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Dossier de synthèse 
 

Introduction 

From the ocean underneath Europa, to the intense volcanic activity of Io or the deep 
atmosphere of Titan, natural satellites present a large variety of worlds still mostly 
unexplored. While simple temperature considerations previously constrained the presence of 
liquid water to just beyond Mars' orbit, tidal effects mean that liquid water can exist much 
further from the Sun. Hence, habitability could exist in a wider variety of places, whether in 
our Solar system or extra-solar ones. In this context I revisited some part of our current 
knowledge in planetology from the perspective of astrometry. Indeed, monitoring and 
analysing the orbital motion of moons can provide an alternative and straightforward insight 
into the orbital and interior evolution of satellite systems. As I demonstrated for Io’s activity 
(Lainey et al., Nature 2009), it may be the only way to assess some fundamental processes 
arising deep within these worlds. Once the key physical parameters are quantified, there are 
clear applications to the possible orbital states of exoplanets and their putative moons. 
 

Astrometry of natural satellites 

Astrometry is the discipline that aims to provide positions of celestial objects in space with 
the highest accuracy. Ground based observations are made by measuring angles on the 
celestial sphere. For moving solar system objects, the images are calibrated using stars present 
in the field after comparison with an astrometric star catalogue. While natural satellites have 
been observed with telescopes since the XVIIth century, accurate astrometric observations 
(few hundred milli-arcsec, or mas) which are still useful today, have only been available since 
the end of the XIXth century thanks to the use of photographic plates. Modern observations 
now benefit from CCD devices and accurate star catalogues which permit an accuracy below 
100 mas.  

While classical imaging astrometry can be performed at anytime, astrometrists may also use 
eclipses or occultations to derive geometric positions of natural satellites in space with great 
accuracy. Eclipses by Jupiter have been observed since the XVIIth century but, since 1973, 
observations of mutual intersatellite eclipses or occultations of one moon by another have 
proved to be extremely accurate, in fact more than regular imaging astrometry. These mutual 
events are now regularly observed thanks to the international campaign (Arlot et al., 1997) led 
by IMCCE (Institut de Mécanique Céleste et de Calcul des Ephémérides) and provide an 
accuracy of few tens of mas (Lainey et al., 2004). Even though they are comparatively rare 
(occurring only every 6, 15 and 42 years for the Jovian, Saturnian and Uranian system, 
respectively), mutual event observations can significantly improve the accuracy of the whole 
astrometric data set. 
With the advent of spacecraft, astrometric observations from space of the natural satellites of 
giant planets have become available. The accuracy of these observations is generally about a 
few to a few tens of kilometres (a few mas, geocentric). In particular, observations of previous 
space missions used the star catalogues available at the time. In that context, I have initiated 
with William Thuillot a FP7 network, called ESPaCE and funded since 2011, to perform a 
new astrometric reduction of these old data using the more recent and more accurate star 
catalogues (Thuillot, Lainey et al. 2011).  
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Two space missions are currently completely pushing the limits of astrometry. The first one is 
Cassini, which after approaching the Jovian system at the end of 2000 has been orbiting 
Saturn since 2004. To benefit from the success of this mission, I have initiated in 2010 
collaboration with Carl Murray’s team based at Queen Mary University of London (QMUL) 
which is performing high accuracy astrometric reduction of images of Saturn’s moons on a 
regular basis (Murray et al. 2005; Cooper et al. 2008). In addition, I have supervised the thesis 
of R.Tajeddine on astrometric reduction and dynamics of Mimas and Enceladus moons 
(Tajeddine et al. 2013). The Cassini mission will continue to monitor the Saturnian system 
until 2017. The second is the European Gaia mission. Launched in 2013 and active until 2019, 
it will provide the most accurate astrometric catalogue ever obtained and will allow the 
calibrations of all astrometric imaging observations (even those which were not able to be 
calibrated because of a lack of useful star catalogues). Benefiting from such a catalogue will 
allow an increase by a factor of two in the global astrometric accuracy of natural satellites of 
the giant planets. Furthermore, several tens of astrometric observations of most moons over 
the 5 years mission will be available with an accuracy of about 1 mas. This is why I have 
participated in CU4 of Gaia as the person in charge of natural satellites ephemerides. 
The solar system bodies and especially natural planetary satellites are fast moving objects. 
Their dynamics may be known only through complex modeling based on regularly-made 
astrometric observations. The older the observations, the better the dynamical modeling will 
be, so that old data, not currently accurate enough for present studies may recover a new life 
through a revised analysis with modern tools. Benefiting from a modern scanning machine 
accurate to a few nanometers, V.Robert, another of my PhD students has showed recently that 
selected old photographic plates can compete with modern observations (Robert et al. 2011, 
2015, 2016). In that respect, an accuracy of few tens of mas on intersatellite positions is 
possible after an appropriate treatment. Hence, combining modern observations with new 
reductions of old photographic plates opens the door to the monitoring of large main moons 
of the giant planets with unprecedented accuracy and over a wide extended time span (more 
than a century).  
In the coming decades, astrometry will be tightly linked to space missions. This is why I have 
joined three instrument/experiment of the ESA JUICE mission (as Co-I on the GALA 
altimeter, Co-I on the PRIDE experiment and Associated Scientist on the JANUS camera). 
Similarly, I am an ISS collaborator on CASSINI, also. More, I am a core member on two M5-
ESA proposal for space missions, called DePhine (PI J.Oberst) and JEM (PI M.Blanc), 
respectively. 
 

Planetology 

Tidal deformation and dissipation of stars, planets, and satellites is a fundamental mechanism 
for driving their orbital and thermal evolution. For instance, in the Earth-Moon system, the 
Moon is observed to be moving away from the Earth at a rate of few centimeters per year, 
because of the tides it raises essentially in the ocean. Another striking observation is the 
intense volcanism on Io, generally associated with the large tides raised by Jupiter due to Io’s 
eccentric orbit. While constraining global tidal dissipation in telluric or icy bodies is difficult 
even with spacecraft instruments and while it often makes use of important assumptions (like 
possible thermal equilibrium), determining tidal dissipation in a giant planet may seem almost 
impossible. Fortunately, using the current distance of the main moons of icy giant planets and 
assuming they formed 4.5 Byr ago, Goldreich and Soter (1966) have already derived the first 
lower bound value of tidal dissipation in these gaseous planets. Almost half a century later 
their line of reasoning is still widely used, strongly constraining the dynamics of the whole 
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systems.  

It is in this context that Voyager, Galileo and Cassini mission measurements have been 
considered. While our knowledge of these systems greatly increased in recent decades thanks 
to these missions, embarrassing questions arose. This is particularly true of the Saturn system, 
despite the huge amount of data available today. For example: Why is there no resurfacing on 
Mimas? What is the origin of Mimas’ and Titan’s eccentric orbits? What has caused the 
heating that has resulted in the active geyser activity discovered in 2005 at the South pole of 
Enceladus? These phenomena are still poorly understood. Another example is the origin of 
the Cassini division in Saturn’s rings; it was discovered by Jean-Dominique Cassini about 400 
years ago, and yet it is still largely unexplained.  
Saturn is not the only system that challenges our imagination.  The origin of the tilt of 
Uranus’ rotation axis is still an open question. While a collision scenario was first proposed 
by Safronov (1966), this explanation was believed to be in contradiction with the presence of 
the main moons orbiting in Uranus’ equatorial plane. In 2010, Boué & Laskar (2010) 
proposed the existence of a large, distant satellite to act secularly on the Uranian pole. 
Nevertheless, this last model seemed showing low numerical probability of success. Even 
more recently, Morbidelli et al. (2012) presented a collisional scenario of Uranus, compatible 
with the presence of the main moons. All these models, however, consider generally a rather 
limited tidal expansion of the moons, due implicitly to our old assumptions on Solar system 
formation (Goldreich & Soter, 1966). 
It seems that we have arrived at a time where the mere increase of data concerning these 
systems may not significantly help us to solve these paradoxes. In particular, it may be time to 
look seriously for a different strategy, benefiting from all our current knowledge of the giant 
planet systems, but based on a different approach.  
 
 
Using astrometry for planetology? 

While fundamental for our understanding of the Solar system and the long-term evolution of 
the exo-planetary systems, tidal parameters are difficult to determine from observations. 
Indeed, they provide a small dynamical signal, both on natural and artificial celestial objects, 
in comparison to other perturbations arising in the system (see next section). However, tides 
do provide large effects on the long term evolution of the natural bodies. This is why 
estimations of the tidal parameters have often been done from the assumed past evolution of 
planets and moons. 
In that respect, estimation of the average tidal ratio k2/Q for the giant planets was done 
already back in the 60s by Goldreich & Soter (1966). We recall that k2 is the first of the 
second order Love number (Love 1911), while Q is a quality factor relative to the amount of 
mechanical energy dissipated by friction inside an object (Goldreich & Soter, 1966). Both are 
unit-less quantities. Considering the average secular drift over 4.5 Byr on the semi-major axes 
of the innermost main moon of the Jupiter, Saturn and Uranus systems, the authors obtained 
an averaged estimation of k2/Q. While having been the reference for several decades, these 
values were estimated assuming a specific formation and evolution scenario. In particular, 
alternative formation models now exist for these moons, that may suggest younger age for 
some of the main moons (Charnoz et al. (2011), Crida & Charnoz (2012), Cuk (2014)). 
Moreover, resonances crossings and possibility of strong dissipative episodes of the moons 
makes the question even more complex.  
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Another way for constraining the tidal ratio k2/Q may be, at least for very active bodies, to 
simply consider the amount of heat radiated from their surface, and after having considered 
the presence of radiogenic heating. IR-emission values may be used for Io (Matson et al. 
1981) and Enceladus (Spencer et al. 2006) to this task. However, this line of reasoning 
assumes a thermal equilibrium state to infer the amount of heat produce in the whole interior, 
which is not granted. Indeed, such equilibrium would require a very efficient heat transport 
mechanism inside Io. Such fast transport would be easier with low viscosity, but low viscosity 
may prevent large tidal dissipation. Moreover, the Laplace resonance itself (and so the 
eccentricities of the moons) might have changed over these last hundred millions of years. 

 
The use of astrometry for planetology may not seem obvious. For example, spacecraft radio 
data have long since superseded astrometric data in the determination of gravity fields of 
planetary systems. While the former are much more precise and numerous, astrometric data 
have a unique advantage in covering a much extended time span. Even though this asset has 
been undervalued for a long time, I have tried reviving astrometry in order to allow the long-
term dynamical effects to be studied accurately, alongside the short-term ones for a broad 
variety of systems. To reach such goal, I have developed over many years a numerical code 
NOE (Numerical Orbit and Ephemerides). Composed of more than 12,000 lines (excluding 
comments) my code computes the evolution of the state vectors of any N-body problem, as 
well as the partial derivatives of these vectors as function of initial conditions and physical 
parameters of interest. Comparing predicted positions with observed ones, I can then compute 
corrections to apply on the initial parameters of my model, including (but non exhaustively) 
masses, extended gravity field coefficients, precession/nutations of the primary, temporal 
variation of gravity fields, and tidal effects (Lainey et al. 2004b; Lainey et al. 2007; Lainey 
2008). The reader may refer to the methodology section of this document for details. 

 
Following this philosophy I have succeeded in quantifying global dissipation in the Io/Jupiter 
system (Lainey et al., Nature 2009). In particular, I have shown that the associated orbital 
energy loss, quantified from astrometry, matches the heat loss at Io’s surface giving 
constraints on interior models and the heat transport mechanism. At the same time, I could 
also quantify global dissipation in a giant planet directly from observations, and give a new 
reference value for exoplanets similar to Jupiter. Just after five years, my paper had already 
gathered 59 citations (excluding auto-citations) from both Solar and extra-Solar system 
communities. 
 

Encouraged by this result, I have raised a working group called ENCELADE (funded by 
EMERGENCE-UPMC) to extend my work to the Saturnian system. Such group revealed 
being an active “think tank” due to the various physical fields involved (ring dynamics, icy 
moons interior, stellar interior models applied to giant planets…). After some work, our 
results appeared even more striking than one would have expected. Using astrometric 
observations from 1886 until 2009, we succeeded in quantifying not only the tidal ratio k2/Q 
in Saturn, but we even calculated it at four different tidal frequencies (Lainey et al., 2012). 
We found an intense tidal dissipation about ten times higher than the usual value estimated 
from theoretical arguments. As a consequence, the eccentricity equilibrium for Enceladus can 
now account for the huge heat emitted from Enceladus' South pole! Moreover, the measured 
k2/Q was found to be poorly sensitive to the tidal frequency on the short frequency interval 
considered (Figure 1). This suggested that Saturn’s dissipation may not be controlled by 
turbulent friction in the fluid envelope as commonly believed. The large tidal expansion of the 
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moon’s orbit due to Saturn's strong dissipation also suggested that all the moons should have 
formed at close distance from Saturn. This led to a new model of satellite formation at the 
ring's outer edge (Charnoz et al. 2011). 

 

           

 
Figure 1 : On the top: strong tidal dissipation in Io suggesting thermal equilibrium has been 

recently demonstrated using astrometry (Lainey et al., Nature 2009); on the bottom: tidal 
dissipation in Saturn vs. tidal frequency (Lainey et al., ApJ 2012). 

 
Between 2012 and 2015, I worked hard with the ENCELADE team to take into account the 
huge number of astrometric ISS-Cassini data. Thanks to my collaboration with Carl Murray 
and Nick Cooper from the Queen Mary University of London, as well as the PhD work of 
Radwan Tajeddine, I could beneficiate from about 800 astrometric data per satellite. Thanks 
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to this large data set I could solve for much more parameters, including the gravity field of the 
moons and their primary. Moreover, the error bars on the tidal ratio k2/Q at different tidal 
frequencies were significantly reduced (Figure 2). This allowed us to point out an intense 
dissipation at the tidal frequency of Rhea. We explained such specific behaviour by two 
different sources of tidal dissipation : dissipation inside the core and dissipaiton inside the 
turbulent atmosphere. In 2016, Fuller et al. (2016) explained this by just the tidal dissipation 
in a stably stratified layer, probably present in the deep interior of Saturn above its core 
(Fuller 2014). 
  

 

Figure 2: Variation of the Saturnian tidal ratio k2/Q as a function of tidal frequency 2(Ω-n) 
from Lainey et al. (2017). Ω and n denote Saturn’s rotation rate and the moon’s mean motion, 
respectively. Four frequencies are presented associated with Enceladus’, Tethys’, Dione’s 
and Rhea’s tides. IMCCE and JPL solutions are in red and green, respectively. They are 
shown slightly shifted from each other along the X-axis for better visibility. Orange lines refer 
to the global estimation k2/Q = (15.9 +/- 7.4) x 10-5. 
 
The large number and accuracy of the ISS-Cassini dataset concerned also the small coorbital 
moons of Thetys and Dione, called Telesto, Calypso, Helen and Polydeuces. In particular, I 
could use the orbital motion of these moons to determine, for the first time from observations, 
the Love number k2 of Saturn. This determination allowed us to discriminate significantly the 
interior modeling of Saturn. In particular, the Love number appeared to be extremely 
complementary to the usual J2, J4 and J6 determined from radio-science data (Lainey et al. 
2017). 
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Figure 3: Postfit residuals associated with cross-tidal effects from Lainey et al. (2017). 

Kilometric signals appear associated with the Saturn’s tidal bulge at Janus/Epimetheus’, 
Mimas’, Enceladus’, Tethys’ and Dione’s tidal frequencies. 

It appears that the quest for a better understanding of the Jupiter and Saturn systems by means 
of astrometry has just started. As an example, the error bar on Io’s tidal ratio needs to be 
reduced from its current 25%. Moreover, global tidal dissipation inside Enceladus and Mimas, 
tidal dissipation in Saturn at other frequencies, exchange of angular momentum between 
Mimas and the B ring have all still to be quantified from astrometry. As with the Galilean 
system, this will require simultaneously considering the inner and main moon systems. 
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In the future, we shall quantify, more accurately than ever, the tidal dissipation in giant 
planets and their satellites with potential consequences for habitability. This will be of high 
importance for the selected ESA-PLATO mission.  

 
 

Tidal parameters quantified today 

 

I give in Table 1 the most up-to-date values of the principal tidal parameters that have been 
determined from astrometric measurements. When available, error bars computation are 
given, most of the time as function of the formal standard deviation. When a purely Gaussian 
noise is assumed, there are about 66% of chances that the real physical value lies in the 1-σ 
formal uncertainty. However, observations may not follow a Gaussian error profile. More 
importantly, constrains are often introduced in the least squares inversion. This is generally 
done when working with artificial objects, since on one hand, some perturbations cannot be 
perfectly modeled (wheel-off loadings, orientation of solar panel, drag), and on the other hand 
the observables  quantities (Doppler, ranging) do not allow to recover easily the full motion of 
the spacecraft in 3-D space. As a result, an uncertainty of 10-σ shall not be considered as 
necessarily more robust than a 2-σ error bar. More likely, such larger choice of error bar is a 
consequence of strong correlations and associated constrains inserted in the fitting process. In 
practice, it may be wiser to consider the error bars as the likely range in which the real 
physical value is lying. Sometimes, studies provide a double-check of their results by 
performing two independent fits (using different codes and weight) like in Iess et al. (2012). 
Alternatively, both independent solutions may be merged in one single solution (including 
error bars). Such solutions are indicated by MS (merged solutions) in Table 1. 
 

Since Mercury and Venus do not have moons, the measurement of their geophysical 
parameters must rely on spacecraft data. Considering the semi-diurnal tides raised by the Sun, 
Mazarico et al. (2014) and Konopliv et al. (1996) succeeded in estimating the k2 of Mercury 
and Venus, respectively. While Messenger's second extended mission data might provide a 
better determination in the future, no estimation of Venus' k2 has been published since 1996, 
and the analysis of the Pioneer Venus Orbiter and Magellan space probes. In particular, Venus 
Express orbit is too far and eccentric to provide a good S/N ratio on Venus' k2. 
 

On the contrary, Mars, Jupiter and Saturn's system have moons, close enough to provide 
reliable signal over a century of accurate astrometric observations. In particular, it is 
astonishing that the secular acceleration of Phobos around Mars was first pointed out in 1945 
by Sharpless (1945) with a 50% error in his determination, only. While the acceleration of 
Phobos provides the tidal ratio k2/Q, it is the Mars' spacecraft that allow to quantify the Mars 
k2 associated to Solar tides. Assuming the same Mars'  k2 at Solar and Phobos tidal frequency, 
Jacobson & Lainey (2014) published the most up-to-date Q value.  
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Table 1 : Current estimate of the principal tidal parameters of the objects of the Solar system, 

as determined from astrometric measurements. 
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While the first estimation of the Jovian k2 is a goal of the Juno mission, Lainey et al. (2009) 
succeeded in fitting the tidal ratio k2/Q of both Jupiter and Io, using astrometric measurements 
of the Galilean moons. In a similar way, Lainey et al. (2017) used a large set of astrometric 
data, including numerous ISS-Cassini data to quantify Saturn's k2/Q and its dependence on 
tidal frequency. More, they used astrometric observations of the Lagrangian moons of Tethys 
and Dione to provide the first determination of the Saturn's k2. Still with Cassini spacecraft, 
but this time from the radiometric measurement of six flybys of Titan, Iess et al. (2012) could 
provide the first determination of Titan's k2, suggesting a potential global ocean under the 
moon's shell. 

 
The Earth-Moon system is evidently the most studied, but also the most complex. In 
particular, the presence of oceans, atmosphere and convection in the mantle of the Earth 
makes the data treatment quite difficult. For the Moon, the latest Love numbers estimations 
were obtained from the GRAIL mission, with two independent published studies (Konopliv et 
al. 2013, Lemoine et al. 2013). Benefiting from GRAIL mission results, Williams et al. (2014) 
reanalyzed lunar laser ranging data and provided the latest estimation of the Lunar tidal 
quality factor Q at month frequency.  

 
The difficult proper treatment of Earth data and modeling made the determination of 
terrestrial tides extremely difficult. Its first determination arose in 1996 only (Ray et al. 1996), 
and was improved in 2001 (Ray et al. 2001). To conclude this section, I provide in Table 1 the 
nominal values of Love numbers for a solid (elastic) Earth tide from IERS 2010. The 
interested reader may find more informations on Earth's tides in IERS (2010) and references 
therein. 
 

 

Methodology 

 
The methods used to constrain tidal parameters from astrometric data of the natural objects of 
the Solar system on one hand, and of the spacecraft on the other hand, are actually extremely 
similar. They require three steps: i) the development of an orbital model of the objects 
studied; ii) the gathering of observation sets of the objects; iii) the fitting of the dynamical 
model to the observations.  

