′(0)
i0 ẇi

)
. (5.9)

P
11

i =− A

n2i

{
A

∗(0)
i0 + κiiA

(0)
0i + ini

(
B

∗(0)
i0 + κiiB

(0)
0i

)
−

−
(
A

∗(0)
i0 + κiiA

(0)
0i

)
δpi − ini

(
B

∗(0)
i0 + κiiB

(0)
0i

)(
δpi +

δṗi
ini

)
+

+ δA∗
i0 + κiiδA0i + ini

(
δB∗

i0 + κiiδB0i

)
+

+
∑
j ̸=i

κjj

[
A

(0)
ij + iniB

(0)
ij +

(
A

(0)
0j −A

(0)
ij

)aj
ai
ζ−1
ij + inj×

×
(
B

(0)
0j −B

(0)
ij

)aj
ai
ζ−1
ij −A

(0)
ij δpi − iniB

(0)
ij

(
δpi +

δṗi
ini

)
−

−
(
A

(0)
0j −A

(0)
ij

)aj
ai
ζ−1
ij δpj − inj

(
B

(0)
0j −B

(0)
ij

)aj
ai
ζ−1
ij

(
δpj +

δṗj
inj

)
+

+ δAij + iniδBij +
aj
ai
ζ−1
ij

(
δA0j − δAij

)
+ inj

aj
ai
ζ−1
ij

(
δB0j − δBij

)]}
, (5.10)

W
11

i =
A

n2i

{(
A

∗(0)
i0 + κiiA

(0)
0i

)
wi +

(
B

∗(0)
i0 + κiiB

(0)
0i

)
ẇi+

+
∑
j ̸=i

κjj

[
A

(0)
ij wi +B

(0)
ij ẇi +

(
A

(0)
0j −A

(0)
ij

)aj
ai
wj +

(
B

(0)
0j −B

(0)
ij

)aj
ai
ẇj

]}
.(5.11)
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All the coefficients in the two last expressions (5.10) and (5.11) are needed only in the
circular motion approximation (pi = qi = wi = 0).

Within the demanded accuracy one gets

A
′(0)
i0 =

n2i
ai

(
3 +

15

2
p
(0)
i +

15

2
q
(0)
i +

ṗ
(0)
i

ini
− q̇

(0)
i

ini

)
, (5.12)

δA′
i0 =

n2i
ai

[(
15

2
+

93

4
p
(0)
i +

63

4
q
(0)
i +

3

2

ṗ
(0)
i

ini
− 1

2

q̇
(0)
i

ini

)
δpi+

+

(
15

2
+

63

4
p
(0)
i +

93

4
q
(0)
i +

1

2

ṗ
(0)
i

ini
− 3

2

q̇
(0)
i

ini

)
δqi+

+

(
1 +

3

2
p
(0)
i +

1

2
q
(0)
i +

q̇
(0)
i

ini

)
δṗ

(0)
i

ini
−

−
(
1 +

1

2
p
(0)
i +

3

2
q
(0)
i − ṗ

(0)
i

ini

)
δq̇

(0)
i

ini

]
, (5.13)

B
′(0)
i0 = − 2

ai

(
ṗ
(0)
i + q̇

(0)
i

)
, (5.14)

δB′
i0 =− 2

ai

[
1

2

(
3ṗ

(0)
i + q̇

(0)
i

)
δpi +

1

2

(
ṗ
(0)
i + 3q̇

(0)
i

)
δqi+

+

(
1 +

3

2
p
(0)
i +

1

2
q
(0)
i

)
δṗi +

(
1 +

1

2
p
(0)
i +

3

2
q
(0)
i

)
δq̇i

]
. (5.15)

As mentioned above, all other coefficients are needed only within the circular motion
approximation. Besides, one may make no difference between κij and κjj and apply the
third Kepler law in its simplified form n2i a

3
i = n2ja

3
j . Taking all this into account, one finds

A
∗(0)
i0 =− n2i

ai
κii + n2i

∑
j ̸=i

κjj

[
1

aj
+

1

4

ai
a2j

(
1− 4

ni
nj

)
(ζij + ζ−1

ij )+

+
7

2

a2i
a3j

+
4

∆ij
− 7

2

(
ai
aj

)3
1

∆ij

]
, (5.16)

A
(0)
0i = 3

n2i
ai
, (5.17)