 
The modeling of the system stands on a N-body code that takes into account all the 
perturbations that may influence the orbit, at the level of accuracy of the astrometric 
observations. In the case of space geodesy, only one body is integrated over time, making 
N=1. Still, several other celestial objects have to be considered as perturbers of the 
spacecraft/artificial  satellite dynamics. For the perturbations, the minimum is to consider all 
objects as point mass, but it is most of the time necessary to take into account the harmonic 
expansion of the gravity fields. In that case, the direction of the north pole and prime meridian 
into space of each body needs to be considered, generally by mean of forced frequencies 
(Archinal et al. 2011), and ultimately fitted. Depending on the system studied, the list of 
perturbations that have to be introduced can be pretty long. Let us just mention here, the 
extended gravity fields of the objects, the object's precession and nutations, the forced 
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librations on rotation, the tidal effects, the relativistic effects. In the case of space geodesy, we 
may add to the perturbations' list, the drag into the atmosphere (if any) of the primary, the 
solar and planetary radiation pressure, the wheel-off loadings, etc. Once a proper modeling is 
set, and using Newton's second law, one will have to integrate the ordinary differential 
equation (ODE) of second order 

 
where mi is the mass of the considered object, rj, vj denote the state vectors of any body 
influencing the system and p vector denotes a set of any physical parameters relevant in the 
dynamics (masses, spherical harmonic coefficients Cnp, Snp, tidal parameters, etc.). The 
integration of this system consists in 3N differential equations and is, in most cases, not 
problematic. In the case of natural satellites, initial conditions associated with eq. (1) are 
generally borrowed from a former ephemeris. If none is available, a simplified dynamical 
model may be used in a first step, with possible constrains on initial inclination and 
eccentricity. In the case of spacecraft, extrapolation of a former orbit (sometimes associated 
with an earlier phase of the mission)  may be used. 
 

Observations useful for constraining the orbits can have very different forms: astrometric 
images, laser ranging, photometric, radiometric and VLBI measurements. The gathering of 
these astrometric observations is a lengthy and thankless task. Fortunately astrometric 
databases exist like the Planetary Data System (https://pds.nasa.gov) for space probes data 
and the Natural Satellite Data Base (Arlot & Emelyanov, 2009) for the natural moons. Still, a 
huge amount of observations have been performed worldwide, and taking care of all various 
format, observation corrections, and even sometimes typos becomes extremely fastidious.  
 

The last step requires to compare observed and computed positions of the celestial objects. In 
practice, one does not observe directly 3-D cartesian coordinates, and the numerical output of 
the integration of eq. (1) has to be rewritten, for each observation time, introducing observed 
variables like angles on the celestial sphere, ranging, Doppler, etc. These observation 
quantities can be dependent on the state vectors of the observed body, but also on a set of 
parameters p’ related to the observation treatment. Denoting g such observation kind, and in 
the vicinity of the exact solution, we may express the differences between the observed and 
computed quantities, as a Taylor expansion, limiting ourselves to the first order 

 
where o and c refer to observed and computed quantities, respectively, and cl denotes any 
unknown scalar to be fitted. Clearly, there will be as many linear equations as observation 
data. The linear system may then be solved by more or less sophisticated least squares 
method. In particular, the weight of each data, the choice of the physical parameters to be 
fitted  and the way these parameters may be fitted  (all in once, or using successive steps) will 
depend on the ephemeris developer and expertise.  

 
In the former equation, the partial derivative of state vectors as function of initial parameters 
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have to be known. There exists few different methods to obtain these quantities. But the most 
widely used method consists in integrating the so-called variational equations (Peters 1981; 
Moyer 2003). Starting from eq. (1) and assuming cl to be independent of time, one obtains 
after applying partial derivation 

 
where the last term denotes the derivation of the force with respect to cl, when it comes 
explicitly in the expression of F. The numerical integration of eq. (3) is much more complex 
than the standard equations of motions and often implies the simultaneous integration of 
thousands of ODE. In practice, system of eq. (3) needs to be integrated simultaneously with 
system of eq. (1). This method is the one used regularly by space geodesy codes like DPODP 
(Moyer 1971) and GEODYN II (Pavlis et al. 2013). It is also extremely used for natural 
moons (Peters 1981), asteroids, comets and even for exoplanet systems. Moreover, this 
method can be used indifferently for regular satellite orbits, flyby analysis and even rotation 
analysis (replacing the equations of motion by the Euler-Liouville equations). 
 

Last but not least, let us emphasize that the validity of eq. (2) implicitly assumes that the 
modeling is perfect and the data contains no errors. In that respect, the least squares method 
handles the observation errors properly if the data are not biased, only. And it is optimal if the 
random errors have a Gaussian profile. But a perfect modeling and no observations biases (a 
requirement for a Gaussian error distribution) are two conditions that are never completely 
reached. Combined with correlations between fitted parameters, the former method will 
provide different solutions, depending on the modeling, the biases treatment, the weight of the 
data and the selection of the released parameters.  
 

 

My projects  

 
In the coming years, the Cassini and Juno space missions devoted to the study of the giant 
planets of our Solar system will end. I have already spent a lot of efforts using ISS-Cassini 
astrometric data. The final objective is a full characterization of the tidal effects in the Saturn 
system. This concerns the tidal dissipation within Saturn and its origin, but also the amount of 
global heat produced inside Enceladus and possibly other moons like Mimas (Tajeddine et al. 
2014). Hence, I will go on studying the Saturn system, using now all data available, including 
radio-science data of all missions that visited the Saturn system.  
 
The grand final of the Cassini mission will also be the opportunity to use a more than ever 
accurate gravity field of Saturn. This will allow having a much better physical modelling of 
the gravity interactions in the Saturn system, while decreasing the number of unknown 
parameters in the fit.  
 
Last, the end of the Juno mission will be the opportunity to do a similar work for Jupiter, 
allowing for a cross understanding the two giant planets of the Solar system. Moreover, this 
will help preparing the coming results of the EMFM (ex. Clipper) and the JUICE space 
missions, also. 
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I give below several items describing the work to be done. 

 

General methodology and procedures to be followed 
 
Ephemerides rely on a three steps approach: i) observations; ii) dynamical modeling; iii) 
fitting of the model to the observations. In my project, all three steps shall be revisited. 
 
 
Astrometry 
 
From space 
 
Thanks to Caviar software developed jointly at QMUL and IMCCE (Cooper et al. 2016), the 
astrometric reduction of ISS-Cassini data can be done rather easily. While measurements can 
have a precision at few to ten kilometers level, we identified two ways of future 
improvements. The first improvement to be done will be adding Gaia intermediate catalogue 
for astrometric calibration of the field. Indeed, while many stars regularly appear on images, 
there exist many cases where just a few of them are identified with a modern astrometric star 
catalogue (UCAC4). Since Gaia catalogue will provide absolute coordinates for all stars of 
magnitude lower than 20.7, the introduction of such catalogue in Caviar will significantly 
increase the number of stars to be used in the astrometric reduction. A second improvement to 
be done is to re-reduce all images with a more accurate shape model currently available, 
thanks to recent Cassini data (P. Thomas, private communication). This is particularly 
relevant for Saturn’s inner moons (see Figure 4) that are more sensitive to tidal perturbations. 
These improved astrometric data can be used to better constrain Saturn’s Love number k2 at 
higher frequencies and possibly temporal changes in the Saturn’s gravity field as well.  
 
 
Looking for new moons?  
 
Despite the huge number of observations of the Saturn system, it is still possible that 
unknown small moons may exist. A systematic search for undiscovered objects will be 
conducted in parallel to the re-reduction of ISS images. Indeed, thanks to a Gaia intermediate 
catalogue, all stars on the images will be identified. This will make the task easier, even 
though the significant noise on the images will require a specific treatment method. In that 
respect, the use of successive image series will be useful to discriminate between noise and a 
potential new object. Once potential targets have been identified, a simple Keplerian fit will 
be perfomed in the first step to identify possible combinations of matching positions 
associated with different set of images. This step will be followed by a full N-body integration 
to set properly the orbital characteristics of the new moon.   
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Figure 4: On the top is the Caviar user interface. On the bottom is a zoom on Janus moon and 
its current assumed shape model in the software. A more complex shape model is required to 

fully benefit from the high accuracy of ISS data. 
 
 
 
From the ground 
 
While Cassini has provided a huge amount of astrometric and radiometric observations for the 
Saturnian system, the Juno mission will provide limited data. The only observation from the 
Juno mission applicable for studying tides will be the Deep Space Network-based radiometric 
observations for the Jupiter gravity science investigation and no science-quality astrometric 
observations of the moons are planned to be conducted. However, a new campaign of ground-
based astrometric observations of the Galilean moons is being conducted in France since 
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2014. It benefits from a new technique that uses staking images to obtain stars in the 
background field, without saturation of the CCD images of the moons (a common issue with 
the extremely bright Galilean moons). These data will be reduced with the Gaia intermediate 
catalogue in the end of 2016 to provide an accuracy of about 30 mas. Since stars will be 
present in the field, Jupiter’s position on the celestial sphere can be deduced. This will 
complement the radioscience data allowing for an accurate quantification of Jupiter’s 3-
dimensional position relative to the Earth.   
 
 
Dynamics 

Tidal dissipation within giant planets is expected to arise in their core (Dermott 1979; Remus 
et al. 2012; 2015), possibly stratified He layer (Morales et al. 2009; Fuller 2014), and 
convective atmosphere (Ogilvie and Lin 2004). Depending on which part of the planet’s tides 
are considered, the response of the body will show extremely different behavior in frequency. 
A variety of different modeling will be introduced for all cases. In the case of tides in the 
core, a Maxwell model will be introduced (Remus et al. 2012). In particular, shear modulus G 
and its viscosity η will appear as two new unknowns in the model. For modeling tidal 
dissipation within the He layer, we will rely on the recent work of Fuller et al. (2016) and 
introduce the two quantities tp and tα. These parameters describe the spin-up of the planet and 
the time scale on which the angular frequency of an oscillation mode changes, respectively. In 
the case of tides in the atmosphere, both tidal locking mechanism and erratic variation on the 
tidal Q will be considered (Fuller et al. 2016; Ogilvie and Lin 2004). For this last case, we 
will introduce extra da/dt terms, one for each of tide raising moon, in the dynamics. Indeed, if 
the tidal ratio k2/Q follows an erratic distribution in frequency, a statistical approach will be 
necessary. All models will be introduced in a compatible way, since their physics are not 
exclusive and may be presently at work simultaneously within Jupiter and Saturn today. 

The tidal Love number k2 is so far assumed (for simplicity) to be constant while it is expected 
to be frequency sensitive. In this study, we will consider a variable k2 except for the satellite 
pairs that share the same tidal response. For example, Tethys and Telesto/Calypso pair are 
Lagrangian co-orbital moons so that their tidal frequencies will be the same. In this case, k2 
will be assumed to be constant. These selective models will provide a higher precision on the 
measurements by introducing a coherent treatment of the cross-tidal effects. Lastly, we will 
implement the capability to estimate the higher order Love number k3 and assess its recovery. 

 
Global inversion 
 
This part shall rely on a global inversion of all astrometry and radioscience data. A proper 
weighting for each data type is crucial to guarantee the best accuracy for the recovered 
dynamical parameters. An exploration of various dynamical models will be performed in 
parallel to different weightings to determine the best modeling options and parameters to be 
solved for during the final fitting procedure. All inner and main moons will be considered 
here, for both Jupiter and Saturn system. A comparison between JPL and IMCCE approaches 
will be extremely fruitful in helping obtaining the best modeling and relative weightings of all 
data. 
 



	 26	

	

 
 

Figure 5: On the top, a CCD observation of Jupiter and the four Galilean moons obtained 
from the T120 at Haute-Provence Observatory in 2015. The stacking method allows getting 
stars while not saturating the bright moons. On the bottom are astrometric residuals of the 
four Galilean moons obtained from the FASTT survey (Stone et al. 2003). The offset after 

2012 could be associated with an error on Jupiter ephemeris. 
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Expected results and their significance and application  
 
This work shall provide the most extensive values on tidal parameters for Jupiter and Saturn 
allowing for discriminating among the various tidal and interior models that exist today. 
Physical parameters like k2/Q, G, η, tp, and tα that are associated with specific tidal models 
will be solved directly by processing the radioscience and astrometry data. Simultaneous 
determination of the tidal ratio k2/Q for Enceladus and possibly Europa/Ganymede will help 
probing the existence and sustainment of liquid ocean underneath their icy crust. This will 
have direct consequences for exobiology, in particular considering the development of life in 
the outer Solar System, where tides are the main source of heat.  
 
Moreover, long-term evolution of exoplanets will have to be reconsidered using our results 
and key parameter values. For example, the excess of close resonant pairs, just outside the 2:1 
and 3:2 mean motion resonances, could potentially be explained by resonance locking 
mechanism allowing for strong tides. Moreover, recent evidence of a quadratic acceleration 
on the mid-transit times of WASP12-b (Maciejewski et al. 2016) may have a different 
interpretation if high tidal dissipation within giant gaseous planets becomes a new paradigm. 
In general, a clear quantification of dissipative processes by tides within Jupiter and Saturn 
will serve as a fundamental basis for both observational and theoretical studies in planetary 
formation, dynamics and support to life’s development in the Galaxy. 
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Note d’accompagnement 
 

 

 

 

 

Coordination of scientific teams and international networks : 
 

Coordination of scientific work is an important part in the career of a researcher today. During 
the 15 years following my PhD defense, I took the lead of various working groups, including 
international teams and networks. I give below a list of the major scientific teams in which I 
was involved and coordinated.  
 

 

ENCELADE Team : 
2007 until - : coordinator of the ENCELADE international team (UPMC, Paris Scientific 
council and ISSI fundings) 
 
http://www.issibern.ch/teams/saturnastrometry/ 

 

I initiated in 2007 a working groupe called ENCELADE. The main objectiv of our team was 
to quantify the orbital deceleration of the Saturnian moon, Enceladus, due to the tides it 
suffers from its primary. This happened to be the beginning of a whole quest, requiring larger 
expertise from stellar physics to the dynamics of rings and interior modeling of icy moons. 
My team now gathers a bit less than 20 researchers, including 4 post-docs (3 of them where 
formerly PhD students within ENCELADE) and over 8 laboratories. We meet twice per year, 
inviting external researchers some times. We study the systems of the four outer planets of the 
Solar system, with special emphasize on astrometry, orbital/rotational dynamics and tidal 
effects.    
In 2009, our team obtained an EMERGENCE funding from UPMC. This allowed us to obtain 
a PhD student (R.Tajeddine) and enough funding for meeting regularly in Europe.  
In 2014, our working group was selected to be an International ISSI (International Space 
Science Institute) team and renamed ENCELADE 2.0. We are now in process of extending 
our collaboration with ISSI for two more years. This shall allow us to go on working properly 
until the end of Cassini and Juno missions. 
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The ENCELADE team at UPMC the 22nd January 2014 (from left to right: R.Tajeddine, 

V.Lainey, K.Baillié, J.E.Arlot, C.Le Poncin-Lafitte, V.Robert, J.P.Zahn, Ö.Karatekin, 
B.Noyelles, S.Mathis, N.Rambaux, S.Charnoz, S.Renner, N.Cooper, M.Elmoutamid, 

C.Murray, F.Remus). 
 
 

 

ESPaCE Network : 
 

June 2011 until - : Deputy coordinator of the European FP7 network ESPaCE (FP7-SPACE 
funding) 
http://www.imcce.fr/espace/start 
 
In 2010, I submited with William Thuillot a proposal to the European FP7-Space open call. 
The basic idea was coming from my experience as a post-doc at the Royal Observatory of 
Begium. There, I realized the close similitude between the technics involved in space geodesy 
and in the development of ephemerides of Solar system objects. In particular, the idea of 
merging radio-science data and astrometric data appeared promising if not necessary. As a 
matter of fact, such method was already applied since decades in the United States with their 
own space data. It was time for Europe to do the same. 
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Fortunately, our proposal was selected. The ESPaCE (European Space Partnership in 
Computing Ephemerides) European network provided new ephemerides of the Mars, Jupiter, 
Saturn and Uranus moons, while making important progress toward global inversion. 
European space missions like Mars Express and JUICE are still benefiting from our network. 
Today, ESPaCE is still alive and partly funded, looking for the next European open call. 
 

 
The ESPaCE network the 30th of May 2012 at Dwingeloo. W.Thuillot (coordinator) and 

myself (deputy coordinator) are at the center on the right. 
 

 
 

Pégase Team : 
 
Jan 2015 until - : Coordinator of the scientific team Pégase (IMCCE) 
 
In 2014, I decided to take the lead of a new scientific team at IMCCE. In particular, I wanted 
to have more synergy inside my laboratory, open to many aspects of celestial mechanics and 
astrometry (including exo-planets), and allowing young students to share efficiently the 
konwledge of the other resaerchers in their team.  In January 2015, the Pégase team was 
officially born and gathered more than 20 persons (researchers, PhD students and post-docs).  
Our topic includes basically astrometry and celestial mechanics as two important discplines. 
The objects we are studing go from artificial satellites and space debris to natural moons, 
asteroids, comets and exo-planets. 
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The Pégase team on the 11th of June 2015 at the Lille Observatory. From left to right and top 

to bottom : S.Eggl, D.Hestroffer, B.Noyelles, M.Fouchard, J.E.Arlot, S.Renner, P.David, 
K.Baillié, J.Desmars, W.Polycarpe, myself, W.Thuillot, M.	Kudryashova, E.Saquet, 

F.Deleflie, A.Vienne, X.Xi, S.li, N.Thouvenin, J.Daquin. Mrs Balenguin and her daugther, as 
well as N.Emelianov (invited resaercher) are on the picture. 

 
 
 

Thesis advisor : 
 

I co-advised 6 PhD students between 2010 and 2017 : 

 
1-V.Robert (J.E.Arlot, V.Lainey) : PhD thesis defended in 2011 
 
J.E.Arlot was officialy the principal advisor.  In practice, we supervised his work 50% each. 
V.Robert is a permanent researcher at the IPSA (Institut Polytechnique des Sciences 
Avancées) and is one of my closest collaborator. He is a member of Pégase team since its 
creation. 
 
-Robert, V., Lainey, V., Pascu, D., Arlot, J.-E., De Cuyper, J.-P., Dehant, V., Thuillot, W., 
A&A (2014) 
 
-Beauvalet, L., Robert, V., Lainey, V., Arlot, J.E., Colas, F., Astronomy & Astrophysics, 
Volume 553, id.A14, 22 pp.(2013) 
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-Arlot, J.E., Desmars, J., Lainey, V., Robert, V., Planetary and Space Science, Volume 73, 
Issue 1, p. 66-69 (2012). 
 
-Robert, V., de Cuyper, J.-P., Arlot, J.-E., de Decker, G., Guibert, J., Lainey, V., Pascu, D., 
Winter, L., Zacharias, N., MNRAS (2011) 
 
 
2-L.Beauvalet (V.Lainey, J.E.Arlot) : PhD thesis defended in 2011  
 
Even though Jean-Eudes Arlot was the offical advisor, I supervised 80% of Laurène’s work. 
Afetr her PhD thesis, L.Beauvalet had a post-doc position at the Shanghai observatory for two 
years. She then moved to the Rio observatory. She has now moved to the private industry. 
 
-Beauvalet, L., Robert, V., Lainey, V., Arlot, J.E., Colas, F., Astronomy & Astrophysics, 
Volume 553, id.A14, 22 pp.(2013) 
 
-Beauvalet, L., Lainey, V., Arlot, J.-E., Bancelin, D., Binzel, R. P., Marchis, F., Planetary 
and Space Science, Volume 73, Issue 1, p. 62-65 (2012). 
 
-Beauvalet, L., Lainey, V., Arlot, J.E., Binzel, R., Astronomy & Astrophysics, Volume 540, 
id.A65, 9 pp. (2012) 
 
 
3-R.Tajeddine (V.Lainey, S.Charnoz) : PhD thesis defended in 2013 
 
Radwan Tajeddine benefited from my EMERGENCE / UPMC funding that I obtained in 
2009. I supervised 90% of his thesis, with the help of Sébastien Charnoz. After his defense, 
R.Tajeddine moved to Cornell University. He is still post-doc there, working on Saturnian 
rings and satellites with the Cassini-ISS data. In 2014, we had the pleasure to see one of his 
paper accepted in the Science journal (Tajeddine et al. 2014). 
 
-Tajeddine, R., Lainey, V., Cooper, N., Murray, C., Astronomy & Astrophysics, Volume 
575, id.A73, 6 pp. (2015). 
 
-Cooper, N. J., Murray, C. D., Lainey, V., Tajeddine, R., Evans, M. W., Williams, G. A., 
Astronomy & Astrophysics, Volume 572, id.A43, 8 pp. (2014). 
 
-Tajeddine, R., Rambaux, N., Lainey, V., Charnoz, S., Richard, A., Rivoldini, A., 
Noyelles, B., Science, Volume 346, Issue 6207, pp. 322-324 (2014). 
 
-Tajeddine, R., Cooper, N. J., Lainey, V., Charnoz, S., Murray, C. D., Astronomy & 
Astrophysics, Volume 551, id.A129, 11 pp. (2013). 
 
 
4-F.Remus (J.P.Zahn, V.Lainey et S.Mathis) : PhD thesis defended in 2013 
 
Jean-Paul Zahn and Stéphane Mathis supervised most of Françoise’s work. In practice, my 
involvment was at the level of 15% for my expertise in orbital dynamics and determination of 
tidal effects from astrometry. F.Remus obtained in 2012 the L’Oréal prize «  Pour les femmes 
et la science  » for her PhD work. After her defense she obtained an ATER (1-year University 
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contract) and did simultaneously her research at IMCCE. Then, she moved to a post-doc 
position at CEA/LUTh. 
 
-Remus, F., Mathis, S., Zahn, J.-P., Lainey, V., Astronomy & Astrophysics, Volume 573, 
id.A23, 5 pp. (2015). 
 
-Lainey, Valéry, Karatekin, Özgür, Desmars, Josselin, Charnoz, Sébastien, Arlot, Jean-
Eudes, Emelyanov, Nicolai, Le Poncin-Lafitte, Christophe, Mathis, Stéphane, 
Remus, Françoise, Tobie, Gabriel, Zahn, Jean-Paul, The Astrophysical Journal, Volume 752, 
Issue 1, article id. 14, 19 pp. (2012).  
 
-Remus, F., Mathis, S., Zahn, J.-P., Lainey, V., Astronomy & Astrophysics, Volume 541, 
id.A165, 17 pp. (2012). 
 
 
5-Y.Duchemin (J.E.Arlot, V.Lainey) : PhD thesis to be defended in 2017 
 
Jean-Eudes Arlot and myself are co-supervising Yann Duchemin’s work. He his an engineer 
working and teaching at ESIGELEC engineer school. His PhD topic deals with autonomous 
navigation in space. 
 
 
6-W.Polycarpe (A.Vienne, V.Lainey) : PhD thesis to be defended in 2018 
 
I am supervising with Alain Vienne the work of William Polycarpe. His topic deals with the 
study of the long term past evolution of the Saturnian system. In particular, we are 
considering the possibilities associated with strong tides within Saturn and the Nice model. 
This thesis work is part of the ENCELADE 2.0 activities. 
 
I supervised many master and engineer training courses including those of (non exhaustive 
list) : L.Beauvalet, S.Bertone, F.Boudinot, Y.Duchemin, S.Lounis, R.Tajeddine, C.Yao… 
 
Last, I recently worked with Kévin Baillié (post-doc) on the dynamical interaction between 
Saturn’s rings and moons.  
 
 
 
Ephemerides development : 
 
Since my PhD in 2002, I developed new ephemerides of many natural satellites of the Solar 
system. 
 
Mars moons : 
 
Mars moons ephemerides have been reconsidered in 2004 with the arrival of Mars Express. 
Several flybys between Mars Express and Phobos devoted to radio-science arose and some of 
them were considered essential for understanding the interior of Phobos and its formation 
history. The last one arose on the 29th of December 2013. The success of the experiment 
required an accuracy in the Phobos ephemeris of 100 meters. During my work I exhibited (in 
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parallel with R.Jacobson at JPL) a misfit of about one kilometer between SRC-Mars Express 
data and Mars Reconnaissance Orbiter. Such possible error prevented us to garantee 100 m 
accuracy (not precision). Later on, it appeared that 10 m accuracy would be required to reach 
the scientific objectiv of Mars Radio Science team (Mars Express). If 100 meters is still 
feasible, assuming no biases affects the astrometric data, 10 m accuracy will require different 
observation mean like a Phobos lander. 
 
Galilean moons : 
 
The ephemerides of the Galilean moons are usefull for both, forecasting the mutual events 
between the moons arising every six years, and responding to space agencies for mission 
development like JUICE. Since my thesis, already devoted to the Galilean system, I regularly 
updated the ephemerides of the main Jovian moons. More recently, I am collaborating with 
the European Space Operationnal Center (ESOC) to provide the uncertainty on the Galilean 
moon position at the time of the arrival of JUICE. 
 
Saturnian moons : 
 
The huge success of the Cassini mission allowed us to obtain about 1000 astrometric image 
per Saturnian satellite and with an accuracy of typically 10 km. Up-to-date ephemerides of the 
Saturn system required to consider these data. Moreover, ESPaCE network allowed to 
rereduce the USNO photographic plates of the Saturn system. New ephemerides developped 
in 2015 consider the new sets, in addition with former data. A global inversion of all Saturn 
data, including radio-science and the totality of the ISS astrometric data is planned after the 
end of the Cassini mission. I will be part of it by moving to JPL for three years, starting on 
July 2017. 
 
Uranian moons : 
 
In 2008, the first observations of the mutual events of the Uranian moons occured. Such 
observations arise every 42 years (half of the Uranian revolution period). To predict properly 
such events, I provided new ephemerides of these moons just before the campaign. It 
appeared that the Uranus position in space was itself not properly known. In particular, the 
improvement of the Uranian moon ephemerides is necessary for improving the ephemeris of 
Uranus itself. 
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From left to right and top to bottom : uncertainty on the orbital position of Io, Europa, 
Ganymede and Callisto after considering a realistic set of observations up to 2029. 

 
 
 
 
Specific teaching : 
 
I am teaching since 2007 in the master of the Paris Observatory. One of my lesson deals with 
the numerical simulation of a spaceprobe perturbed by the Sun and planets. The students are 
supposed develop their own code, almost from scratch, and be able to fit the initial state 
vector of the probe to real ephemeris provided by the SPICE. The idea is to allow students 
understanding the possibility of masking a dynamical effect (at least in a part) into the fit. 
 
I also teach astrometry as a semester course and go every year for a full week at the OHP 
(Haute-Provence Observatory). 
 
More marginaly, I participate to international school and lessons (Beijing 2008, Nice 2011, 
Guangzhou 2016). 
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Alain Vienne and myself giving lectures at the Jinan University 
(Guangzhou, December 2016). 
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Abstract 
 
 
From the ocean underneath Europa, to the intense volcanic activity of Io or the deep 
atmosphere of Titan, natural satellites present a large variety of worlds still mostly 
unexplored. While simple temperature considerations previously constrained the presence of 
liquid water to just beyond Mars' orbit, tidal effects mean that liquid water can exist much 
further from the Sun. Hence, habitability could exist in a wider variety of places, whether in 
our Solar system or extra-solar ones. In this context I revisited part of our current knowledge 
in planetology from the perspective of astrometry. Monitoring and analysing the orbital 
motion of moons can provide an alternative and straightforward insight into the orbital and 
interior evolution of satellite systems. As already demonstrated for Io’s activity (Lainey et al., 
Nature 2009), it may be the only way to assess some fundamental processes arising deep 
within these worlds. Once the key physical parameters are quantified, there are clear 
applications to the possible orbital states of exoplanets and their putative moons. 

 
The global methodology is similar to space geodesy. Variationnal equations are solved 
simultaneously with the equations of motion. Since 2004, I am developping a specific N-body 
code, called NOE (Numerical Orbit and Ephemerides), aimed at simulating the orbit of solar 
system objects with more emphasize on natural satellites. Using a large number of 
observation kinds, obtained with several different technics and including spaceprobe data, I 
can solve for many parameters ruling the physics of the system. Besides the initial state 
vectors of each moon, the parameters of interest can be the gravity fields (including the mass 
and Cnp, Snp coefficients), the precession and nutations of the primary (including the 
orientation of the pole in space), the principal forced libration amplitude of the secondaries, 
the tidal parameters k2 and Q, the relativistic PPN terms γ and β… 
 
In addition to the scientific results of sometimes high importance coming from the 
comparison between predicted orbital motions and the observed ones, I can provide as a 
subproduct high accurate ephemerides. The accuracy of these latter are directly related to the 
degree of accuracy in the modeling, and so in the accuracy of our vision of the system. For 
many satellite systems, the largest unknown is on the physics itself, directly associated with 
our vision of the system, ultimately derived from our believe on the formation and longterm 
evolution of the moons. All this is a neverending story for three reasons : i) space agencies 
and the professionnal community are always looking for more ephemerides precision ; ii) 
ephemerides are drifting with time and, as a consequence, need to be refitted regularly ; iii) 
mankind is curious about the nature, the creation and the evolution of its own world. 
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ABSTRACT

We present new ephemerides of Phobos and Deimos that are fit to observations from 1877 to 2005 and include recent spacecraft
observations by Mars Global Surveyor and Mars Express. In contrast to earlier models, this is the first completely numerical one.
In particular, the tidal effects have been modeled by the tidal bulge raised by each moon on the planet, instead of fitting secular
accelerations in the satellite longitudes. This partly avoids absorbing the Deimos observational errors in its related tidal acceleration.
Moreover, applying this model to other systems will be easier. Our estimate of the Martian dissipation is Q = 79.91±0.69 (1σ-formal
error) when assuming k2 = 0.152 for the Martian Love number and GmPh = 0.68 × 106 m3/s2 for the Phobos mass. We also report
the possibility of fitting the Phobos oblateness gravity field. We suspect a non-uniform density for Phobos or a bias in either the
observations or the Martian gravity field. A FORTRAN subroutine that computes the Martian moons’ ephemerides is available on
request.

Key words. planets and satellites: general – ephemerides – celestial mechanics – astrometry

1. Introduction

The orbital motions of the Martian moons are among those
most studied in the Solar System. Since their discovery in 1877,
a variety of dynamical models, first fit to Earth-based obser-
vations and then to spacecraft observations, have been devel-
oped. Ephemerides have been developed by Sinclair (1972),
Shor (1975), and Sinclair (1978) during the Viking era, con-
firming the secular tidal acceleration previously found by
Sharpless (1945). Later, in the early 1990’s, more orbital stud-
ies were developed mainly in support of the Phobos 2 space-
craft mission. Of particular interest were the ephemerides
derived by Jacobson et al. (1989) and by Morley (1990)
that were used by JPL and ESOC, respectively. These
ephemerides are available in the SPICE library at the address
ftp://naif.jpl.nasa.gov/pub/naif/MEX/kernels/spk.

No new adjustments to the observations were done be-
fore 2005. As a result, the Martian moon ephemerides have
drifted, as pointed out by Neumann et al. (2004), who used the
passive mode of the MOLA instrument onboard Mars Global
Surveyor (MGS) to detect the Phobos shadow on the Martian
surface. After data reduction, they found that the observed po-
sition of Phobos was ahead of its predicted position by a dif-
ference of 6 s of time (12 km). This was later confirmed by
Bell et al. (2005), using observations from the Mars Exploration
rovers (MER). With some 6 transit events (including two events
by Deimos), they also found a significant drift of 38 km on the
Deimos position.

Bills et al. (2005) used some 16 observations covering the
years 1998−2004 to correct the shift between the observed
and computed positions of Phobos. They used the model of
Jacobson et al. (1989) and fit only three terms from the longitude

expression to the MGS observations. They succeeded in reduc-
ing the former drift on the Phobos orbital motion. However, as
only Phobos was observed by MOLA (the shadow of Deimos
on the Martian surface being too faint), no attempt could be
made to improve the motion of Deimos. Moreover, the physi-
cal parameters from 1989 are still being used. Of particular im-
portance are the Martian gravity field and the precession, which
have been significantly improved in recent years (Lemoine et al.
2001; Yuan et al. 2001; Seidelmann et al. 2002; Konopliv et al.
2006).

The Super Resolution Camera (SRC), part of the High-
Resolution Stereo Camera (HRSC) onboard Mars Express
(MEX), started an observation campaign of the Martian moons
(see Oberst et al. 2006) in 2004−2005. The analysis of the
ephemerides residuals between the predictions from ESOC and
JPL with a set of 36 satellite observations again confirmed
the drift of the ephemerides (mainly across track for the
ESOC model and along track for the JPL model). Phobos and
Deimos were found 12 km and 50 km, respectively, ahead of
their predicted positions by the JPL model. The ESOC model
predicted better with 8 km and 18 km discrepancies on the
Phobos and Deimos positions, respectively.

One of the most interesting purposes for studying the orbital
evolution of the Martian moons is to investigate the Martian tidal
dissipation factor. Tidal dissipation induces a phase lag between
the bulge direction raised by one satellite and the Mars-satellite
direction. As a consequence, momentum between the planetary
rotation and the satellite orbital motion is exchanged. When the
satellite revolves faster than the planet rotates, a secular accel-
eration on the satellite longitude is generated. This effect is ob-
served on the orbital motion of Phobos. More difficult is detect-
ing the tidal deceleration of Deimos (this satellite revolves more
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Table 1. Catalogue of all observations used in this paper.

Reference Frame Type Period Place P/M D/M P/D P D
Morley (1989) 1+2+3 0+1+2 1877–1982 23 sites 2212 2600 100
Christie et al. (1878) 1 0 1877–1877 Greenwich, Oxford 3 12
Young (1880) 1 0 1879–1879 Princeton 4 10
Shor (1989) 1+3+4 1 1978–1988 7 sites 268 221 195
Kiselev et al. (1989) 1 1 1986–1986 Ordubad 117 56
Kiseleva & Chanturiia (1988) 1 1 1986–1986 Ordubad 6
Bobylev et al. (1991) 1 1 1988–1988 Pulkovo, Ordubad 164 54 147
Colas (1992) 1 1 1988–1988 Pic-du-Midi 813
Izhakevich et al. (1990) 4 1 1988–1988 Majdanak 65 47 88
Jones et al. (1989) 1 0 1988–1988 La Palma 88 12 66
Kalinichenko et al. (1990) 1 1 1988–1988 Abastuman 19 1 17
Nikonov et al. (1991) 1 1 1988–1988 Boyeros 23
Tel’nyuk-Adamchuk et al. (1990) 4 1 1988–1988 Kiev 99 74 32
Kudryavtsev et al. (1992) 4 3 1988–1988 Majdanak 660 639
Duxbury & Callahan (1988) 3 3 1976–1980 Viking 1-2 166 109
Duxbury & Callahan (1989) 3 3 1971–1972 Mariner 9 49 31
Kolyuka et al. (1991) 3 3 1989–1989 Phobos 2 37 8
Pascu (1995)* 1 1 1967–1988 Flagstaff, Washington 217 223
Ledovskaya (2001)* 4 3 1963–1988 Kiev, Kitab, Maid. 133 283
Rohde (2003)* 1 0 2003–2003 Flagstaff 196
Bills et al. (2005) 4 3 1977–2004 MGS, Viking lander 1 17
Oberst et al. (2006) 4 3 2004–2005 Mars Express 26 10

slowly than Mars rotates). Both accelerations, however, were
fit in the former models, providing a good agreement with the
Phobos acceleration. The deceleration of Deimos is still uncer-
tain and probably more a matter of observational errors.

The density of Phobos is less constrained than the Martian
tidal dissipation and usually assumed to be uniform. So far, the
different flybys at Phobos by the Viking 1 and Phobos 2 space-
crafts only quantified the satellite mass. The Phobos gravity field
(essentially the coefficients C20 and C22), however, induces sec-
ular terms on the mean anomaly, node, and pericenter of the
Phobos motion, which are different from the quadratic behav-
ior induced by the tidal effects. Several authors tried to use their
ephemerides solution to verify the constant density assumption
(see Chapront-Touze 1990; Emelyanov et al. 1993). The uncer-
tainties on the Martian gravity field (often fit during the Martian
moon ephemerides construction) were probably too large to an-
swer this question definitively.

This paper is divided as follows. Section 2 describes all
available observations of the Martian moons. Section 3 presents
the numerical method introduced to model the satellite mo-
tions. Section 4 presents the fit of the model to the JPL model.
In Sect. 5 the fit of our model directly to the observations is
presented. Section 6 summarizes the procedure to provide the
Martian moons ephemerides representation to the user. Section 7
compares the ephemerides with the JPL/ESOC ephemerides.
The last section discusses the influence of few non introduced
perturbations in the present model, along with the question of
the density of Phobos.

2. The observations

The observations of the Martian moons are numerous and have
different levels of accuracy. An important available database1

1 This database is available on the internet at the following addesses:
http://lnfm1.sai.msu.ru/neb/nss/index.htm
http://www.imcce.fr/fr/ephemerides/generateur/
saimirror/obsindhf.htm

was developed jointly at the Sternberg institute and the Institut
de Mécanique Céleste et de Calcul des Ephémérides by
Emelianov and Arlot. This database includes the widely used
catalogue compiled by Morley (1989), which considers most
of the ground-based observations from 1877 to 1982. Several
other Earth-based observations (sometimes unpublished) are
also included. Of great interest are the observations in 1988 by
Kudryavtsev et al. (1992) at the time of the Phobos 2 mission.

Between 1988 and 1998, the Martian moons seem to have
been disregarded by the observers. In 2003 Rohde, Ries, and
Pascu (priv. com.) made 196 CCD observations over 4 nights of
the Martian moons at Flagstaff. These are intersatellite observa-
tions (the observed position of Phobos with respect to the posi-
tion of Deimos) and are among the most accurate observations
made from the Earth.

The model presented here benefited from the large set
of spacecraft observations done with Mariner 9, Viking 1-2,
Phobos 2, but also from MGS (Bills et al. 2005) and Mars
Express observations (Oberst et al. 2006). The last set in-
cludes 26 observations of Phobos with an accuracy of 0.5−5 km
and 10 observations of Deimos with an accuracy of 1 km.

Table 1 summarizes the whole set of observations con-
sidered in this work. A star (*) denotes unpublished obser-
vations. The letters P, D, and M denote respectively Phobos,
Deimos, and Mars. P/M and D/M refers to observations rela-
tive to Mars, P/D refers to intersatellite observations and P, D
are absolute observations. For the second and third columns
respectively, the conventions are as follow: 1= true equator
of the date, 2 = B1900 equator, 3 = B1950 equator, 4 =
J2000 equator; 0= separation and position angle coordinates
(s, p), 1 = tangential coordinates (X, Y), 2= differential coor-
dinates (∆α,∆δ), 3= absolute coordinates (α, δ). A part of the
data set has not been used after a preliminary study of the resid-
uals revealed that there is a discrepancy between the different
observational sets (see Sect. 5 for details).

In view of the number and full coverage of the most accurate
observations of the Martian moons, we decided to perform three
different fits. In particular, the possibility of using new spacecraft
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observations (MGS-MEX) makes it feasible to fit the Martian
moons’ ephemerides (and so the Martian dissipation) on shorter
time scales than is usually done. The first fit introduced space-
craft observations from 1971 to 2005 only (Sect. 5.2). A second
fit used the most accurate Earth-based astronomical observations
starting with Pascu’s observations in 1967 and all spacecraft ob-
servations until 2005. This fit is presented in Sect. 5.3. The last
fit combined the spacecraft observations and a number of ob-
servations available from 1877 to 1950. This fit is described in
Sect. 5.4.

A limitation to the Viking observations (and to a lesser
extent also the Mariner 9 observations) is the uncertainty in
the spacecraft positions at the time of the observations. Those
have been estimated to be 8 km and 4 km for Viking 1-2 and
Mariner 9 spacecraft, respectively (Duxbury & Callahan 1988,
1989). To reduce these uncertainties, the authors have suggested
estimating two more parameters related to the spacecrafts’ po-
sition errors, during the fit process. Following Chapront-Touze
(1990), these have not been introduced to avoid a high num-
ber of parameters. We introduced updated spacecraft positions
using SPICE kernel when available. These new positions were
computed by Konopliv in 1995 (SPICE file header). We found
differences between the SPICE positions and the positions pub-
lished in Duxbury & Callahan (1988), and Duxbury & Callahan
(1989) of less than 500 m for the Mariner 9 data and a few tens
of kilometers for the Viking spacecraft.