A
(0)
ij =n2j

(
4

∆ij
− 7

2ai

)
+

1

∆3
ij

[
3n2i a

2
i − n2j

(
1

2
a2i + a2j

)
+ aiajnj×

×
(
2ni +

1

4
nj

)(
ζij + ζ−1

ij

)
− 3

8

a2i a
2
jn

2
j

∆2
ij

(
ζ2ij + ζ−2

ij − 2
)]
, (5.18)
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B
∗(0)
i0 =

i

2a2i

∑
j ̸=i

κjjnjaj
(
ζij − ζ−1

ij

)
, (5.19)

B
(0)
0i = 0 , (5.20)

B
(0)
ij =

i aiaj
∆3

ij

(
3

2
nj − 2ni

)(
ζij − ζ−1

ij

)
, (5.21)

with ∆ij denoting the mutual distance between planets i and j (for complanar circular
orbits). The terms of the first power in eccentricities and inclinations are

δA0i =
n2i
ai

(
9 δpi + 9 δqi + 2

δṗi
ini

− 2
δq̇i
ini

)
, δB0i = − i

3

2

ni
ai

(
δṗi
ini

+
δq̇i
ini

)
, (5.22)

δA∗
i0 =Ai001 δpi +Ai002 δqi +Ai003

δṗi
ini

+Ai004
δq̇i
ini

+

+
∑
j ̸=i

(
Ai0j1 δpj +Ai0j2 δqj +Ai0j3

δṗj
inj

+Ai0j4
δq̇j
inj

)
, (5.23)

δAij =Aij01 δpi +Aij02 δqi +Aij03
δṗi
ini

+Aij04
δq̇i
ini

+

+Aijj1 δpj +Aijj2 δqj +Aijj3
δṗj
inj

+Aijj4
δq̇j
inj

(5.24)

with similar expressions for δB∗
i0 and δBij . The coefficients of these expansions resulting

from the general expressions for A∗
i0, B

∗
i0, Aij and Bij are given in the Appendix 1.

6. Construction of the intermediate solution

At each step of constructing the intermediate solution the right–hand member of
equation (4.4) is presented by a series

P
(0)
i =

∑
P

(i)
k exp i(kλ) , (6.1)

k being a N multi–index with

(kλ) = k1λ1 + . . .+ kNλN , k1 + k2 + . . .+ kN = 0 . (6.2)

After integration the intermediate solution is presented in the same form with the coeffi-
cients

p
(i)
0 = −1

3
P

(i)
0 , p

(i)
k = n2i

[
(kn)2 − 2ni(kn) +

3
2n

2
i

]
P

(i)
k − 3

2n
2
iP

(i)
−k

(kn)2
[
n2i − (kn)

2
] . (6.3)
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The intermediate solution is expanded therewith in powers of µ and σ

p
(0)
i = µ p

10
i + σ p

01
i + µσ p

11
i + . . . . (6.4)

From (5.8), (5.12) and (6.3) it is seen that within the first order in σ the only relativistic
contribution into the intermediate solution is presented by the constant term

p
01
i =

A

ai
. (6.5)

The intermediary solution (6.4) with (6.5) is substituted into the right–hand members
(5.1) and (5.2) to re–order terms in powers of µ and σ. More specifically, the right–hand
members of the equations for the intermediary are presented in the form

P
(0)
i = µP

(i)
10 + σP

(i)
01 + µσP

(i)
11 + . . . , (6.6)

P
(i)
10 =

∑
j ̸=i

κijψ
(ij)
000000 , (6.7)

P
(i)
01 = −3

A

ai
, (6.8)

P
(i)
11 =

A

ai

[∑
j ̸=i

κij

(
ψ
(ij)
100000 + ψ

(ij)
010000 +

ai
aj
ψ
(ij)
001000 +

ai
aj
ψ
(ij)
000100

)
−

− 3 p
10
i − 3 q

10
i −

3

ini
ṗ
10
i −

1

ini
q̇
10
i

]
− A

n2i

{
A

∗(0)
i0 + κiiA

(0)
0i +

+ ini

(
B

∗(0)
i0 + κiiB

(0)
0i

)
+
∑
j ̸=i

κjj

[
A

(0)
ij + iniB

(0)
ij +

+
(
A

(0)
0j −A

(0)
ij

)aj
ai
ζ−1
ij + inj

(
B

(0)
0j −B

(0)
ij

)aj
ai
ζ−1
ij

]}
(6.9)

with values (5.16)–(5.21). Again one may make no difference here between κij and κjj .

Various expressions for occurring here functions ψ
(ij)
klrsmt are given in (Brumberg, 1995).

These functions are expanded in the Fourier series

ψ
(ij)
klrsmt =

∞∑
σ=−∞

ψ(ij;klrsmt)
σ ζσij , (6.10)

the coefficients may be easily computed by means of the hypergeometric series. These

coefficients may be also expressed in terms of the Laplace symmetric coefficients c
(σ)
n (ai, aj),

defined as the Fourier coefficients of the expansion

∆−n
ij =

1

2

∞∑
σ=−∞

c(σ)n (ai, aj)ζ
σ
ij , c(−σ)

n = c(σ)n (6.11)
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and represented, e.g., with the aid of the hypergeometric functions

1

2
c(σ)n (a, a′) =

(
n
2

)
|σ|

(1)|σ|(aa′)
n
2
α|σ|+n

2 F
(

n
2 ,

n
2 + |σ| , 1 + |σ| , α2

)
, (6.12)

with

α =
min{a, a′}
max{a, a′}

. (6.13)

In particular,

p
10
i =

∑
j ̸=i

κij

∞∑
σ=−∞

p(ij)σ ζσij , (6.14)

with coefficients

p
(ij)
0 = −1

3
ψ
(ij;000000)
0 , (6.15)

p(ij)σ =
m2

ij

σ2(m2
ij − σ2)

[(
σ2 − 2σmij +

3

2
m2

ij

)
ψ(ij;000000)
σ − 3

2
m2

ijψ
(ij;000000)
−σ

]
, (6.16)

with
mij =

ni
ni − nj

(6.17)

and

ψ(ij;000000)
σ =

(
ai
aj

)2
δσ,−1 +

1

2
a3i c

(σ)
3 (ai, aj)−

1

2
a2i ajc

(σ+1)
3 (ai, aj) . (6.18)

Besides,

ψ(ij;100000)
σ =

1

4
a3i c

(σ)
3 (ai, aj) , (6.19)

ψ(ij;010000)
σ =

1

4
(3 + 2σ)a3i c

(σ)
3 (ai, aj)−

1

2
(1 + σ)a2i ajc

(σ+1)
3 (ai, aj) , (6.20)

ψ(ij;001000)
σ =

1

2

(
ai
aj

)2
δσ,−1 −

1

4
a2i ajc

(σ+1)
3 (ai, aj), (6.21)

ψ(ij;000100)
σ =

3

2

(
ai
aj

)2
δσ,−1 −

1

2
σa3i c

(σ)
3 (ai, aj)−

1

4
(1− 2σ)a2i ajc

(σ+1)
3 (ai, aj) . (6.22)

Thus all functions occurring in (6.6) become known. It enables one to find the expansion
(6.1). After integrating by means of (6.3) one finds in the same form the relativistic plan-
etary perturbations not dependent on the eccentricities and inclinations of the planetary
orbits.

7. Construction of the secular system

In accordance with the GPT technique (Brumberg, 1955) the system (4.21) is trans-
formed by means of

X = (E + S)Y + Γ(Y, t) (7.1)
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to the system
Ẏ = iN

[
HY + F (Y, t)

]
(7.2)

with the blocks Y1 = Y2 = 0. The matrix S is found by iterations with respect to µ and σ
from the system

G = Q(E + S)−N−1SNG∗ , (7.3)

G = G∗ +G+ , (7.4)

Ṡ + i(SNP −NPS) = iNG+ , (7.5|

with the initial approximation S = 0. The splitting (7.4) is performed to ensure the
integration of (7.5) without secular terms. It means that the only non–zero blocks of
matrix G∗ may be

G∗
κν = ⟨Gκν⟩ , κ , ν = 1, 2 (7.6)

and
G∗

33 = D
⟨
D−1G33D

⟩
D−1 , G∗

44 = −Ḡ∗
33 ,

G∗
55 = D

⟨
D−1G55D

⟩
D−1 , G∗

66 = −Ḡ∗
55 ,

(7.7)

where the angle brackets means the mean value of the corresponding function and the
diagonal matrix D is composed of the elements exp iλi (i = 1, 2, . . . , N). By determining
the matrices S and G one gets the matrix of the linear part of the system (7.2)

H = P +G∗ . (7.8)