3. The numerical model

The software used for numerical integration is called Numerical
Orbit and Ephemerides (NOE) and is based on the work de-
veloped in Lainey et al. (2004). It was developed at the Royal
Observatory of Belgium mainly for computing the ephemerides
of natural satellites. It is an N-body code that incorporates highly
sensitive modeling and can generate partial derivatives, which
are needed to fit the initial positions, velocities, and other pa-
rameters (masses, C20,C40, ...) to the observation data.

The model presented in this work introduces (i) the Martian
gravity field MGM1041C up to degree2 10 (Tyler et al. 2003);
(ii) the perturbations of the Sun, Jupiter, Saturn, the Earth, and
the Moon using DE406 ephemerides (Standish 1998); (iii) the
mass of each Martian moon3 (Phobos mass borrowed from Tyler
et al. 2003 and Deimos mass from Yuan et al. 2001); and (iv) the
IAU2000 Martian precession/rotation (Seidelmann et al. 2002).

In principle, the secular acceleration (deceleration) of the
Martian moons is directly related to the Martian Love number k2,
the Martian dissipation factor Q, and the mass of each moon.
While the usual method fits two uncorrelated quadratic terms in
the satellite longitudes, the tidal effects are modeled here in a
more rigorous way by introducing a tidal potential. This method
allows a better fit of the Phobos and Deimos secular accelera-
tions by linking them to the same physical parameters. In par-
ticular, unrealistic acceleration of the motion of Deimos is auto-
matically rejected, as Deimos revolves more slowly than Mars
rotates. The tidal effects were introduced using Mignard’s for-
mulation (Mignard 1980), which models the tidal bulge by a time

2 Former simulations introducing the Martian gravity field up to or-
der 12 revealed no significant differences with respect to simulations
introducing this potential only up to degree 10.

3 A preliminary study by Lainey & Tanga (2005) in the context of
the GAIA mission studied the small influence of the mutual perturba-
tions of the Martian moons. In the present work, these forces have been
introduced only for completeness.

shift ∆t between the gravitational excitation by the satellite and
the viscoelastic response of the planet. Actually∆t can be related
to the Martian dissipation factor Q by the simple relation

∆t =
T arcsin (1/Q)

2π
(1)

where T is the tidal excitation period depending on the Martian
rotation period Tp. The satellite orbital motion period Ts is
related to it by

T =
TpTs

2|Tp − Ts|
· (2)

We introduced two different time shifts to take the tidal bulges of
Phobos and Deimos into account. Mignard (1980) neglected the
first part of his potential U0, because he was mainly interested in
the long-term evolution. This missing part has been added in the
final tidal force FT acting on a moon, which is induced by the
tidal bulge raised by this moon on the planet. FT takes the form

FT = −3k2Gm2(Er)5

r8

(
r + ∆t

[
2r(r · u)

r2 + (r ×Ω + u)
])

(3)

where m, Er, r, u,Ω are the moon mass, the Martian equatorial
radius, the position and velocity vectors of the moon, and the
Martian angular velocity vector, respectively. In the following,
the Martian Love number has been fixed to k2 = 0.152 (Konopliv
et al. 2006). Bills et al. (2005) mention, however, the necessity
of introducing the higher harmonic terms involving k3 and k4 in
the dynamics. As these terms are still mostly unknown, it was
preferred to keep only the k2 term. Hence, the fit of the dissi-
pation factor Q more likely provides an effective value of Q by
partly absorbing the loss of the higher harmonics. The related
acceleration in the model will, however, be correct.

The dynamical system is numerically integrated in a plane-
tocentric frame with inertial axes (conveniently the Earth mean
equator J2000). Hence, denoting r j the position vector of a
body P j (a satellite, the Sun, or a perturbing planet), the equation
of motion of the satellites has the usual form of

r̈i = −
G(m0 + mi)ri

r3
i

+

N∑

j=1, j!i

Gm j

⎛
⎜⎜⎜⎜⎜⎝

r j − ri

r3
i j

− r j

r3
j

⎞
⎟⎟⎟⎟⎟⎠

+G(m0 + mi)∇iUı̄0̂ +
N∑

j=1, j!i

Gm j∇ jU ȷ̄0̂ (4)

where U ȷ̄0̂ denotes the oblateness gravity field of the planet. The
associated force is computed using a rotation matrix of angles4

(α0 +
π
2 ,
π
2 − δ0, W) and its associated inverse.

Denoting cl as an unspecified parameter of the model that
shall be fit (e.g. r(t0), ṙ(t0), Q ...), a useful relation is

∂

∂cl

(
d2ri

dt2

)
=

1
mi

⎡
⎢⎢⎢⎢⎢⎢⎣
∑

j

(
∂Fi

∂r j

∂r j

∂cl
+
∂Fi

∂ṙ j

∂ṙ j

∂cl

)
+
∂Fi

∂cl

⎤
⎥⎥⎥⎥⎥⎥⎦ · (5)

Hence, partial derivatives of the solutions with respect to initial
positions and velocities of the satellites and dynamical param-
eters are computed from numerical integration of Eq. (4) and
simultaneously with Eq. (5). For an explicit formulation of the
dynamical equations and the variational equations used, we refer
to Peters (1981) and Lainey et al. (2004).

A possible perturbation that may significantly decrease the
accuracy of our model is the spin librations of the Martian

4 The angles (α0, δ0,W) are defined in Seidelmann et al. (2002).
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Fig. 1. Differences in distance after fitting the numerical model to the JPL ephemerides for Phobos (left panel) and Deimos (right panel). The
satellite’s initial positions and velocities and the Martian dissipation quality factor Q have been fit here. The horizontal axes are in years relative
to Julian day 2 445 053.5 (25/03/1982).

moons. As both moons are in a spin-orbit resonance, induced
librations affect the evolution of the satellite longitudes. So far,
this perturbation has only been considered in the extensive work
of Chapront-Touze (1990). However, the introduction of this res-
onance would need to consider the phase angle and its deriva-
tive at initial epoch as unknown parameters. As no observations
of such an angle can be used easily, the fit of these parameters
would be done on the basis of its influence on the orbital mo-
tion. Moreover, this sort of perturbation would require a good
estimate of the C20 parameter for both moons, which is not avail-
able, in particular after the still controversial value of the Phobos
mass itself (Andert et al. 2004). Hence, the introduction of spin
orbit librations in our model will be postponed to future work.

The integrator subroutine is from Everhart (1985) and called
RA15. It was chosen for its computation speed and accuracy.
During the different integrations, a constant step size of ∆t =
0.025 day was used. To increase the numerical accuracy dur-
ing the fitting procedure (see Sect. 5), we performed forward
and backward integrations starting at an initial Julian epoch
of 2 445 053.5 (25/03/1982 TDB). This epoch was chosen to
keep high precision during the spacecraft era. The numerical ac-
curacy of our simulation is at the level of a few tens of meters
over 10 years and a few hundreds of meters over one century.

4. Fit to JPL ephemerides

To obtain good first estimates of the initial satellite positions
and velocities, we fit the model to the JPL ephemerides of the
Martian moons, which are based on the Jacobson et al. (1989)
ephemerides. These computations were done over a time span
of 3600 days with a rate of one value per day. The initial
epoch was Julian day 2 445 053.5 (TDB time). The global mod-
eling already described in Sect. 3 was considered. Differences in
Cartesian positions for all satellites and the Martian dissipation
factor Q have been fit, with no weights assigned. The residuals
after applying the least-square procedures are shown in Fig. 1.
The resulting differences do not exceed a few kilometers and are
distributed around a non-zero mean of the same order. In partic-
ular, the long-scale trends may be explained by the use of a dif-
ferent Martian gravity potential and precession rate. In addition,
the assumed modeling precision of the JPL ephemerides is also
one to two kilometers (Jacobson et al. 1989). This good agree-
ment is sufficient to start a fitting procedure to the observations
directly.

5. Fit to the observations

5.1. The fitting procedure

During the fitting procedure, time scale and light time correc-
tions for each satellite-observer distance were introduced. The
weights were computed by preliminary residuals, except for the
spacecraft observations where the published weights were used.
The only exception were the MOLA observations for which no
weights are available. Hence, we used the published time off-
set given in Bills et al. (2005) for each shadow event and added
an empirical uncertainty of 1.5 s to weight each event. All space-
craft observations were used, except the early Mariner 9 observa-
tions from the approach to Mars. The uncertainty in Mariner 9’s
position was about 50 km during this phase instead of only 4 km
during the orbital phase (Duxbury & Callahan 1989). These ob-
servations were used, however, for computing all rms post fit
residuals to be in agreement with former published works. A
three-sigma rejection criterion was used for Earth-based obser-
vations, but considering the low accuracy of early observations
(pre-50 s observations) this criterion was reduced to two-sigma
in this last case.

Earth-based observations involve just one satellite (abso-
lute or relative positions to Mars) or intersatellite observations
(Deimos relative to Phobos). In the first case, it is sometimes
possible to deduce intersatellite positions when both satellites
are present. We tried two possibilities, either always convert-
ing satellite positions as intersatellite positions or not, when fit-
ting the data. Intersatellite positions increase the correlations
between Phobos and Deimos initial state. In particular, ob-
servational error on one satellite can potentially be absorbed
in changes in the orbital evolution of the second satellite.
Intersatellite positions have not been considered in this paper
when relative positions to Mars were available5.

The normal system was inverted by the least-square method
(singular value decomposition). The fit parameters were the ini-
tial state vectors and the dissipation factor Q. After a few it-
erations, however, the solution quickly diverged. Actually, this
problem was also encountered by Taylor (1998) with the Uranian
satellites. He solved the problem by fitting initial elliptical

5 Intersatellite positions are often a powerful way to avoid the center
of mass determination and ephemeris errors of the planet. It only makes
sense if all satellites have the same magnitude (and so the same obser-
vational error). Moreover, the number of satellites must be high enough
to avoid correlations.
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elements instead of initial Cartesian coordinates. As all for-
mer models were analytic so developed in elliptical elements,
this problem has not occured with the Martian moons so far.
More details concerning the fit of the elliptical elements can
be found in Taylor (1998). An alternative way is to introduce
constraints on the initial Cartesian coordinates to prevent high
values that would induce a divergence in the solution. Both ap-
proaches using the same preliminary observational sets were
tested. The data set was based on spacecraft observations only
and covered 34 years. When fitting elliptical initial elements,
the convergence was reached after only a few iterations. On
the other hand, the constraint method was far less efficient and
much more empirical. First, the magnitude of the uncertainties
needed to be chosen carefully. A high value produced a di-
verging process, while a low value made the convergence very
slow. After several trials, we finally found optimal uncertainties
of 4 × 10−9 AU and 10−8 AU/day for the position and velocity
components, respectively. The constraint method needed around
ten iterations where the former method needed only three or four.
Therefore, only the elliptical fitting method was finally consid-
ered. Throughout the rest of this work, no constraints have been
applied in the least-square process. All unknowns have been fit
all together at each iteration, which includes the initial state vec-
tors, the dissipation parameter Q, and the C20 and C22 coeffi-
cients of Phobos (see next section).

5.2. Fit to spacecraft observations

The spacecraft observations number in the hundreds and cover
more than three decades. One should expect an accurate solution
for both the Phobos and Deimos orbits using only those obser-
vations. The numerical model was fit to the spacecraft observa-
tions considering only the initial state vectors (by fit of the el-
liptical elements) of the two moons and the Martian dissipation
factor Q as unknown parameters. A first fit only used Mariner 9,
Viking 1-2, and Phobos 2 observations. This fit was extended by
introducing MOLA and SRC observations. Unfortunately, their
introduction significantly increased the residuals of the former
observations (essentially Mariner 9 and Viking). If the estimated
accuracy of the spacecraft observations is correct (no biases in
the position and the orientation of the spacecrafts), this effect
indicates something lacking in the modelling of the perturba-
tion. The most probable reason6 that may introduce this discrep-
ancy would be the triaxiality of Phobos. In particular, the use
of the actual known Martian gravity field (deduced only from
spacecraft tracking) no longer introduces significant correlations
with Phobos. The Phobos gravity coefficients C20 and C22 by
Borderies & Yoder (1990) were then used, which were com-
puted from Phobos’ topography and mass (assuming a constant
density). After another trial, the residuals increased again by the
same order of magnitude. It was thus decided to add Phobos’ C20
and C22 coefficients as unknown parameters for the fit process.
We found surprisingly very good residuals for all observations,
with a consistent order of magnitude for the C20 and C22 values
(without constraints). This result will be commented in Sect. 5.4
and in Sect. 8.

5.3. Fit to modern ground-based observations

Earth-based observations during the spacecraft era were added
to the already considered spacecraft observations in the last run.
Because discrepancies exist among the various observational

6 Consideration of other perturbations will be in Sect. 8.

sets, only the most accurate Earth-based observations were con-
sidered. These consist of 267 astrometrical observations done
by Pascu at the Flagstaff and the Washington observatories
between 1967 and 1971 (2 oppositions) and between 1982
and 1988 (4 oppositions). From the opposition of 1988, 813 in-
tersatellite observations by Colas at Pic du Midi (Colas 1992),
and 88 and 78 observations of Phobos and Deimos, respec-
tively, done at La Palma by Jones et al. (1989), and 660 and
639 observations of Phobos and Deimos, respectively, done by
Kudryavtsev et al. (1992) were included. Further 196 observa-
tions by Rohde, Ries, and Pascu at Flagstaff in 2003 were also
added.

The post-fit residuals increased slightly compared to the for-
mer fit presented in Sect. 5.2. An explanation is that some ob-
servations by Pascu from 1982 to 1988 were probably biased, as
found in the past by a comparison with other ephemeris sources
(Pascu, priv. com.). These observations were reduced with re-
gard to separation and position angle (s, p), while the system-
atical bias probably affected only one of these two variables.
Unfortunately, the software used in this work automatically
converts (s, p) variables into (∆α cos δ,∆δ) coordinates, so no
control of systematical errors could be done. As such a former
correction had not been applied in the first step, this bias contam-
inates the results and compromises the quality of the fit. In the
future, this treatment will be done in order to improve the final
residuals. Despite this point, Pascu’s observations are highly ac-
curate and in addition provide satellite positions relative to Mars.

5.4. Introducing the pre-50 s observations

Earth-based observations made before 1950 were then intro-
duced into the database. Although less accurate than modern ob-
servations, they cover a long time span before the spacecraft era
(the oldest observations were made in 1877). For practical rea-
sons, we did not introduce all observations, but only those that
do not depend on the (s, p) variables. The latter will be consid-
ered in a future work. Only very few iterations were required
starting from the fit performed in Sect. 5.2, and the residuals
did not change much. As this fit includes observations covering
almost 130 years, this fit was chosen as the final solution for
the ephemerides. Figure 2 shows Phobos and Deimos’ post fit
residuals from spacecraft observations. Figure 3 shows Phobos
and Deimos from Earth-based observations (old and modern
one). Tables 2 and 3 present the final rms post-fit residuals for
each observational set. In particular, these tables can be com-
pared to a similar table published in Chapront-Touze (1990). The
MEX residuals clearly fit the expected accuracy of these obser-
vations. The MGS residuals are significantly larger, but a close
look at Fig. 2 also shows periodic behavior. This may come from
the use of former ephemerides models in the reduction process.
Indeed, during the shadow-event reduction, only a time shift is
fit. Hence, the satellite coordinates relative to Mars are computed
from the JPL ephemerides. The other spacecraft residuals are the
same order of magnitude as those published by Chapront-Touze
(1990). Another method of comparison can directly compute the
differences between both ephemerides. This is done in Sect. 7
with the JPL ephemerides.

The Martian dissipation factor Q was found to be not very
sensitive to the different sets of observations used. It was found
to be equal to 79.61, 78.70, and 79.91 with similar error bars.
The reference value chosen in this paper is Q = 79.91 ± 0.69,
which derived from the last fit, assuming k2 = 0.152 for the
Martian Love number and GmPh = 0.68012569 × 106 m3/s2

for the mass of Phobos. There is also a suspicion of a non
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Fig. 2. Differences in distance after fit between the model and the spacecrafts observations for Phobos (left panel) and Deimos (right panel). The
satellite initial positions, velocities and the Martian dissipation quality factor Q and Phobos’ C20 and C22 have been fit here.

Fig. 3. Differences in distance after fit between the model and the ground observations for Phobos (left panel) and Deimos (right panel). The
satellite initial positions, velocities and the Martian dissipation quality factor Q and Phobos’ C20 and C22 have been fit here.

Table 2. Mean (ν) and standard deviation (σ) on right ascension and declination in seconds of degrees for each satellite.

Observations να σα νδ σδ Na satellite
(′′) (′′) (′′) (′′)

Pascu (1995)* 0.00003 0.23234 0.04658 0.17103 217 Phobos
0.06439 0.20355 0.00943 0.22216 223 Deimos

Rohde, Ries, and Pascu (2003)* 0.00876 0.02901 0.00803 0.02826 196 Phobos
–0.00876 0.02901 –0.00803 0.02826 196 Deimos

Colas (1992) –0.02147 0.05460 –0.00226 0.06345 813 Phobos
0.02147 0.05460 0.00226 0.06345 813 Deimos

Jones et al. (1989) –0.00213 0.11990 0.04983 0.11411 154 Phobos
–0.06034 0.10228 –0.02699 0.09801 78 Deimos

Kudryavtsev et al. (1992) 0.09592 0.15067 –0.12893 0.15058 660 Phobos
0.08342 0.15197 –0.11304 0.14451 639 Deimos

Old Observations – Morley (1989) –0.29783 4.01389 –0.01730 1.60815 223 Phobos
Christie et al. (1878), Young (1880) 0.00314 5.54741 0.35150 4.56567 340 Deimos

* Unpublished observations.
a Number of observations by satellite.

homogeneous density for Phobos. The estimate of the satellite
gravity field is C20 = −0.072± 0.013 and C22 = −0.048± 0.002.
This clearly conflicts with a constant density assumption that
would imply the values C20 = −0.10058 and C22 = +0.01591
(Borderies & Yoder 1990). The negative sign of C22, however,
may suggest the signature of a remaining unmodeled perturba-
tion, the use of a biased Martian gravity field, or the introduction
of biased observations (see the discussion in Sect. 8).

The correlation of all the fit parameters are given in Table 4.
The highest correlation is equal to 0.91 between C20 and C22.

These coefficients are not completely correlated, because the or-
bit of Phobos has a small inclination, and the orientation of its
northern pole is assumed to be equal to the Martian one. For
more details concerning the correlation of the C20 and C22 co-
efficients, one can refer to Jacobson & Rush (2006) or Lainey
(2002).

Table 5 presents a comparison between former Phobos’ sec-
ular acceleration determinations. The result of this work is in
good agreement with Jacobson et al. (1989) and Chapront-Touze
(1990). The most recent determination by Bills et al. (2005) by
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Table 3. Mean (ν) and standard deviation (σ) on right ascension and declination for each satellite.

Observations να σα νδ σδ N satellite
(km) (km) (km) (km)

MOLA (MGS) –3.038 6.726 0.190 4.777 17 Phobos
Bills et al. (2005) – – – – – Deimos
Mariner 9 –6.441 6.669 –7.412 7.858 49 Phobos
Duxbury & Callahan (1989) 15.080 19.992 5.008 13.677 31 Deimos
SRC (MEX) 0.077 1.474 0.168 1.485 26 Phobos
Oberst et al. (2006) 0.002 0.517 0.044 0.322 10 Deimos
Viking 1-2 1.193 9.820 –0.856 8.969 166 Phobos
Duxbury & Callahan (1988) 0.477 4.443 –2.433 11.539 109 Deimos
Phobos 2 –0.350 0.967 –0.032 0.594 37 Phobos
Kolyuka et al. (1991) 3.991 15.248 9.959 11.224 8 Deimos

The angles have been multiplied by the distance between the point of observation and the two satellites to provide values in kilometers.