The quasi–periodic terms linear in the eccentricities and inclinations are determined by
the matrix relations

δp =

(
−1

2
E + c

)
Y3 +

(
3

2
E + d

)
Ȳ3 + . . . , (7.9)

w = (E + f)Y5 + (E + f̄)Ȳ5 + . . . , (7.10)

with

c = S13 −
2

3
S23 −

1

2
S33 +

3

2
S̄34 , (7.11)

d = −S̄13 −
2

3
S̄23 +

3

2
S̄33 −

1

2
S34 , (7.12)

f = S55 + S̄56 . (7.13)

For the sake of completeness let us remind that the non–linear terms Γ are found by
iterations from the system

U = R+QΓ−N−1ΓY NG∗Y −N−1(S + ΓY )NU∗ , (7.14)

U = U∗ + U+ , (7.15)

Γt + i(ΓY NPY −NPΓ) = iNU+ (7.16)
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with initial value U = R. The splitting (7.15) is performed to ensure the integration of
(7.16) without secular terms. Introducing the final set of variables Z with Z1 = Z2 = 0,

Y3 = DZ3 , Y5 = DZ5 , Z4 = Z̄3 , Z6 = Z̄5 (7.17)

and substituting (7.17) into U = U(Y, t) one gets a new function

V (Z, t) = U(Y, t) , (7.18)

together with
U∗
κ = ⟨Vκ(Z, t)⟩ , κ = 1, 2 (7.19)

and
U∗
3 = D

⟨
D−1V3(Z, t)

⟩
, U∗

4 = −Ū∗
3 ,

U∗
5 = D

⟨
D−1V5(Z, t)

⟩
, U∗

6 = −Ū∗
4 ,

(7.20)

with averaging over explicitly presented t. Having determined Γ and U one gets

F = U∗ . (7.21)

In GPT the condition U∗
2 = 0 is fulfilled by itself. The first two equations (7.16) for Γ1

and Γ2 may be integrated with total functions U1 and U2 in their right–hand members
provided that the term −U∗

1 is added to Γ2. It means, actually, that in (7.14) one may
put U∗

1 = U∗
2 = 0. It follows from this that F1 = F2 = 0. Thus the final transformation

(7.17) reduces (7.2) to the secular system

α̇ = iN [Aα+Φ(α, ᾱ, β, β̄)] ,

β̇ = iN [Bβ +Ψ(α, ᾱ, β, β̄)]
(7.22)

with α = Z3, β = Z5,

A = ⟨D−1G33D⟩ , B = ⟨D−1G55D⟩ , (7.23)

Φ = ⟨D−1V3(Z, t)⟩ , Ψ = ⟨D−1V5(Z, t)⟩ . (7.24)

The secular matrices are expanded in powers of µ and σ

A =µA
10

+ σ A
01

+ µσ A
11

+ . . . ,

B =µB
10

+ σ B
01

+ µσ B
11

+ . . . .
(7.25)

All matrices K, L, M, K ′, L′, M ′ as well as the blocks of the matrix Q are expanded
in the same manner. All quantities of the first power in µ known from the Newtonian
GPT are given in various forms in (Brumberg, 1995). In the Schwarzschild approximation
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responsible for the terms of the first power in σ the matrices M and M ′ are zero whereas
the matrices K, L, K ′, L′ are diagonal matrices with the elements

K
01

ii = L
01
ii = −K ′

01
ii = 3L′

01
ii = 3

A

ai
. (7.26)

Hence, 12 essential blocks (4.30) of the matrix Q present in the Schwarzschild approxima-
tion the diagonal matrices with the elements

Q
01

11[i, i] = Q
01

21[i, i] = Q
01

22[i, i] = Q
01

31[i, i] = Q
01

55[i, i] = Q
01

56[i, i] = 0 ,

Q
01

12[i, i] = −4
A

ai
, Q

01

13[i, i] = 2
A

ai
, Q

01

23[i, i] = −6
A

ai
,

Q
01

32[i, i] = −2
A

ai
, Q

01

33[i, i] = −3
A

ai
, Q

01

34[i, i] = 5
A

ai
.

(7.27)

One may easily find from (7.5) the diagonal matrices S
01

κν with the elements

S
01

11[i, i] = S
01

12[i, i] = S
01

21[i, i] = S
01

22[i, i] = S
01

31[i, i] = 0 ,

S
01

13[i, i] = −4
A

ai
, S

01
23[i, i] = −6

A

ai
, S

01
32[i, i] = 2

A

ai
,

S
01

34[i, i] = −5

2

A

ai
, S

01
55[i, i] = S

01
56[i, i] = 0 .

(7.28)

There results

G
01

∗
12[i, i] = −4

A

ai
, G

01

∗
33[i, i] = −3

A

ai
. (7.29)

Therefore, in the expansions (7.25) matrix A
01

is equal to G
01

∗
33 and B

01

= 0. Since

αk = ek exp(− iπk) + . . . , βk = sin ik exp(− i Ωk) + . . . (7.30)

(the relationships between the elements αk , βk and Kepler elements ek , ik , πk ,Ωk are given
in more detail in Brumberg, 1995) it is easy to see that the frequencies

νi = 3σ
A

ai
ni (7.31)

determine the Schwarzschild advances of the planetary perihelia (neglecting the squares of
the eccentricities).

It is interesting to compare the solution (7.28) with the traditional solution of the
Schwarzschild problem. The orbital coordinates in the Schwarzschild problem

x+ i y = r exp iu (7.32)
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within the terms of the first power in the eccentricities are determined by the expressions
(Brumberg, 1991)

r

a
= 1− m

a
−
(
1− 2

m

a

)
e cos(λ− π) + . . . , (7.33)

u = λ+ 2e sin(λ− π) + . . . . (7.34)

Here
λ̇ = n , π̇ = 3

m

a
n , (7.35)

m being the gravitational radius of the central body, n and a being related by the third
Kepler law. Rewriting (7.32) in the form (3.2), one gets

p =
m

a
+ e

(
−1

2
+ 0 · m

a

)
exp i(λ− π) + e

(
−3

2
− 2

m

a

)
exp [− i(λ− π)] + . . . . (7.36)

On the other hand, with the aid of (7.11), (7.12) and (7.28) one gets

c
01
[i, i] = −15

4

A

ai
+

1

2
S
01

33[i, i] , d
01

[i, i] =
37

4

A

ai
− 3

2
S̄
01
33[i, i] . (7.37)

Considering the structure of the equations (7.5) it is seen that the matrices S33 and S55

are determined up to arbitrary constant diagonal matrices serving as the constants of
integration. The simplest option seems to annul these constants. But sometimes another
option might be reasonable. For example, to retain the same meaning of the integration
constant as in (7.36) one should put

S
01

33[i, i] =
15

2

A

ai
, (7.38)

resulting to

c
01
[i, i] = 0 , d

01

[i, i] = −2
A

ai
. (7.39)

The expressions (6.5) and (7.38) are in complete correspondence with (7.36).
The matrices K

11

, L
11

, K ′
11
, L′

11
, M

11

and M ′
11

of the terms of the order µσ are found by

comparing (4.8) and (4.9) with (5.1) and (5.2). The explicit expressions for these matrices
are given in the Appendix. These matrices are of particular interest for investigating of
the secular system. Based on (7.3) the general formula

Gκν [i, j] = Qκν [i, j] +

6∑
λ=1

N∑
k=1

(
Qκλ[i, k]Sλν [k, j]−

nk
ni
Sκλ[i, k]G

∗
λν [k, j]

)
(7.40)

involves

G
11

κν [i, j] =Q
11

κν [i, j] +
6∑

λ=1

N∑
k=1

(
Q
10

κλ[i, k]S
01

λν [k, j] +Q
01

κλ[i, k]S
10

λν [k, j]−

− nk
ni

S
10

κλ[i, k]G
01

∗
λν [k, j]−

nk
ni

S
01

κλ[i, k]G
10

∗
λν [k, j]

)
. (7.41)
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By substituting the terms of the order µ from the Newtonian theory and the terms of the
order σ and µσ by presented here algorithms one gets the matrix G

11
33. More specifically,

G
11

33[i, j] = Q
11

33[i, j] , i ̸= j (7.42)

and

G
11

33[i, i] =Q
11

33[i, i] +
A

ai

(
−6Q

10

32[i, i] +
15

2
Q
10

33[i, i]−
5

2
Q
10

34[i, i]−

− 2S
10

23[i, i] + 5S
10

43[i, i]−
15

2
G
10

∗
33[i, i]

)
. (7.43)

For determining G
11

55 it is sufficient to take into account only the first term in the right–

hand member (7.41) coinciding with Q55 from (4.30). In contrast to the Newtonian theory
these matrices are not real.