Table 4. Table of the correlations between all the fit parameters, including the initial elliptical elements, the dissipation factor Q, and the Phobos
gravity coefficients C20 and C22.

a1 L1 k1 h1 q1 p1 a2 L2 k2 h2 q2 p2 C20 C22 Q
a1 1.00 0.23 0.18 0.86 0.00 –0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.38 0.45
L1 0.23 1.00 0.68 0.15 –0.23 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.37 0.18
k1 0.18 0.68 1.00 0.43 –0.12 –0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.40 –0.39
h1 0.86 0.15 0.43 1.00 0.04 –0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.42 0.08
q1 0.00 –0.23 –0.12 0.04 1.00 –0.45 0.00 0.00 0.00 0.00 0.00 0.00 –0.20 –0.23 0.04
p2 –0.11 0.20 –0.03 –0.17 –0.45 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.68 –0.01
a2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.66 –0.61 –0.52 0.51 0.56 0.00 0.00 0.00
L2 0.00 0.00 0.00 0.00 0.00 0.00 0.66 1.00 –0.42 –0.56 0.00 0.10 0.00 0.00 0.00
k2 0.00 0.00 0.00 0.00 0.00 0.00 –0.61 –0.42 1.00 –0.06 0.12 0.11 0.00 0.00 0.00
h2 0.00 0.00 0.00 0.00 0.00 0.00 –0.52 –0.56 –0.06 1.00 –0.17 –0.26 0.00 0.00 0.00
q2 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.12 –0.17 1.00 0.86 0.00 0.00 0.00
p2 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.10 0.11 –0.26 0.86 1.00 0.00 0.00 0.00
C20 0.13 0.20 0.07 0.12 –0.20 0.82 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.91 0.02
C22 0.38 0.37 0.40 0.42 –0.23 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.91 1.00 –0.05
Q 0.45 0.18 –0.39 0.08 0.04 –0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 –0.05 1.00

Elliptical elements have been taken under the regularized form (a, L, k, h, q, p), where a denotes the semi-major axis, L denotes the mean longitude,
(k, h) are the real and imaginary component of z = e expiϖ and (q, p) are the real and imaginary component of ζ = sin I

2 expiΩ, where ϖ is the
longitude of the periapse, e is the excentricity and I is the inclination. Subscript 1 denotes the Phobos’ elements and subscript 2 denotes the
Deimos’ elements. The correlations higher than 0.8 are shown in boldface.

Table 5. Phobos secular acceleration ( 1
2

dn
dt ) deduced from Martian

moons ephemerides.

source secular acceleration
1
2

dn
dt

(10−5 deg/yr2)

Jacobson et al. (1989) 124.9 ± 1.8
Chapront-Touze (1990) 127.0 ± 0.8
Emelyanov et al. (1993) 129.0 ± 1.0
Bills et al. (2005) 136.7 ± 0.6
This work 127.0 ± 1.5

fitting MOLA observations is the most contrasting one. An ex-
planation could be that in the work of Bills et al. (2005), only
three terms arising in the expression of Phobos longitude were
fit, and only MOLA observations used. Table 6 gives the initial
state vectors at Julian epoch 2 445 053.5 computed as the initial
state in the model.

6. Signal processing and final representation

The usual way to derive an ephemeris from numerical integra-
tion of a Solar system body in practical form is to fit Chebychev
polynomials over the related numerical sampling. However,

the difference between Chebychev polynomials and an analyt-
ical series (developed by means of analytical integration) is the
size of the files involved. For slow objects like external satel-
lites of Giant planets, Chebychev representations are quite con-
venient, but become inconvenient for fast satellites like Phobos.
In order to avoid large volume files that may increase the com-
puting time, we decided to perform a spectral analysis instead
of fitting Chebychev polynomials. This will make our final
ephemerides file smaller in size and easier to provide via the in-
ternet. Moreover, this will simplify further comparison between
our ephemerides and the others, once each frequency is recog-
nized. Last but not least, the frequency representation is defined
far beyond the numerical integration time span.

The method and the software used for spectral analysis are
very similar to the software presented in Vienne & Duriez (1992)
and based on the method presented in Laskar et al. (1992). The
sampling step size was chosen after analyzing some small arcs
at a very high step size. It appeared that no short periods with
amplitudes higher than a few tens of meters were present for
less than 0.1 day for Phobos and 0.4 day for Deimos. This al-
lows use of a final step size of 0.05 and 0.2 day for Phobos
and Deimos, respectively. To improve the algorithm, Chebychev
polynomial (especially in the satellites longitude) were some-
times introduced.
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Table 6. Initial state vectors at the Julian epoch 2 445 053.5 (25/03/1982 TDB).

Satellite x y z
position of Phobos (AU) –5.275254348561059E-005 4.940685958944592E-006 3.208377735462846E-005
velocity of Phobos (AU/day) –3.419274688341861E-004 –1.145431373878196E-003 –3.624022104187871E-004
position of Deimos (AU) 5.339886204059241E-005 –1.211337469486434E-004 –8.411522628553895E-005
velocity of Deimos (AU/day) 6.576371605012466E-004 3.927174026111411E-004 –1.484537310476662E-004

Fig. 4. The internal precision of the ephemerides reflects the differences between the numerical integration and the frequency reconstruction for
Phobos (left panel) and Deimos (right panel).

Figure 4 shows the differences between our final frequency
representation and the initial sampled time series produced by
numerical integration. The differences reveal the internal preci-
sion of the final ephemerides, which is a few hundred meters
during the period 1990−2015. The frequency analysis may be
improved in the future when new spacecraft observations are
available.

7. Comparison with JPL and ESOC ephemerides

Finally, the ephemerides were compared with the JPL and
ESOC ephemerides. Both are available as SPICE kernels and
defined over the time span 1976−2025 and 2004−2006, respec-
tively. Figure 5 presents the related differences, which agree
with the results found by Bills et al. (2005), Bell et al. (2005),
and Oberst et al. (2006) using the MOLA, MER, and SRC in-
struments. In particular, JPL ephemerides are drifting compared
to the ephemerides presented here, while ESOC’s ephemerides
show a higher but periodic scattering and a shift of 9 km
and 15 km with respect to Phobos and Deimos. It shall be noted
that the ephemerides from the model of this paper agree with the
JPL ephemerides during the Viking and Phobos 2 era. This leads
to the conclusion that the spacecrafts residuals shown in Table 3
are mainly observational errors.

8. Consideration of non introduced perturbations

As explained in Sect. 1, the introduction of the Phobos’ C20
and C22 gravity field coefficients mainly induce some linear
drifts in the angular elements (Borderies & Yoder 1990). An
easy way to quantify them is to perform the difference between
a first simulation involving the C20 and C22 coefficients, and a
second simulation without them. This difference was performed
over 3 years, and is presented in Fig. 6. The initial conditions
and forces involved in the physical modeling are exactly the
same as the ones used in the last fit of the present ephemerides.
The Phobos’ C20 and C22 coefficients introduce a secular drift

of roughly 200 km over 3 years. A possible explanation for the
negative (and so unphysical) sign of C22 could be that a per-
turbation at the same order of magnitude has been neglected in
the present model. To verify such an eventuality, three pertur-
bations not introduced in the former force model were checked.
The differences between one simulation with and one simula-
tion without each perturbation tested are presented in Fig. 6. The
first perturbation tested is the influence of the temporal variation
of the Martian C20 coefficient. The numerical values for the ex-
presssion of the temporal signature were taken from Konopliv
et al. (2006). The simulations indicate that this perturbation in-
troduces some periodic terms with an amplitude of only a few
tens of meters. The second perturbation that has been tested is
the presence of the Solar tidal bulge raised on Mars. The main
related effect is a secular trend of 60 m over three years. The
last pertubation tested was the Martian nutation missing in the
present model. As the Martian nutation is unobserved so far,
the presumed nutation was taken from the numerical model
of the Martian rotation provided by Rambaux (priv. com.).
The numerical model called SONYR was applied to Mercury
(Rambaux & Bois 2004). The global effect of the nutation is a
secular trend of 300 m over 3 years on the Phobos’ longitude.

It appears that none of the three perturbations considered
in this section reaches the order of magnitude of the perturba-
tion associated with Phobos’ C20 and C22 coefficients. Although
some other perturbations have not been tested (Phobos’ libration,
radiation pressure, and Yarkovsky effect thought to be small), it
seems, however, more likely that the Martian gravity field used
or some of the spacecraft observations are biased. More impor-
tantly, it has been shown that Phobos’ oblateness gravity field
contributes at an observable level to the Martian moon dynamics
and could be, in principle, fit from astrometric observations.

9. Conclusion

New ephemerides of the Martian moons have been developed
on the basis of MEX, MGS, Phobos 2, Viking 1-2, Mariner 9,
and ground based observations. The recent observed differences
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Fig. 5. Comparison between the computed ephemerides and ephemerides from other sources. The graphs present the differences in distance
between the position of Phobos (left) and Deimos (right) using the model with respect to the JPL (top) model and the ESOC (bottom) model.

Fig. 6. Differences between one numerical simulation introducing the force modeling of reference in this paper and other simulations adding one
perturbation to be tested. The perturbations tested are the Phobos’ C20 and C22 coefficients (upper left panel), the temporal variation of the Martian
C20 coefficient (upper right panel), the Solar tidal bulge raised on Mars (lower left panel), and the Martian nutation (lower right panel).
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of up to ten kilometers between the prediction and the true
satellite locations observed by MGS and MEX do not appear
in this solution. Two different fitting methods were tested dur-
ing the adjustment of the model to the observations. The use
of elliptical elements during the fit process is by far more effi-
cient than fitting Cartesian coordinates (even introducing con-
straints). This is also the first completely numerical ephemerides
of Phobos and Deimos. The physical formulation of the tidal
effects of the Mars/moon systems has been successfully intro-
duced. The high Martian internal dissipation quantified at the
time of Phobos 2 mission is confirmed. This dissipation factor
is found to be Q = 79.91 ± 0.69, assuming k2 = 0.152 for
the Martian Love number and GmPh = 0.68 × 106 m3/s2 for
the Phobos mass. The uncertainties of the last two values con-
strain the determination of Q. Unexpectedly, there is suspicion
of a non-uniform density of Phobos. The solution for the Phobos
gravity field is indeed found to be C20 = −0.0719 ± 0.013 and
C22 = −0.0481 ± 0.002 and is different from a gravity field de-
rived by a shape model assuming uniform density. If the solu-
tion in the present paper is not completely satisfying, at least it
demonstrates the sensitivity of the Martian moon ephemerides
to Phobos’ gravity field.

The Mars Express mission has been extended for two more
years and will provide many more precise astrometric observa-
tions of the Martian satellites. The present model will be regu-
larly updated by introducing these new observations, as well as
new MOLA observations (Bills, personnal communication) in
the future.

The Phobos libration has not been included in the model so
far. It is a perturbation that will be introduced in further im-
provements. This will affect the previous determination of the
Phobos gravity coefficients somewhat and will further improve
the ephemerides residuals.

The accuracy of the computed ephemerides is expected to be
roughly one kilometer over the presented period. A FORTRAN
subroutine computing the Martian moons ephemerides is avail-
able on request.

While writing this paper, new JPL ephemerides have been
released (Jacobson & Rush 2006). A comparison done there
demonstrates a good agreement between our ephemerides and
the new JPL ones.
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LETTERS

Strong tidal dissipation in Io and Jupiter from
astrometric observations
Valéry Lainey1, Jean-Eudes Arlot1, Özgür Karatekin2 & Tim Van Hoolst2

Io is the volcanically most active body in the Solar System and has
a large surface heat flux1–3. The geological activity is thought to be
the result of tides raised by Jupiter4, but it is not known whether
the current tidal heat production is sufficiently high to generate
the observed surface heat flow5,6. Io’s tidal heat comes from the
orbital energy of the Io–Jupiter system (resulting in orbital accel-
eration), whereas dissipation of energy in Jupiter causes Io’s
orbital motion to decelerate. Here we report a determination of
the tidal dissipation in Io and Jupiter through its effect on the
orbital motions of the Galilean moons. Our results show that the
rate of internal energy dissipation in Io (k2/Q 5 0.015 6 0.003,
where k2 is the Love number and Q is the quality factor) is in
good agreement with the observed surface heat flow5,6, and suggest
that Io is close to thermal equilibrium. Dissipation in Jupiter
(k2/Q 5 (1.102 6 0.203) 3 1025) is close to the upper bound of
its average value expected from the long-term evolution of the
system7, and dissipation in extrasolar planets may be higher than
presently assumed8. The measured secular accelerations indicate
that Io is evolving inwards, towards Jupiter, and that the
three innermost Galilean moons (Io, Europa and Ganymede) are
evolving out of the exact Laplace resonance.

The orbital evolution of the Galilean system due to tidal dissipa-
tion can be determined from astrometrically observed positions of
the Galilean satellites over an extended period of time9,10 by using an
accurate model of the orbital motion. Most orbital models are based
on elaborate analytical methods and include the complex dynamics
induced by the interactions of the Galilean moons. In particular,
because the three innermost Galilean moons are in the Laplace res-
onance characterized by the relation

L1{3L2z2L3<p

where L1, L2 and L3 denote the mean longitudes of Io, Europa and
Ganymede, respectively, changes in orbital energy and angular momen-
tum are distributed between the three moons. Unfortunately, some
long-period terms are lacking in such models, which explains why
previous studies show large and widely different, even contradictory,
results (see Table 1 and Supplementary Information for details). Here
we use a method that numerically integrates the full equations of
motion (Supplementary Information) for the satellite centres of mass
instead of using an approximate analytical solution. Moreover, the tidal
effects are directly included in the orbital model through the appear-
ance of the Love number, k2, and the quality factor, Q, in the com-
bination k2/Q for Io and Jupiter. The orbital effects due to the
dissipation in the Galilean satellites other than Io are neglected, but
we take into account the tidal bulges raised by each moon on Jupiter
using a constant Jupiter quality factor (Supplementary Information).

An extensive set of astrometric observations starting in 1891 and
ending in 2007 has been considered in the fitting process. A long,

detailed set of observations such as this is necessary to reveal the long-
term effects of dissipation on the orbits. We use a weighted least-
squares inversion procedure and minimize the differences between
the observed and computed positions of the satellites to determine
the parameters of the model, in particular the respective dissipation
ratios, k2/Q, of Io and Jupiter. Our solution for the tidal dissipation
yields k2/Q 5 0.015 6 0.003 (formal error bar, 1s) for Io and
k2/Q 5 (1.102 6 0.203) 3 1025 for Jupiter. The Io–Jupiter inter-
action dominates the orbital evolution and is responsible for a large
correlation coefficient of 0.983 between the dissipation ratios of Io
and Jupiter. The almost 2% difference with respect to unity is due to
the evolution of the Laplace resonance and is sufficient to separate the
dissipation in Io from that in Jupiter (see Supplementary
Information for a complete analysis of this correlation).

The dissipation values correspond to orbital acceleration values,
_nn /n (a dot denoting differentiation with respect to time), of
(0.14 6 0.01) 3 10210 yr21, 2(0.43 6 0.10) 3 10210 yr21 and
2(1.57 6 0.27) 3 10210 yr21 (formal error bars, 1s) for Io, Europa
and Ganymede, respectively. These accelerations represent a shift in
the satellite orbital positions of respectively 55 km, 2125 km and
2365 km over the 116 years considered. Surprisingly, the most
external moon Ganymede shows the largest drift, as a consequence
of the Laplace resonance. The 1s post-fit astrometric residuals range
essentially between 0.02 and 0.15 arcsec (Fig. 1, Supplementary Table
2 and Supplementary Table 3), which corresponds to 60 to 450 km at
the distance of Jupiter. Owing to the long time span considered, such
accuracy is enough to allow the tidal accelerations to be discerned
from the observations.

1IMCCE-Observatoire de Paris, UMR 8028 du CNRS, 77 Avenue Denfert-Rochereau, 75014 Paris, France. 2Royal Observatory of Belgium, Avenue Circulaire 3, Uccle, 1180 Bruxelles,
Belgium.

Table 1 | A selection of secular mean-motion accelerations published for
the three inner Galilean moons

Ref. Secular mean-motion acceleration (n
.

/n) (10210 yr21)

Io Europa Ganymede

9 13.3 6 0.5 12.7 6 0.7 11.5 6 0.6
10 20.074 6 0.087 20.082 6 0.097 20.098 6 0.153
24 14.54 6 0.95 15.6 6 5.7 12.8 6 2.0
25 12.27 6 0.70 20.67 6 0.80 11.06 6 1.00
26 13.6 6 1.0 — —
This paper 10.14 6 0.01 20.43 6 0.10 21.57 6 0.27

Refs 9, 24 used a simple orbital model, whereas refs 10, 25, 26 used the much more accurate
Sampson–Lieske theory. Nevertheless, this orbital model has internal errors on the order of a
few hundred kilometres (Supplementary Information), explaining the lack of agreement
between all acceleration values. In particular, most of the tidal acceleration values found (see
also Supplementary Table 1) are quite large except for those of ref. 10, in which data from over a
very long time span (old eclipses) were used, partly averaging the missing long-period terms.
Because our dynamical model fits the k2/Q ratios, our solution uncertainties in _nn have been
derived for each satellite from the comparison of the two simulations that produced the
minimum and maximum values of k2/Q, respectively. As the k2/Q ratios of Io and Jupiter are
highly correlated, we could assume the minimum bound for Io’s ratio when introducing the
minimum bound of Jupiter’s ratio, and vice versa.
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The global energy dissipation, _EE, in Io can be determined from
k2/Q 5 0.015 6 0.003 using11

_EE~{
21

2

k2

Q

n5R5

G
e2

where R is the radius of Io, G the gravitational constant and e the
orbital eccentricity. We obtain _EE 5 (9.33 6 1.87) 3 1013 W. If energy
were transported out of Io at the same rate, the associated surface heat
flux would be 2.24 6 0.45 W m22, which is similar to the observed
surface heat flux (Fig. 2). This suggests that Io’s interior is close to
thermal equilibrium and that Io’s internal heat is not the remnant of a
past highly dissipative orbital configuration12–15.

Theoretical studies have not been able to reproduce in a consistent
equilibrium model both the tidal energy dissipation and the trans-
port of this internally generated energy to the surface by mantle
convection at the observed high surface heat flux15,16. It has been
argued that mantle viscosities cannot be chosen to satisfy both

constraints: viscosities needed to generate the observed tidal dissipa-
tion (on the order of 1013–1016 Pa s; ref. 11) are too high to transport
the produced heat to the surface by convection16. If Io is in thermal
equilibrium as suggested here, a more efficient heat transport mech-
anism with a different viscosity dependence on temperature is
required. The magma migration in Io’s partially molten interior
indicated by high eruption temperatures (larger than 1,300 K)17 is a
possible mechanism18.

Plausible ranges for the quality factor of Io can be studied from the
measured ratios k2/Q by using limit values of the Love number. An
upper limit of Q 5 82 is found by considering Io as a body without
strength, that is, by replacing the tidal Love number (k2) by the fluid
Love number, k2

f 5 1.23 (ref. 19). A much smaller quality factor is
obtained for more realistic models in which Io is composed of a
metallic core, a viscoelastic silicate mantle and an elastic lithosphere,
depending on the viscosity and shear modulus of the mantle11. A
typical model with a core radius of 700 km, a core density of
6,944 kg m23, a mantle density of 3,375 kg m23 and a 40-km-thick
lithosphere with a density of 2,600 kg m23, in agreement with the
observations made by NASA’s Galileo spacecraft19, yields k2 < 0.04
and Q < 3 for a mantle rigidity of 50 GPa and viscosity of
4.1 3 1015 Pa s. However, if a low-viscosity asthenosphere exists in
Io, the tidal Love number would increase to 0.7–0.8, resulting in a
larger quality factor, of ,50.

The dissipation in Jupiter (at the induced frequency of Io’s tidal
excitation) is determined to be Q 5 (3.56 6 0.66) 3 104 for the con-
ventional value k2 5 0.379 (ref. 20). This dissipation value is close to
the lower limit over the age of the Solar System, Q $ 6 3 104, deter-
mined from the expansion of the orbits7, implying important dis-
sipation in Jupiter. Estimates from numerical dissipation models of
Jupiter suggest that Q undergoes large fluctuations as a function of
tidal frequency21,22 and that the observed dissipation may be different
from its long-term average (Supplementary Information).

Our results show that the mean motion of Io increases whereas
those of Europa and Ganymede decrease. Therefore, Io moves
inwards, towards Jupiter, and loses more orbital energy by dissipa-
tion of solid-body tides raised by Jupiter and by the Laplace res-
onance interaction than it gains from the exchange of angular
momentum with Jupiter’s rotational energy through tidal dissipation
in Jupiter. The evolution of the Laplace resonance can be expressed in
terms of the rate of change of the satellite mean motions, _nn1, _nn2 and
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Figure 1 | Astrometric residuals. Residuals between the astrometric
observations and our numerical model, after fitting the initial state vectors of
each moon and the k2/Q ratios of Jupiter and Io. We used an extensive set of
astrometric observations that started in 1891, with heliometer
measurements and the first photographic plates, and continued until 2007,
with the most recent observations from the FASTT survey27. b, Observations
of the mutual events (occultation or eclipse of one satellite by another
occurring every six years) from 1973 to 2003 (Supplementary Information;
boxed region in a). The global 1s accuracy is better than 0.1 arcsec
(Supplementary Tables 2 and 3) at the Jovian distance (1 arcsec corresponds
to about 3,000 km). The observations of mutual events, known to be among
the most accurate observations, have a 1s accuracy of about 0.025 arcsec and
provide the best constraint of the satellite orbits for the past decades.
Moreover, instead of considering the position of each satellite as given on the
celestial sphere (that is, in arcseconds), we have considered only the relative
positions of the observed satellites in the fitting process. For example, for the
declination coordinate di we did not fit di

observed{di
computed but instead the

quantity [(di/d9)observed 2 (di/d9)computed]d9computed, where d9 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j~1
d2

j

r

and N is the number of Galilean moons present in an observation. This
allowed us to remove systematic errors in the scale factor introduced by the
observers during the astrometric calibration of their observations.
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Figure 2 | Comparison of Io’s thermal emission with the global dissipation
determined in the present study. Io’s intensive volcanic activity is
associated with a large surface heat flow. The value determined by the
present study (2.24 6 0.45 W m22, shown by the horizontal lines) is in good
agreement with the results of the remote observations1–3,5,28–32 of Io’s thermal
emission (the stated error bars mostly indicate ranges for the solutions
rather than the standard deviations), suggesting that Io is close to thermal
equilibrium. The average surface heat flow of Io is much larger than that of
the Earth33 (0.09 W m22) and could be comparable to the high surface heat
flow of the early Earth.
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_nn3, where the subscripts correspond to Io, Europa and Ganymede,
respectively7,13,23. We have

_uu~ _nn1{2 _nn2~ _nn2{2 _nn3

The system is in stable equilibrium for _uu 5 0, which requires a balance
between the dissipation rates in Jupiter and Io. With our rates of change
of the mean motions, we have _uu 5 (0.74 6 0.24) 3 1027 rad yr22,
suggesting that the satellites are evolving away from exact resonance.
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4 Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette, France
5 Sternberg Astronomical Institute, 13 Universitetskij Prospect, 119992 Moscow, Russia

6 SyRTE-Observatoire de Paris, UMR 8630 du CNRS, 77 Av. Denfert-Rochereau, 75014 Paris, France
7 LUTH-Observatoire de Paris, UMR 8102 du CNRS, 5 place Jules Janssen, 92195 Meudon Cedex, France
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ABSTRACT

Tidal interactions between Saturn and its satellites play a crucial role in both the orbital migration of the satellites
and the heating of their interiors. Therefore, constraining the tidal dissipation of Saturn (here the ratio k2/Q) opens
the door to the past evolution of the whole system. If Saturn’s tidal ratio can be determined at different frequencies,
it may also be possible to constrain the giant planet’s interior structure, which is still uncertain. Here, we try to
determine Saturn’s tidal ratio through its current effect on the orbits of the main moons, using astrometric data
spanning more than a century. We find an intense tidal dissipation (k2/Q = (2.3 ± 0.7) × 10−4), which is about 10
times higher than the usual value estimated from theoretical arguments. As a consequence, eccentricity equilibrium
for Enceladus can now account for the huge heat emitted from Enceladus’ south pole. Moreover, the measured
k2/Q is found to be poorly sensitive to the tidal frequency, on the short frequency interval considered. This suggests
that Saturn’s dissipation may not be controlled by turbulent friction in the fluid envelope as commonly believed. If
correct, the large tidal expansion of the moon orbits due to this strong Saturnian dissipation would be inconsistent
with the moon formations 4.5 Byr ago above the synchronous orbit in the Saturnian subnebulae. But it would
be compatible with a new model of satellite formation in which the Saturnian satellites formed possibly over a
longer timescale at the outer edge of the main rings. In an attempt to take into account possible significant torques
exerted by the rings on Mimas, we fitted a constant rate da/dt on Mimas’ semi-major axis as well. We obtained
an unexpected large acceleration related to a negative value of da/dt = −(15.7 ± 4.4) × 10−15 AU day−1. Such
acceleration is about an order of magnitude larger than the tidal deceleration rates observed for the other moons.
If not coming from an astrometric artifact associated with the proximity of Saturn’s halo, such orbital decay may
have significant implications on the Saturn’s rings.

Key words: astrometry – celestial mechanics – ephemerides – Planets and satellites: dynamical evolution and
stability – Planets and satellites: interiors

Online-only material: color figures

1. INTRODUCTION

Starting with Huygens’ observation of Titan in 1655, a lit-
tle less than two centuries were needed to discover the so-
called main moons of Saturn (defined by increasing distance
to the primary, Mimas, Enceladus, Tethys, Dione, Rhea, Titan,
Hyperion, and Iapetus). In common with the Galilean moons,
astrometry of the Saturn satellites (consisting of measuring the
moon positions in the sky) started in the middle of the 17th
century, with the observations of eclipses by the primary. One
has to wait until the end of the 19th century and the manufac-
turing of photographic plates, as well as large micrometer and
heliometer instruments, for the gathering of reasonably accu-
rate observations (Desmars et al. 2009b). Although previously
used to probe the gravity fields of the system, astrometry has
been replaced advantageously by radio-science data, since the
spacecraft era. Nevertheless, the large time span covered by as-
trometric observations and number of observation sets available
can still compensate for any possible lack of precision when
one focuses on long-term dynamical effects, as, for example, in

the case of Mars (Lainey et al. 2007) and Jupiter (Lainey et al.
2009).

In Section 2, we present the observation set used in this study.
Section 3 details the numerical model of the Saturnian satellite
orbits that has been used to determine Saturn’s tidal dissipation.
In Sections 4 and 5, we present the fit of the orbit model to
astrometric observations and demonstrate its robustness. The
last section discusses possible interior models of Saturn and
Enceladus in the light of our results.

2. THE OBSERVATION SET

To determine long-term effects in the mean motions of the
satellites accurately, a set of astrometric observations covering a
long time span is necessary. In this context, an extensive catalog
of astrometric observations has been compiled. This catalog
provides about 19,617 observations (counting one date as one
observation even for several satellites observed simultaneously)
and covers the period from 1886 to 2009. All observations are
available in the NSDB natural satellites astrometric database
(Arlot & Emelyanov 2009).
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The main source of the catalog is COSS08 (Desmars et al.
2009b), yielding about 130,000 data (counting one coordinate
of one satellite as one datum) from 1874 to 2007. For our set
of data, only the “accurate” observations have been selected.
To define “accurate” observations, we have first excluded those
with a residual larger than 2 arcsec and then computed the rms
of the residuals for all the observations corresponding to each
bibliographic reference. Finally, for the purposes of the present
paper, if the rms was larger than 0.3 arcsec for observations
before 1950 and 0.25 arcsec for observations after 1950, the
entire set issued from that particular bibliographic reference
has been excluded. As a consequence, about 93% of COSS08
observations have been selected starting from 1886 until 2007.

Since 2007, other observations have become available. The
USNO Flagstaff transit circle data, already included in COSS08,
have been updated until 2009. Observations from Peng et al.
(2008) have also been added. Moreover, the highly accurate
astrometric observations provided by the observation of the
mutual phenomena of Saturnian satellites during 1995 and 2009
have been added.

Finally, the extensive catalog contains about 19,000 observa-
tions made from 1886 to 2009.

Direct astrometric observations can be performed in several
different ways: transit observations, photographic plates, and
CCD imaging. They are reduced from the known position of
reference stars visible in the field of view during the observation.
Because of their small field of view, the CCD frames and some
long focus photographic plates do not often allow the use of
reference stars. To deal with such data, the authors generally
use the position of specific well-known satellites (usually Titan,
Rhea, Dione, and Tethys because of their accurate ephemerides)
computed with a specific theory as a reference in order to deduce
the astrometric positions of the other satellites. A drawback of
this is that these observations may be biased by any limiting
assumptions in the adopted theory. To deal with this problem,
we preferred to consider only relative separation and position
angle between the satellites using pixel positions. This method
provides astrometric observations that do not depend on the
theory. It has been applied for CCD observations when stars
were not used in the astrometric reduction. The influence of
such a bias is tested in Section 5.3.

Photometric observations of mutual occultations and eclipses
of the Saturnian satellites provide very accurate astrometric rel-
ative positions of the satellites. These observations are possible
during the Saturnian equinox, since the Sun and the Earth are
then in the equatorial plane of Saturn, which is also the common
orbital plane of the satellites. Campaigns of observations of such
mutual occultations and eclipses were made in 1995 and 2009.
We undertook the processing of the complete database of these
photometric observations published by Thuillot et al. (2001).
An accurate photometric model of mutual events using the scat-
tering properties of the satellite surfaces (Buratti 1984) issued
from Voyager data was used. A large analysis of the properties
of Saturnian icy satellites is done in Pitman et al. (2010) using
the observations of these bodies provided by the Cassini probe.
Phase curves are given in the V and R bands for solar phase an-
gles in the vaste range up to 180◦ (but only for Rhea and Dione).
Unfortunately, because of this wide range of phase angles, we
could not rely on Pitman et al. (2010) for the satellite albedo in
the range of 1◦–6◦ and therefore did not use their data.

In order to extract astrometric positions from photometric
data, we developed an original method (Emelyanov & Gilbert
2006). We have processed the 46 light curves obtained during

the international campaign of photometric observations of the
Saturnian satellites in 1995 and the 17 light curves obtained dur-
ing the international campaign in 2009. From these photometric
observations 46 topocentric or heliocentric angular differences
in right ascension and declination for satellite pairs on the time
interval from 1995 December 16 to 1996 February 6 and 17
topocentric or heliocentric angular differences on the time in-
terval from 2008 December 19 to 2009 July 7 were obtained.
The errors due to random errors of photometry are from 1 to
15 mas in right ascension and declination and characterize the
internal accuracy of the astrometric results. Nevertheless, due to
the rather small number of observed events compared to other
observation sets, the contribution of mutual events has turned
out to be modest. This contrasts with the Jovian case (Lainey
et al. 2009).

3. THE DYNAMICAL MODEL

The NOE (Numerical Orbit and Ephemerides) numerical
code (Lainey et al. 2007, 2009; Lainey 2008) has been used
to model the orbital motion of the Saturnian satellites. It is
a gravitational N-body code that incorporates highly sensitive
modeling and can generate partial derivatives needed to fit initial
positions, velocities, and other parameters (like the ratio k2/Q)
to the observational data. The code includes (1) gravitational
interaction up to degree two in the spherical harmonic expansion
of the gravitational potential for the satellites and up to degree
six for Saturn with the numerical values from Jacobson et al.
(2006), (2) perturbations due to the Sun and Jupiter using
DE406 ephemerides (with the inner planets and the Moon
included by incorporating their masses in the solar value), (3)
Saturnian precession from Jacobson (2007), and (4) tidal effects
introduced by means of the Love number k2 and the quality
factor Q in the combination k2/Q for Saturn and Enceladus. The
orbital effects due to the dissipation inside Saturnian satellites
other than Enceladus are neglected, since they are expected to
be much less dissipative, less eccentric, or much farther away
from Saturn. Nevertheless, the tidal bulges raised by each moon
on Saturn are taken into account.

The dynamical equations are numerically integrated in a
Saturn-centric frame with inertial axes (conveniently the Earth
mean equator J2000). The equation of motion for a satellite Pi
can be expressed in a general form as

r̈ i = −G(m0 + mi)
(

r i

r3
i

− ∇iUī0̂ + ∇0U0̄î

)
+
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(1)

Here, r i and rj are the position vectors of the satellite Pi and
a body Pj (another satellite, the Sun, or Jupiter) with mass mj,
subscript 0 denotes Saturn, Uk̄l̂ is the oblateness gravity field of
body Pl at the position of body Pk, and FT

l̄k̂
is the force received

by Pl from the tides it raises on Pk . This force is equal to (Lainey
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Table 1
Statistics of the Astrometric Residuals Computed from Our Model (Enceladus Tidal Equilibrium Solution) in Arcsecond

Observation subset να cos(δ) σα cos(δ) νδ σδ Nα, Nδ

All observations
S1 −0.0057 0.0952 −0.0108 0.0725 371, 371
S2 0.0019 0.1040 0.0028 0.1101 822, 822
S3 −0.0199 0.1267 0.0122 0.1067 1972, 1972
S4 0.0020 0.1066 0.0113 0.1067 2271, 2271
S5 0.0047 0.0899 −0.0023 0.0863 2977, 2977
S6 0.0121 0.1060 −0.0171 0.1070 3271, 3271
S7 0.1098 0.2984 0.0036 0.2166 973, 973
S8 0.0140 0.1143 −0.0052 0.1155 2008, 2008

Alden & O’Connel (1928)
S2 0.0193 0.0890 0.0394 0.0816 40, 40
S3 0.0267 0.0653 0.0066 0.0569 65, 65
S4 0.0218 0.0493 0.0119 0.0467 64, 64
S5 0.0007 0.0563 0.0204 0.0528 64, 64
S6 −0.0442 0.0681 −0.0076 0.0566 64, 64
S8 −0.0190 0.1538 −0.0609 0.1337 59, 59

Alden (1929)
S2 0.0258 0.0819 0.0228 0.0794 34, 34
S3 0.0031 0.0420 0.0127 0.0526 38, 38
S4 0.0097 0.0349 0.0359 0.0352 34, 34
S5 −0.0233 0.0520 0.0306 0.0364 36, 36
S6 −0.0267 0.0516 −0.0132 0.0508 36, 36
S8 0.0135 0.0727 −0.0887 0.1006 35, 35

Sinclair (1974, 1977) 13s
S3 0.0279 0.1090 −0.0107 0.1446 20, 20
S4 0.0317 0.1551 0.0350 0.1528 25, 25
S5 0.0040 0.1099 −0.0330 0.0952 25, 25
S6 −0.1788 0.1799 0.0310 0.0819 25, 25
S8 0.1258 0.1603 −0.0254 0.1186 24, 24

Sinclair (1974, 1977) 26s
S3 0.0005 0.1069 0.0124 0.1011 40, 40
S4 0.0044 0.0592 0.0098 0.0626 46, 46
S5 0.0054 0.0698 −0.0122 0.0805 48, 48
S6 −0.0002 0.0823 −0.0079 0.0555 48, 48
S8 −0.0099 0.0563 0.0004 0.0821 48, 48

Abbot et al. (1975) PDS
S1 −0.1707 0.0000 −0.0859 0.0000 1, 1
S2 −0.0472 0.0901 0.1828 0.1098 4, 4
S3 −0.0068 0.1408 0.1060 0.1260 10, 10
S4 −0.0476 0.1199 0.0084 0.0622 10, 10
S5 0.0344 0.0347 0.0109 0.0371 10, 10
S6 −0.0693 0.0702 −0.0587 0.0241 11, 11
S7 −0.2607 0.1166 0.3553 0.0757 6, 6
S8 0.0138 0.0739 0.0475 0.0274 10, 10

Abbot et al. (1975) Mann
S1 0.0692 0.0000 −0.1231 0.0000 1, 1
S2 −0.1171 0.0981 0.3500 0.2047 5, 5
S3 0.0028 0.0888 0.0298 0.1325 11, 11
S4 −0.0321 0.1280 0.0584 0.1849 11, 11
S5 0.0393 0.0448 0.0136 0.0761 11, 11
S6 −0.0960 0.1324 −0.0234 0.0385 11, 11
S7 −0.2767 0.0599 0.4871 0.0485 6, 6
S8 0.0325 0.0941 0.0465 0.0559 11, 11

Voronenko et al. (1991)
S3 0.0172 0.2064 −0.0056 0.1350 85, 85
S4 −0.0324 0.1675 0.0066 0.1712 96, 96
S5 −0.0034 0.1455 0.0214 0.0976 143, 143
S6 0.0179 0.1319 −0.0196 0.1084 153, 153
S8 0.0154 0.1679 −0.0263 0.1085 19, 19

D. Pascu (1982, private communication)
S1 −0.0105 0.1620 −0.0393 0.1155 56, 56
S2 0.0041 0.0953 −0.0228 0.1208 107, 107
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Table 1
(Continued)

Observation subset να cos(δ) σα cos(δ) νδ σδ Nα, Nδ

S3 0.0148 0.0644 −0.0104 0.0775 138, 138
S4 −0.0001 0.0505 −0.0064 0.0608 165, 165
S5 0.0115 0.0502 −0.0041 0.0602 209, 209
S6 −0.0010 0.0529 0.0153 0.0644 228, 228
S7 0.0761 0.2466 −0.0564 0.1824 11, 11
S8 −0.0191 0.0886 0.0211 0.1071 213, 213

Tolbin (1991a)
S1 −0.0297 0.1602 −0.0414 0.1813 21, 21
S2 0.0059 0.0884 0.0090 0.1327 57, 57
S3 0.0004 0.0697 −0.0180 0.0834 75, 75
S4 0.0127 0.0551 −0.0073 0.0856 81, 81
S5 0.0016 0.0526 0.0047 0.0684 88, 88
S6 0.0033 0.0758 −0.0022 0.0968 89, 89
S8 −0.0194 0.1521 0.0336 0.1261 62, 62

Tolbin (1991b)
S1 0.0292 0.1520 0.0194 0.1375 7, 7
S2 −0.0120 0.1237 0.0266 0.1293 50, 50
S3 0.0003 0.0596 −0.0037 0.0767 89, 89
S4 0.0121 0.0587 −0.0006 0.0706 96, 96
S5 0.0012 0.0617 −0.0041 0.0817 102, 102
S6 0.0067 0.0674 −0.0354 0.1222 107, 107
S8 −0.0189 0.0740 0.0309 0.1920 80, 80

Seitzer & Ianna (1980)
S3 −0.0879 0.0096 0.0504 0.0297 3, 3
S4 −0.0332 0.0198 −0.0141 0.0109 3, 3
S5 0.0654 0.0629 −0.1057 0.0739 10, 10
S6 0.0454 0.0849 −0.0381 0.0600 17, 17
S8 −0.0515 0.1236 0.0060 0.1843 24, 24

Taylor & Sinclair (1985)
S2 0.0604 0.1549 0.0443 0.0569 10, 10
S3 0.0710 0.1993 0.0589 0.0852 20, 20
S4 −0.0485 0.1979 0.0097 0.1309 35, 35
S5 0.0250 0.1227 −0.0005 0.1180 38, 38
S6 −0.0078 0.0973 −0.0696 0.1138 45, 45
S7 0.2277 0.5327 0.0817 0.5884 38, 38
S8 −0.0152 0.1239 0.0405 0.1432 45, 45

Seitzer et al. (1979)
S1 −0.1067 0.1613 −0.0564 0.0106 2, 2
S3 0.0055 0.0678 −0.0073 0.0849 49, 49
S4 0.0539 0.2094 −0.1229 0.1929 41, 41
S5 0.0082 0.0652 −0.0387 0.0756 49, 49
S6 0.0829 0.1042 −0.0467 0.1039 50, 50
S7 −0.3379 0.1333 0.0453 0.1124 4, 4
S8 −0.0430 0.0971 0.1102 0.1839 60, 60

Dourneau et al. (1986)
S1 0.0686 0.2278 −0.0274 0.1042 11, 11
S2 0.0146 0.1244 −0.0151 0.0593 39, 39
S3 0.0249 0.0786 −0.0285 0.0488 39, 39
S4 −0.0259 0.0691 −0.0260 0.0570 56, 56
S5 0.0045 0.0644 −0.0097 0.0478 76, 76
S6 0.0101 0.0684 0.0549 0.0426 82, 82
S7 0.7665 0.1130 0.0276 0.0832 95, 95
S8 −0.0126 0.1165 −0.0019 0.0698 95, 95

Veillet & Dourneau (1992) 3.6
S3 0.0037 0.0858 −0.0083 0.1542 20, 20
S4 0.0630 0.1749 −0.0281 0.1058 25, 25
S5 0.0651 0.0404 −0.0392 0.0561 14, 14
S6 −0.0164 0.1288 −0.1052 0.0773 17, 17
S7 0.1865 0.3238 −0.0286 0.0985 25, 25
S8 −0.0763 0.1239 0.1069 0.0649 30, 30

Veillet & Dourneau (1992) 1.5
S1 −0.1346 0.1196 −0.0500 0.0749 10, 10
S2 −0.0014 0.1013 −0.0223 0.0880 57, 57
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Table 1
(Continued)