8. Conclusion

This paper presents two techniques to determine the relativistic planetary perturba-
tions in the theories of motion of the major planets. The first technique is of practical
orientation enabling one to find by iterations the relativistic terms caused by perturbing
planetary actions (direct and indirect) in the form used in the classical theories of motion.
In particular, this technique may permit to complement the VSOP theories of the major
planets by taking into account the relativistic direct planetary perturbations. The second
technique extends the general planetary theory for the relativistic problem of planetary
motions. This technique involves the separation of the terms dependent on fast chang-
ing variables (the mean longitudes of the planets) and the terms describing the secular
evolution of the planetary orbits. The algorithms are developed to compute the main rela-
tivistic planetary perturbations not dependent on the eccentricities and inclinations as well
as the relativistic terms in the matrices of the secular system. The actual computations
and further theoretical investigation of the secular system remain to be performed in the
future.

Originally this paper was published in Russian (Brumberg, 1999) without Appendix.
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Appendix

This Appendix contains in (A.1)–(A.17) the coefficients of the right–hand members of
section 5 and in (A.18)–(A.29) the matrices of section 7 needed to construct the secular
system taking into account the terms of the order µσ.

Ai001 =
n2i
ai
κii + n2i

∑
j ̸=i

κjj

[
3

2aj
+

7

4

a2i
a3j

+
1

8

ai
a2j

(
1− 4

ni
nj

)
ζij+

+
3

8

ai
a2j

(
1− 4

ni
nj

)
ζ−1
ij +

6

∆ij
+

(
2− 7

4

a3i
a3j

)
ai(ai − ajζij)

∆3
ij

]
, (A.1)

Ai003 = 2
n2i
ai
κii +

ni
a2i

∑
j ̸=i

κjjnjajζij , (A.2)

Ai0j1 =n2iκjj

[
1

2aj
+

21

4

a2i
a3j

+
3

8

ai
a2j
ζij +

1

8

ai
a2j

(
1 + 8

ni
nj

)
ζ−1
ij − 21

4

a3i
a3j

1

∆ij
+

+

(
2− 7

4

a3i
a3j

)
aj(aj − aiζ

−1
ij )

∆3
ij

]
, (A.3)

Ai0j3 =
ni
a2i
κjjnjajζ

−1
ij , (A.4)

Aij01 =− 7

4

n2j
ai

+
[(

3n2i +
5

2
n2j

)
ai −

(
2ni +

9

4
nj

)
njajζij

] ai
∆3

ij

+

+
3

4
n2j
a2i a

2
j

∆5
ij

(
ζ2ij − 1

)
+

3

2

ai(ai − ajζij)

∆5
ij

[(
3n2i −

1

2
n2j

)
a2i − n2ja

2
j+

+
(
2ni +

1

4
nj

)
njaiaj

(
ζij + ζ−1

ij

)
− 5

8
n2j
a2i a

2
j

∆2
ij

(
ζ2ij + ζ−2

ij − 2
)]
, (A.5)

Aij03 = n2i
a2i
∆3

ij

− 2ninj
aiaj
∆3

ij

ζij , (A.6)

Aijj1 =− 21

4

n2j
ai

+ 6
n2j
∆ij

+
[9
2
n2ja

2
j −

3

4
n2ja

2
i +

3

8
n2jaiajζij−

−
(
2ni +

15

8

)
njaiajζ

−1
ij

] 1

∆3
ij

+
3

4
n2j
a2i a

2
j

∆5
ij

(
ζ−2
ij − 1

)
+

+
3

2

aj(aj − aiζ
−1
ij )

∆5
ij

[(
2ni +

1

4
nj

)
njaiaj

(
ζij + ζ−1

ij

)
+

+ 3n2i a
2
i −

1

2
n2ja

2
i − n2ja

2
j −

5

8
n2j
a2i a

2
j

∆2
ij

(
ζ2ij + ζ−2

ij − 2
)]
, (A.7)
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Aijj3 = 2n2j
a2j
∆3

ij

− 2ninj
aiaj
∆3

ij

ζ−1
ij +

3

4
n2jaia

2
j

ai − ajζij
∆5

ij

(
ζ−2
ij − 1

)
, (A.8)

Bi001 =
i

4a2i

∑
j ̸=i

κjjnjaj(ζij − 3ζ−1
ij ), (A.9)

Bi003 =
i

2ai
κiini , (A.10)

Bi0j1 =
i

2a2i
κjjnjajζ

−1
ij , (A.11)

Bi0j3 =
i

2a2i
κjjnjajζ

−1
ij , (A.12)

Bij01 = i
aiaj
∆3

ij

(3
2
nj − 2ni

)[
−ζij +

3

2

ai(ai − ajζij)

∆2
ij

(ζij − ζ−1
ij )
]
, (A.13)

Bij03 = −2 ini
ai(ai − ajζij)

∆3
ij

, (A.14)

Bijj1 = i
aiaj
∆3

ij

(3
2
nj − 2ni

)[
ζ−1
ij +

3

2

aj(aj − aiζ
−1
ij )

∆2
ij

(ζij − ζ−1
ij )
]
, (A.15)

Bijj3 = −3

2
inj

aj(aj − aiζ
−1
ij )

∆3
ij

. (A.16)

One may add therewith the relations of conjugation

Ai002 = Āi001 , Ai004 = −Āi003 , Ai0j2 = Āi0j1 , Ai0j4 = −Āi0j3 ,

Aij02 = Āij01 , Aij04 = −Āij03 , Aijj2 = Āijj1 , Aijj4 = −Āijj3 ,

Bi002 = B̄i001 , Bi004 = −B̄i003 , Bi0j2 = B̄i0j1 , Bi0j4 = −B̄i0j3 ,

Bij02 = B̄ij01 , Bij04 = −B̄ij03 , Bijj2 = B̄ijj1 , Bijj4 = −B̄ijj3 .

(A.17)

K
11

ii =− 3

4

(
p
11

(0)
i + q

11

(0)
i

)
+
A

ai

[21
4

(
p
10

(0)
i + q

10

(0)
i

)
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1
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(
3 ṗ
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10
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(0)
)
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κjj
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(ij)
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ai
aj
ψ
(ij)
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ai
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ψ
(ij)
100100
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+

+
A

n2i
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−A∗
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(0) − κiiA

(0)
0i − ini(B

∗
i0
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(0)
0i )+
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n2i
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+
∑
j ̸=i

κjj

[
−A(0)

ij − iniB
(0)
ij +

+
(
1− aj

ai
ζ−1
ij

)
Aij01 + i

(
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ai
ζ−1
ij

)
Bij01

]}
, (A.18)
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K
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ai
κjj
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ψ
(ij)
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ai
aj
ψ
(ij)
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ai
aj
ψ
(ij)
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)
+
A

n2i
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A

(0)
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ij

)aj
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(0)
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ij
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ij +
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ij +
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ij
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ij
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Bijj1

]}
, (A.19)
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p
11

(0)
i + 5 q

11

(0)
i

)
+
A

ai

[3
4

(
7 p
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(0)
i + 11 q
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(0)
i
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+

3

2 ini
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ṗ
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+ q̇
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)
−

−
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κjj

(
ψ
(ij)
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020000 +

ai
aj
ψ
(ij)
011000 +

ai
aj
ψ
(ij)
010100

)]
+

+
A

n2i
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n2i
ai

+
∑
j ̸=i

[(
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ij

)
Aij02+
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(
ni − nj

aj
ai
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ij
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Bij02

]}
, (A.20)

L
11
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κjj
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(ij)
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ai
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ψ
(ij)
001100 + 2
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+

+
A

n2i
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[
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ij +
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ij

)
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(
ni − nj

aj
ai
ζ−1
ij

)
Bijj2

]}
, (A.21)
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(
3 p

10

(0)
i +

4
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ṗ
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i
(0)

+
2
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(0)
)
− A

n2i
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B
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i0 + κiiB

(0)
0i
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∑
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, (A.22)
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, (A.28)

M ′
11

ij = inj
A

n2i
κjj
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ai
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B

(0)
0j −B

(0)
ij

)
. (A.29)

The coefficients θ
(ij;klrsmt)
σ occurring in (A.26) and (A.27) and associated with the ex-

pansion of the Newtonian right–hand members Wi of (4.5) may be easily computed (like

ψ
(ij;klrsmt)
σ ) with the aid of the hypergeometric series. The general algorithm for their

computation is given by (10.2.6), (6.2.60), (6.2.51) and (2.3.4) of (Brumberg, 1995).
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