Observation subset να cos(δ) σα cos(δ) νδ σδ Nα, Nδ

S3 −0.0083 0.1103 0.0007 0.0807 78, 78
S4 0.0112 0.0689 −0.0032 0.0674 155, 155
S5 0.0028 0.0542 −0.0019 0.0495 195, 195
S6 −0.0015 0.0671 0.0167 0.0479 197, 197
S7 0.0006 0.1234 0.0118 0.0916 197, 197
S8 0.0004 0.0874 −0.0037 0.0976 196, 196

Kiseleva et al. (1996)
S2 −0.0420 0.0940 0.0219 0.1574 10, 10
S3 −0.0168 0.0868 0.0413 0.1150 11, 11
S4 −0.0057 0.0507 −0.0251 0.0566 25, 25
S5 −0.0211 0.0623 −0.0188 0.0792 25, 25
S6 −0.0036 0.0592 −0.0081 0.0834 32, 32
S8 0.0662 0.0902 0.0325 0.1311 21, 21

Vass (1997)
S2 0.0025 0.1647 −0.0132 0.1532 151, 151
S3 −0.0704 0.1494 0.0319 0.1246 654, 654
S4 −0.0039 0.1388 0.0480 0.1269 600, 600
S5 0.0061 0.1237 −0.0059 0.1135 948, 948
S6 0.0083 0.1163 −0.0203 0.1193 1287, 1287
S7 −0.0477 0.1564 0.0478 0.2366 94, 94
S8 0.1306 0.1505 −0.0654 0.1037 243, 243

Kiseleva & Kalinitchenko (2000)
S1 −0.1235 0.0434 0.0449 0.0373 3, 3
S2 −0.0387 0.0923 0.0023 0.0716 10, 10
S3 −0.0165 0.0654 0.0182 0.0748 22, 22
S4 0.0239 0.0527 −0.0236 0.0686 23, 23
S5 0.0039 0.0532 0.0138 0.0594 27, 27
S6 0.0100 0.0564 0.0069 0.0768 27, 27
S8 0.0139 0.1079 −0.0410 0.1718 14, 14

Kiseleva & Kalinitchenko (1998)
S2 −0.0768 0.1335 0.2952 0.1175 3, 3
S3 −0.0178 0.0415 −0.0342 0.1405 7, 7
S4 0.0509 0.0714 −0.0259 0.1535 4, 4
S5 −0.0124 0.0384 −0.0070 0.0762 10, 10
S6 0.0386 0.0718 −0.0818 0.2194 12, 12
S8 0.0117 0.0000 −0.0871 0.0000 1, 1

French et al. (2006) HST-WF4
S1 −0.0002 0.0111 −0.0093 0.0104 39, 39
S2 0.0025 0.0132 0.0005 0.0157 53, 53
S3 0.0039 0.0167 0.0057 0.0160 63, 63
S4 0.0027 0.0196 0.0054 0.0269 33, 33
S5 −0.0011 0.0152 0.0014 0.0199 39, 39
S6 −0.0273 0.0401 −0.0107 0.0328 23, 23
S7 0.0856 0.0074 0.0009 0.0040 4, 4

French et al. (2006) HST-PC
S1 0.0022 0.0076 0.0004 0.0098 154, 154
S2 −0.0027 0.0056 −0.0001 0.0087 82, 82
S3 0.0056 0.0124 0.0031 0.0077 24, 24
S4 −0.0112 0.0024 −0.0122 0.0013 5, 5
S5 0.0083 0.0060 0.0049 0.0081 10, 10

French et al. (2006) HST-WF3
S1 0.0037 0.0079 −0.0030 0.0173 25, 25
S2 −0.0034 0.0117 −0.0026 0.0130 51, 51
S3 0.0011 0.0086 0.0007 0.0142 55, 55
S4 0.0024 0.0187 −0.0087 0.0193 99, 99
S5 −0.0022 0.0166 0.0012 0.0291 70, 70
S7 −0.0119 0.0095 −0.0148 0.0301 13, 13

French et al. (2006) HST-WF2
S1 0.0022 0.0119 0.0034 0.0135 34, 34
S2 −0.0020 0.0160 0.0119 0.0111 35, 35
S3 0.0042 0.0111 −0.0073 0.0206 33, 33
S4 0.0089 0.0199 0.0074 0.0281 87, 87
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Table 1
(Continued)

Observation subset να cos(δ) σα cos(δ) νδ σδ Nα, Nδ

S5 −0.0127 0.0140 −0.0105 0.0223 35, 35
S7 0.0030 0.0509 0.0234 0.0189 30, 30

USNO Flagstaff a

S3 −0.0034 0.1461 0.0164 0.1315 251, 251
S4 0.0059 0.0912 0.0089 0.1031 398, 398
S5 0.0040 0.0585 0.0008 0.0721 651, 651
S6 0.0458 0.1052 −0.0335 0.1124 682, 682
S7 0.0635 0.1851 −0.0299 0.2159 450, 450
S8 0.0094 0.0752 −0.0144 0.0801 705, 705

Kiseleva (unpublished)
S1 −0.0225 0.0601 0.0618 0.0327 3, 3
S2 0.0428 0.0790 0.0009 0.0523 10, 10
S3 0.0061 0.0896 −0.0300 0.1058 19, 19
S4 −0.0152 0.0794 −0.0495 0.1321 20, 20
S5 0.0107 0.0581 −0.0109 0.0700 21, 21
S6 −0.0208 0.0822 −0.0323 0.0945 25, 25
S8 0.0093 0.0903 0.1847 0.1637 13, 13

PHESAT
S1 −0.0653 0.0649 −0.0073 0.0099 4, 4
S2 0.0009 0.0203 0.0046 0.0103 14, 14
S3 −0.0021 0.0152 0.0027 0.0180 53, 53
S4 0.0002 0.0281 0.0024 0.0180 34, 34
S5 0.0072 0.0179 −0.0005 0.0289 23, 23
S6 0.0010 0.0018 0.0100 0.0272 3, 3

Notes. µ and σ denote, respectively, the mean and standard deviation of the residuals computed in right ascension α.cos(δ)
and declination δ. Nα and Nδ are the number of observations considered for the respective coordinate. We recall that
0.1 s of arc corresponds to about 600 km at the Saturn distance.
a http://www.nofs.navy.mil/data/plansat.html

et al. 2007)

FT

l̄k̂
= −3k2Gm2

l R
5∆t

r8
kl

(
2rkl(rkl · vkl)

r2
kl

+ (rkl × ! + vkl)
)

,

(2)

where rkl = rk − r l and vkl = d rkl/dt , with !, R, and
∆t being the instantaneous rotation vector, equatorial radius,
and time potential lag of Pk, respectively. The usual tidal term
independent of Q (and so only dependent on k2) that arises in
the tidal potential development has been neglected here. This is
justified for two reasons: it is pretty small (a typical drift of a few
tens of km in longitude after 100 years), and most importantly,
since it provides only secular drift (but not secular acceleration)
on longitudes, it can easily be absorbed in a tiny change of the
initial conditions without any significant consequences. While
it was considered only for completeness in Lainey et al. (2009),
it has been neglected here.

The time lag ∆t is defined by (Lainey et al. 2007)

∆t = T arctan(1/Q)/2π, (3)

where T is the period of the main tidal excitation. For the tides
raised on Enceladus, T is equal to 2π/n (n being Enceladus’
mean motion) as we only considered the tide raised by Saturn.
For Saturn’s tidal dissipation, T is equal to 2π/2(Ω−ni), where
Ω is the spin frequency of Saturn and ni is the mean motion
of the tide raising Saturnian moon Pi. ∆t depends on the tidal
frequency and on Q; therefore, it is not a constant parameter.

It is clear from the second term on the right-hand side of
Equations (2) and (3) that k2 and Q are completely correlated.

In practice, we considered the commonly used value k2 = 0.341
(Gavrilov & Zharkov 1977) and fitted only Q.

Because of a 2:1 resonance located at the outer edge of the
B-ring, Saturn’s rings are expected to interact significantly with
Mimas (Lissauer & Cuzzi 1982). However the magnitude of
this effect is unknown, because of large uncertainties about the
ring structures and surface densities. To take into account such
an interaction, we had to introduce a supplementary force in
the system modeling a constant rate da/dt on Mimas’ semi-
major axis (denoted by a) and considered as an additional free
parameter in the model. As a consequence, no information
on tidal dissipation inside Saturn may be obtained directly
from Mimas’ orbital motion, since the latter is mixed with the
estimation of the ring dynamical effects. Moreover, because of
the Mimas–Tethys resonant interaction, such a da/dt rate should
not be compared with a possible observed kinematic rate. To
introduce a da/dt constant term as a supplementary force in
the model, we used the Gauss equations. We recall that this
differential system provides the variation of Keplerian elements
as a function of disturbing forces expressed in the local base.
Introducing a constant variation in the semi-major axis (and
no variations in the other Keplerian elements), this system can
easily be inverted to provide the proper expression of the force.

For an unspecified parameter cl of the model that shall be
fitted (e.g., r(t0), d r/dt(t0), Q, . . .), a useful relation is

∂

∂cl

(
d2r i

dt2

)
= 1

mi
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∑
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∂ Fi

∂ rj
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+
∂ Fi
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∂ Fi
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(4)
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Table 2
Statistics of the Astrometric Residuals Computed from Our Model (Enceladus Tidal Equilibrium Solution) in Arcseconds

Observation subset νs σs νp σp Ns, Np

All Observations
S1 0.0140 0.1027 0.0131 0.1152 1285, 1298
S2 −0.0032 0.0988 0.0048 0.1069 2640, 2643
S3 0.0157 0.1130 −0.0003 0.1152 4702, 4700
S4 0.0150 0.1045 0.0023 0.1096 3775, 3776
S5 0.0113 0.1088 0.0030 0.1151 4471, 4489
S6 0.0238 0.0937 −0.0049 0.1084 2842, 2836
S7 0.0017 0.3275 0.1068 0.4838 138, 113
S8 0.0179 0.0766 0.0076 0.1246 1098, 1101

Struve (1898) 61/62
S1 0.0076 0.1756 0.0394 0.1810 105, 119
S2 −0.0011 0.1129 −0.0215 0.1170 218, 226
S3 0.0617 0.1363 −0.0185 0.1190 276, 281
S4 0.0671 0.1367 −0.0242 0.1252 167, 170
S8 0.0531 0.0562 −0.0140 0.1181 6, 6

Struve (1898) 21/22
S7 0.0017 0.3275 0.1068 0.4838 138, 113
S8 −0.0930 0.2411 −0.0063 0.5614 4, 4

Struve (1898)
S5 −0.1310 0.1191 0.1167 0.0953 44, 42
S6 0.0339 0.1579 0.1721 0.1457 57, 54

Stone (1895)
S2 −0.0725 0.1892 −0.0533 0.1717 5, 5
S3 −0.0654 0.1987 −0.0908 0.1791 16, 18
S4 −0.0730 0.1514 0.0623 0.1837 17, 19
S5 0.0051 0.0761 −0.0449 0.2588 6, 6
S6 0.0750 0.0000 0.0126 0.0998 1, 2

Stone (1896)
S5 −0.0569 0.2756 −0.0047 0.1999 54, 75

Stone (1898a, 1898b)
S3 −0.1127 0.2733 −0.0086 0.2037 12, 12
S4 −0.1519 0.2589 −0.0089 0.2315 30, 28
S5 −0.1048 0.2048 0.0396 0.1578 15, 15
S6 0.0450 0.4001 0.1994 0.2881 4, 4

Morgan (1900)
S3 0.2297 0.2526 0.0193 0.1762 7, 6
S4 0.3666 0.3065 0.0112 0.1027 6, 4
S5 0.5270 0.2765 0.0594 0.1558 6, 6

Aitken (1905)
S2 −0.0412 0.2110 0.0744 0.1370 13, 13
S3 0.2097 0.2004 0.0387 0.2382 13, 12
S4 0.2498 0.1967 0.0827 0.2026 13, 13

Barnard (1910)
S1 −0.0255 0.0989 0.0462 0.1269 6, 3
S2 −0.0721 0.1794 0.0584 0.0769 18, 8
S3 0.0411 0.2075 −0.0668 0.0723 12, 6
S4 0.0642 0.1755 0.0328 0.0913 7, 4
S5 0.0491 0.1116 0.1287 0.2496 8, 6

Aitken (1909)
S2 −0.0910 0.1515 0.0621 0.0837 7, 8
S3 0.2377 0.2044 0.0678 0.1255 6, 9
S4 0.0847 0.1824 0.0562 0.1178 8, 8

USNO (1929)
S2 0.0442 0.1108 0.0701 0.0363 2, 2
S3 0.0755 0.1692 −0.0128 0.1869 187, 191
S4 0.0521 0.1356 0.0074 0.1511 158, 157
S5 0.0649 0.1719 0.0174 0.1573 318, 320
S6 0.0996 0.1719 0.0106 0.1482 370, 372
S8 0.1215 0.1606 −0.0088 0.2598 117, 120

Barnard (1913)
S1 0.1750 0.1093 0.0451 0.0186 3, 3

7
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Table 2
(Continued)

Observation subset νs σs νp σp Ns, Np

S2 0.0726 0.1589 0.1242 0.2092 23, 23
S3 0.0804 0.2407 0.0768 0.3137 45, 44
S4 0.0519 0.1929 0.0711 0.3099 33, 33
S5 0.0718 0.2587 0.1386 0.2770 11, 11

Barnard (1915)
S1 0.1383 0.0890 0.2791 0.3066 3, 4
S2 0.0943 0.1738 0.0023 0.2385 13, 13
S3 0.1256 0.1983 0.0580 0.2757 26, 28
S4 0.1291 0.2024 0.2029 0.2359 23, 23
S5 −0.0554 0.1118 0.0968 0.1420 11, 11
S8 0.3823 0.0000 0.1694 0.0000 1, 1

Barnard (1916)
S1 0.1941 0.1928 0.0563 0.1434 13, 13
S2 0.0822 0.1972 0.1071 0.2209 19, 19
S3 0.1344 0.1686 0.0225 0.1796 42, 41
S4 0.1946 0.1835 0.0077 0.3271 21, 20
S5 0.1185 0.2452 0.0232 0.2104 12, 12

Barnard (1918)
S1 −0.0194 0.1599 0.0703 0.0947 7, 6
S2 0.0826 0.2060 0.1282 0.2910 23, 23
S3 0.1649 0.1274 −0.0272 0.1748 36, 35
S4 0.1739 0.1307 −0.0074 0.2939 28, 30
S5 0.2478 0.1294 0.0212 0.3503 10, 9

Barnard (1927)
S1 0.0125 0.2915 0.1242 0.2063 17, 19
S2 0.0116 0.2274 0.0690 0.2099 65, 66
S3 0.1270 0.1866 0.0215 0.1839 133, 125
S4 0.0936 0.1778 0.0155 0.2015 61, 63
S5 0.1839 0.1887 0.0147 0.3278 45, 43
S8 0.0901 0.2952 0.0284 0.2628 8, 8

Struve (1933) Johannesb
S1 −0.0016 0.1646 −0.0010 0.1896 115, 115
S2 0.0429 0.1265 −0.0113 0.1324 187, 190
S3 0.0459 0.1249 0.0309 0.1298 127, 130
S4 0.0331 0.1229 0.1023 0.1136 54, 54
S5 −0.0166 0.0268 −0.0740 0.1009 2, 2

USNO (1954) 61/62
S1 0.0000 0.0000 0.0000 0.0000 0, 0
S2 0.0827 0.1310 −0.0510 0.1843 18, 18
S3 0.0478 0.2775 −0.0200 0.2730 278, 276
S4 0.0732 0.2193 −0.0071 0.1963 283, 284
S5 0.0591 0.2203 0.0175 0.2220 455, 457
S6 0.0572 0.1785 −0.0466 0.1737 194, 188
S8 −0.0839 0.0000 −0.0360 0.0000 1, 1

Struve (1933) Yerkes
S2 −0.1751 0.2256 0.0512 0.2054 48, 48

USNO (1954)
S5 −0.0007 0.1547 0.0172 0.0857 32, 32
S6 0.0007 0.1547 −0.0172 0.0857 32, 32

Harper et al. (1997)
S3 −0.0079 0.0377 0.0090 0.0602 184, 184
S4 −0.0024 0.0318 −0.0053 0.0580 193, 193
S5 0.0016 0.0281 −0.0025 0.0545 202, 202
S6 0.0062 0.0213 −0.0157 0.0682 118, 118
S8 −0.0023 0.0451 0.0049 0.0708 51, 51

Qiao et al. (1999)
S1 −0.0448 0.1181 0.0086 0.0174 15, 15
S2 −0.0454 0.0802 0.0060 0.0645 47, 47
S3 −0.0065 0.0423 0.0050 0.0564 82, 82
S4 −0.0037 0.0296 −0.0017 0.0423 147, 147
S5 0.0088 0.0368 −0.0050 0.0477 151, 151
S6 −0.0017 0.0265 −0.0076 0.0578 164, 164
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Table 2
(Continued)

Observation subset: νs σs νp σp Ns, Np

Veiga et al. (2003)
S1 −0.0046 0.0534 −0.0059 0.0704 329, 329
S2 0.0069 0.0613 −0.0038 0.0720 414, 414
S3 −0.0041 0.0430 0.0103 0.0710 489, 489
S4 0.0055 0.0522 −0.0064 0.0721 527, 527
S5 −0.0106 0.0451 −0.0106 0.0947 480, 480
S6 0.0293 0.0583 0.0270 0.0932 219, 219
S8 −0.0339 0.0217 −0.1685 0.0502 7, 7

Vienne et al. (2001)
S1 0.0439 0.0347 0.0103 0.0345 216, 216
S2 −0.0017 0.0421 0.0051 0.0513 860, 860
S3 −0.0050 0.0264 −0.0052 0.0396 1747, 1747
S4 0.0033 0.0247 0.0060 0.0377 1029, 1029
S5 −0.0018 0.0230 −0.0046 0.0507 1587, 1587
S6 0.0001 0.0153 −0.0006 0.0405 731, 731
S8 0.0036 0.0291 0.0061 0.0643 523, 523

Harper et al. (1999)
S3 −0.0017 0.0272 −0.0106 0.0497 245, 245
S4 −0.0222 0.0400 0.0114 0.1133 205, 205
S5 0.0055 0.0423 0.0059 0.0856 238, 238
S6 0.0133 0.0351 −0.0135 0.0534 242, 242
S8 0.0076 0.0243 0.0083 0.0383 188, 188

Peng et al. (2002)
S1 −0.0139 0.0302 0.0390 0.0485 54, 54
S2 −0.0181 0.0273 0.0062 0.0438 161, 161
S3 0.0093 0.0226 0.0053 0.0281 145, 145
S4 −0.0006 0.0182 −0.0022 0.0304 161, 161
S5 0.0068 0.0237 0.0055 0.0295 199, 199
S6 −0.0010 0.0126 −0.0005 0.0505 145, 145
S8 −0.0027 0.0191 −0.0281 0.0527 126, 126

Qiao et al. (2004)
S1 −0.0400 0.1096 0.0466 0.1996 44, 44
S2 −0.0682 0.1322 −0.0005 0.2055 141, 141
S3 −0.0091 0.0866 0.0189 0.1497 236, 236
S4 −0.0175 0.0733 −0.0230 0.0987 246, 246
S5 0.0174 0.0571 −0.0001 0.1237 227, 227
S6 0.0232 0.0401 −0.0514 0.1428 207, 207
S8 0.0291 0.0274 0.1340 0.1958 66, 66

Peng et al. (2008)
S1 0.0256 0.0712 0.0082 0.0912 358, 358
S2 −0.0009 0.0260 −0.0003 0.0383 358, 358
S3 −0.0051 0.0234 0.0007 0.0296 358, 358
S4 −0.0056 0.0237 −0.0003 0.0325 358, 358
S5 −0.0082 0.0245 0.0021 0.0418 358, 358
S6 0.0074 0.0209 −0.0200 0.1202 358, 358

Notes. µ and σ denote, respectively, the mean and standard deviation of the residuals computed in
separation s and position angle p. Ns and Np are the number of observations considered for the respective
coordinate. We recall that 0.1 s of arc corresponds to about 600 km at the Saturn distance.

where Fi is the right-hand side of Equation (1) multiplied
by mi.

Partial derivatives of the solutions with respect to initial po-
sitions and velocities of the satellites and dynamical parameters
are computed from simultaneous integration of Equation (4)
and Equation (1). For an explicit formulation of the dynamical
equations and the variational equations used, we refer to Lainey
et al. (2007, 2009), Lainey (2008), and references therein.

The RA15 numerical integrator is used with a constant step
size of 0.075 days. To increase the numerical accuracy, we
performed forward and backward integrations starting at an

initial Julian epoch of 2,433,291.0 (1950 January 9, TDB).
The numerical accuracy of our simulation is at the level of a
few hundreds of meters over the whole 123 years (see also
Appendix A.1.1).

During the fitting procedure, timescale and light-time cor-
rections for each satellite-observer distance were introduced
(Lainey et al. 2007). Corrections for phase, aberration, and
differential refraction were applied when they were not al-
ready included in the observation astrometric reductions (Lainey
et al. 2007). Observational subsets (related to different observa-
tional campaigns or publications) have been considered with a

9
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relative weight computed by preliminary residuals (Lainey et al.
2007) and corresponding to their rms error for deriving formal
errors. Least-squares iterations have been applied to solve for
the fitted parameters. In particular, despite the development of
new techniques, least squares is still one of the most efficient
methods available to solve for the parameters of dynamical sys-
tems (Desmars et al. 2009a), as long as the studied system has
been observed over a sufficiently long period of time to allow
for rather accurate initial conditions (which is the case for the
main planetary satellites of the solar system). No constraints
have been applied in the least-squares inversion. Only a few
iterations have been required to reach an optimal solution.

In all this work, the fitted parameters are the initial state
vectors of the main Saturnian moons (actually their equivalent
form as Keplerian elements) of all Saturnian moons, the extra
parameter da/dt for Mimas and the ratio k2/Q for Saturn. In
particular, Enceladus’ tidal dissipation could not be fitted due to
significant correlations. To solve this issue, we considered two
extreme scenarios for each solution: (1) Enceladus is at thermal
equilibrium and (2) Enceladus is not dissipative at all. Then we
merged both solutions into one, providing one global solution
with higher error bars, but independent of Enceladus’ internal
state (see Section 4). Hence, the total number of fitted parameters
considered is between 50 and 53 (depending on whether Q is
assumed constant or dependent on the tidal frequency).

4. FITTING THE MODEL TO
ASTROMETRIC OBSERVATIONS

The dependence of Q on tidal frequency is a matter for
debate. While it is traditionally approximated by a constant
for long timescales (Goldreich & Soter 1966; Sinclair 1983),
recent developments in the numerical simulation of giant planet
interiors have revealed a possible erratic frequency dependence
of Q (Wu 2005). In this work we investigate both possibilities.

4.1. Constant Q Model

In a first inversion, we neglect dissipation in Enceladus and
fit the initial state vectors of all eight moons including Saturn’s
ratio k2/Q and Mimas’ da/dt. We thus obtain k2/Q = (2.0 ±
0.4) × 10−4 and da/dt = −(13.7 ± 2.4) × 10−15 AU day−1.
Saturn’s dissipation ratio corresponds to orbital acceleration
values ṅ/n (in yr−1 units) of −(2.67 ± 0.57) × 10−10, −(4.26 ±
0.91) × 10−10, −(1.52 ± 0.33) × 10−10, and −(3.56 ± 0.76) ×
10−11 for Enceladus, Tethys, Dione, and Rhea, respectively.
This translates into semi-major axis variation da/dt (in au day−1

units) of (7.77 ± 1.67) × 10−16, (1.53 ± 0.33) × 10−15, (7.02 ±
1.50) × 10−16, and (2.29 ± 0.49) × 10−16. Over the 123
years covered by the observation set we used, this corresponds
to an orbital shift in longitude of 799 ± 172 km (0.129 ±
0.028 arcsec), 1152 ± 246 km (0.186 ± 0.040 arcsec), 365 ±
78 km (0.059 ± 0.013 arcsec), and 72 ± 15 km (0.012 ±
0.002 arcsec), respectively. In a second case, we introduce
dissipation in Enceladus, which is expected to counterbalance
its orbital acceleration, thereby modifying our global estimation
of Saturn k2/Q obtained from the satellite tidal accelerations. As
already stated in Section 3, we do not have a sufficient number of
observations to invert independently the k2/Q values for Saturn
and Enceladus. Hence, to introduce Enceladus’ tidal dissipation,
we assume that Enceladus is in a dynamical equilibrium state,
which locks Enceladus’ eccentricity as the result of dissipation
in both Saturn and Enceladus inside the 2:1 resonance with
Dione (Meyer & Wisdom 2007). In this case, we obtain

Figure 1. Astrometric residuals. Residuals between the astrometric observations
and our numerical model (assuming eccentricity equilibrium for Enceladus),
after fitting the initial state vectors of the eight main Saturnian moons, the ratio
k2/Q of Saturn and a constant rate da/dt on Mimas’ semi-major axis. The global
1σ accuracy is about 0.1 arcsec (we recall that at the Saturnian distance 1 arcsec
corresponds to about 6000 km). It can be noted that no clear differences between
old and modern observations are obvious due to (1) selective criteria in precision
for all subsets (see Section 2 for details) and (2) limitations inherent in graphical
resolution (see Tables 1 and 2 for a detailed analysis of each observation subset).

k2/Q = (2.6 ± 0.4) × 10−4 and da/dt = −(17.0 ± 2.4) ×
10−15 AU day−1. The associated secular accelerations related
to Saturn’s and Enceladus’ tides are −(2.06 ± 0.57) × 10−10,
−(5.61 ± 0.91) × 10−10, −(2.09 ± 0.32) × 10−10, −(4.69 ±
0.76) × 10−11. This translates into semi-major axis variation da/
dt (in AU day−1 units) of (6.00 ± 1.66) × 10−16, (2.02 ± 0.33) ×
10−15, (9.65 ± 1.49) × 10−16, and (3.02 ± 0.49) × 10−16.
This corresponds to 619 ± 171 km (0.100 ± 0.028 arcsec),
1516 ± 245 km (0.245 ± 0.040 arcsec), 501 ± 78 km (0.081 ±
0.013 arcsec), and 95 ± 15 km (0.015 ± 0.002 arcsec), as well.
Even though both inversions provide the same orbital trends,
acceleration values for each satellite are somewhat different.
This arises from the use of only one global k2/Q value for Saturn,
while fitting several independent accelerations. Thanks to the
long time span considered, astrometric accuracy is enough to
detect tidal accelerations for Enceladus, Tethys, Dione, and
Rhea from the observations (see Figure 1 and Tables 1–3).
Combining the two fits, our nominal solution for the Saturn
tidal dissipation (here assumed to be independent of the tidal
frequency) yields k2/Q = (2.3 ± 0.7) × 10−4.

4.2. Non-constant Q Model

To check the assumption of a constant Q model considered
in our nominal solution, we release simultaneously several
Q values (with and without Enceladus’ dissipation), one Q
value being related to each tide-raising satellite. We succeed
in obtaining Saturn’s Q at four different tidal frequencies,
related to Enceladus, Tethys, Dione, and Rhea (see Figure 2),
respectively. Correlations between the four tidal ratios are below
0.2 (as shown in Table 4). However, a high correlation of 0.935
is found between Saturn’s tidal ratio associated with Tethys’
tidal frequency and Mimas’ da/dt (equal to –(16.3 ± 3.7) ×
10−15 AU day−1), as a consequence of the 2:4 mean motion
resonance between Mimas and Tethys.

Implications of these results are discussed in Section 6.

10



The Astrophysical Journal, 752:14 (19pp), 2012 June 10 Lainey et al.

Table 3
Correlation between k2/Q and da/dt with All Our Fitted Parameters (Enceladus Tidal Equilibrium Solution)

a1 l1 k1 h1 q1 p1 a2 l2 k2 h2 q2 p2

k2/Q −0.116 0.142 0.103 −0.012 −0.031 −0.309 −0.035 0.705 0.000 0.484 0.000 −0.010

da/dt 0.085 −0.020 −0.125 −0.044 0.082 0.375 0.027 −0.588 −0.005 −0.415 0.011 0.008

a3 l3 k3 h3 q3 p3 a4 l4 k4 h4 q4 p4

k2/Q −0.043 0.169 0.014 −0.037 −0.199 0.219 −0.170 0.372 0.088 −0.070 0.036 −0.027

da/dt 0.087 0.241 −0.054 0.046 0.247 −0.290 0.157 −0.303 −0.076 0.066 −0.045 0.042

a5 l5 k5 h5 q5 p5 a6 l6 k6 h6 q6 p6

k2/Q 0.032 0.136 0.028 −0.030 −0.016 0.022 0.052 0.014 −0.004 0.018 0.014 −0.019

da/dt 0.007 −0.106 −0.026 0.009 0.012 −0.017 0.035 −0.011 −0.001 −0.014 −0.010 0.012

a7 l7 k7 h7 q7 p7 a8 l8 k8 h8 q8 p8

k2/Q −0.001 0.005 0.001 0.000 −0.004 −0.014 −0.016 −0.014 0.000 0.008 0.001 −0.031

da/dt 0.001 −0.004 −0.002 0.000 0.003 0.009 0.023 0.013 0.001 −0.024 −0.002 0.024

k2/Q da/dt

k2/Q 1.000 −0.838

da/dt −0.838 1.000

Notes. Where a is the semi-major axis, l is the mean longitude, k = e.cos(Ω + ω), h = e.sin(Ω + ω), q = sin(i/2).cos(Ω) and p = sin(i/2).sin(Ω) (with e
denoting the eccentricity, Ω denoting the longitude of the node, and ω denoting the argument of the periapsis). Numbers 1, . . ., 8 refer to Mimas (S1),
. . ., Iapetus (S8), respectively.

Table 4
Correlation between All Four k2/Q Ratios Estimated at the Tidal Frequency of

Enceladus, Tethys, Dione, and Rhea, and da/dt (Enceladus’ Eccentricity
Equilibrium Solution)

k2/Q(S2) k2/Q(S3) k2/Q(S4) k2/Q(S5) da/dt

k2/Q(S2) 1.000 0.020 −0.197 0.003 −0.012

k2/Q(S3) 0.020 1.000 0.001 0.000 −0.935

k2/Q(S4) −0.197 0.001 1.000 0.024 0.004

k2/Q(S5) 0.003 0.000 0.024 1.000 0.006

da/dt −0.012 −0.935 0.004 0.006 1.000

5. ROBUSTNESS OF THE SOLUTION

In this section, we present various tests that assess the
robustness of our solution. During these tests, we considered
as a reference solution the Enceladus equilibrium scenario with
a constant Saturn Q model, that is, k2/Q = (2.6 ± 0.4) × 10−4

and da/dt = −(16.9 ± 2.4) × 10−15 AU day−1.

5.1. Random Holdout Method

This method considers the change in fitted parameters when
a constant percentage of observations is removed. We have per-
formed a test, with a percentage of 10% of observations that
are not used. The number of observations in the full nomi-
nal least-squares inversion is 19,616 (all moon coordinates at
a given time considered as one observation). One hundred dif-
ferent subsets were generated and used to check the robustness
of the fitted parameters. We obtained the k2/Q-value in the
interval [1.8 × 10−4, 3.3 × 10−4] for Saturn and the Mimas
da/dt value in the interval [−21.9 × 10−15, −9.1 ×
10−15] AU day−1 (even though most values were in agreement
with the nominal error bars). This suggests that factors of two
and four could be introduced in our nominal error bars in k2/Q
and da/dt, respectively. However, it must be remembered that
Mimas and Tethys are hard to observe from the ground. Hence,
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Figure 2. Determination of the Saturn tidal dissipation factor Q. Saturn’s tidal
dissipation factor Q vs. the tidal frequency 2(Ω−n), where Ω and n denote
its rotation rate and the moon mean motion, respectively. The Love number
is assumed to be k2 = 0.341. The horizontal line shows the nominal solution
(constant Q model) equal to Q = 1682 ± 540, with error bars as dashed lines.
The vertical values with error bars are derived from a variable Q model. The
large error bar associated with Enceladus is a consequence of the uncertain tidal
dissipation in that satellite (whether one assumes no dissipation or eccentricity
equilibrium). Presumably, the small value of Q is the signature of a rock–ice
core or its boundary in Saturn.

significantly decreasing the number of observations of Mimas
will automatically increase the chance of losing the da/dt signal.

5.2. Removing Successively the Five Largest
Observation Subsets

In this test, we completely removed several observation
subsets among the most dense ones: (1) Vienne et al. (2001),
(2) Vass (1997), (3) FASTT observations (see Stone & Harris
2000, and references therin), (4) Struve (1898), and (5) USNO
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Table 5
Fitted Value of k2/Q and da/dt after Removing Observation Subsets

Subset Removed k2/Q da/dt Observations
(AU day−1)

Vienne et al. (2001) (2.0 ± 0.4) × 10−4 −(11.0 ± 2.4) × 10−15 6693
Vass (1997) (2.6 ± 0.4) × 10−4 −(16.9 ± 2.3) × 10−15 3977
FASTT (2.6 ± 0.4) × 10−4 −(16.9 ± 2.3) × 10−15 3137
Struve (1898) (4.2 ± 0.6) × 10−4 −(20.8 ± 2.9) × 10−15 796
USNO (1929) (2.6 ± 0.5) × 10−4 −(12.9 ± 2.5) × 10−15 1162
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(1929). The first three observation subsets are associated with
the modern era, while the last two consist of observations from
the end of the 19th century and beginning of the 20th century,
respectively. We provide in Table 5 the fitted value of k2/Q and
da/dt after having removed the mentioned subset.
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Figure 5. Energy conservation within our model (see the text for details).
(A color version of this figure is available in the online journal.)
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Figure 6. Semi-major axis variation test under the effect of tides raised in the
planet (two-body problem).
(A color version of this figure is available in the online journal.)

With the exception of removing the Struve data, all solutions
above are very close to (though not in full agreement with)
our nominal solution. The Struve data even indicate a slightly
higher tidal dissipation ratio. We conclude that removing any
observational subsets (old or modern) still confirms the high
Saturnian dissipation obtained in our nominal solution.

5.3. On the Use of Pixel Positions

As already mentioned in Section 2, the ephemerides of the
outermost Saturnian moons are sometimes used to determine the
scale and orientation of the observations (because of the lack of
stars in the observed fields). This can be justified since outermost
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Figure 7. Eccentricity variation test under the effect of tides raised in the planet
(two-body problem).
(A color version of this figure is available in the online journal.)

moons (Dione, Rhea, Titan, and sometimes Iapetus) are easier
to observe (entailing a more accurate ephemeris). Moreover, an
error on the scale factor and orientation is expected to have a
smaller influence on the innermost moons that are close to the
center of the observation. Nevertheless, introducing possibly an
external orbital model in the reduction of the observations is not
fully satisfactory. This is why we decided, when available, to
use pixel positions instead of (α, δ) or (s, p) coordinates. Under
this form, the observations are not corrupted by any external
dynamical model, but their significance in the fit is lower, since
information on the scale and orientation is no longer present.

We have checked the difference between our nominal solution
(using pixel positions) and a fit using the usual astrometric
coordinates (α, δ) or (s, p). We obtained the following result:
k2/Q = (1.8 ± 0.4) × 10−4 for Saturn and da/dt = −(13.0 ±
2.4) × 10−15 for Mimas. This is in agreement with our nominal
solution (taking into account the error bars).

5.4. Scale Factor Biases

One of the crucial systematic errors in astrometric observa-
tions is related to scale factors. Scale factors express the equiv-
alence between an observed distance on a field (measured in
micrometer on a photographic plate, or pixel on a CCD im-
age) and its related angular separation on the celestial sphere.
In principle, a scale factor should be an isotropic quantity. Nev-
ertheless, stellar positions used to calibrate the observations are
rarely corrected for atmospheric differential refraction. Hence,
scale factors along equatorial and polar directions are different.
Most of the time, old observations used a constant scale factor,
which introduced systematic errors in the satellite positions. In
particular, such errors produce higher residuals for the distant
satellites than for the closer ones, which are much less affected
by a small error in the field scale.

To check the influence of scale factor errors on our results,
we have performed another fit of our model using this time the
relative distance of the satellites between each other (instead of
the absolute distance derived from the scale factor estimation),
when at least three satellites were observed simultaneously. We
obtained the following result: k2/Q = (2.7 ± 0.3) × 10−4 for
Saturn and da/dt = −(17.9 ± 1.8) × 10−15 for Mimas. These
two values agree with our nominal solution within the error bars.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  10  20  30  40  50  60  70  80  90  100

se
m

i-m
aj

or
 a

xi
s 

di
ffe

re
nc

es
 (

km
)

Time (years)

Mimas
Enceladus

Tethys
Dione
Rhea
Titan

Figure 8. Semi-major axis variation test under the effect of tides raised in the
satellites (two-body problem).
(A color version of this figure is available in the online journal.)

-9e-06

-8e-06

-7e-06

-6e-06

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

 0

 0  10  20  30  40  50  60  70  80  90  100

E
cc

en
tr

ic
ity

 d
iff

er
en

ce
s

Time (years)

Mimas
Enceladus

Tethys
Dione
Rhea
Titan

Figure 9. Eccentricity variation test under the effect of tides raised in the
satellites (two-body problem).
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5.5. Releasing More Parameters in the Fit
(Saturn’s Pole and Precession)

While the gravity field parameters we are using are accurate
thanks to Cassini data, the IAU expression for Saturn’s pole co-
ordinates and precession frequency dates back to 1994 (Davies
et al. 1996; Archinal et al. 2011). Here, we investigate the in-
fluence of fitting the pole coordinates and precession frequency
of Saturn on our results. Starting from our nominal solution
(the Enceladus equilibrium model), we performed a new fit that
added four more parameters in the fitting process. These param-
eters refer to the IAU formulation for the pole coordinates of
planets (Archinal et al. 2011):

α = α0 + α̇T

δ = δ0 + δ̇T
,

where (α0, δ0) are the pole coordinates in the ICRF at epoch
J2000.0 and (α̇, δ̇) introduces the precession/nutation of the
primary. Releasing the 50 + 4 parameters simultaneously, we
obtain after iterations the following solution: k2/Q = (2.63 ±
0.41) × 10−4, da/dt = −(16.7 ± 2.4) × 10−15 AU day−1,
α0 = 40.5915 ± 0.0055◦, α̇ = −0.131 ± 0.022◦/Julian century,
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δ0 = 83.54163 ± 000053◦, δ̇ = 0.0219 ± 0.0025◦/Julian
century.

Clearly k2/Q and da/dt are poorly affected by adding to the fit
Saturn’s pole coordinates and precession frequency. Moreover,
the post-fit residuals are highly similar to those from the nominal
solutions (in the limit of one-tenth of a mas). Hence, our results
are expected to be poorly sensitive to possible IAU errors
in the expression of Saturn’s pole coordinates and precession
frequency.

5.6. Neglecting General Relativity

Here we focus on the influence of general relativity. Since the
influence of these effects is pretty small (Iorio & Lainey 2005),
they have been neglected in our nominal fits. To demonstrate the
validity of such an assumption, we have introduced these effects
in the model (we considered relativistic effects associated to both
Saturn and the Sun) and performed a new solution. After fitting,
we obtained k2/Q = (2.54 ± 0.42) × 10−4, da/dt = −(16.9 ±
2.4) × 10−15 AU day−1.

Here again, the post-fit residuals are highly similar to the
nominal solution ones (in the limit of one-tenth of a mas).

In conclusion, the envelope of all the tests performed in this
whole section provides k2/Q = (3.1 ± 1.7) × 10−4 and da/dt =
−(16.2 ± 7.6) × 10−15 AU day−1. In particular, our different
tests confirm that the present estimation of the k2/Q ratio of
Saturn is reliable.

6. DISCUSSION

We can see from Section 4.2 that all k2/Q values lie in
the same range and show smooth frequency dependence. To
understand the implications of this result, let us recall what is
presently known about the physical mechanisms that convert
into heat the kinetic energy of the tides, thus driving the secular
evolution of the system. Saturn has a hydrogen–helium fluid
envelope, which may be partially or entirely convective, and
an expected rock–ice core (Guillot 1999) (ignoring here the
role of a possible outer radiative layer). The fluid equilibrium
tide is damped mainly in the convective part of the envelope,
and its amplitude depends smoothly on frequency (Zahn 1966,
1989). In contrast, the dynamical tide in this region, which
consists of excited inertial modes (Ogilvie & Lin 2004; Wu
2005; Goodman & Lackner 2009), varies considerably with
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Figure 11. Eccentricity variation test under the effect of tides raised in the planet
(full model).
(A color version of this figure is available in the online journal.)

frequency, particularly in the presence of a dense core (Rieutord
& Valdettaro 2010). Although both of these fluid tides are
damped through turbulent friction, they yield a relatively low
value of the dissipation parameter: k2/Q ∼ 10−6 at most (Ogilvie
& Lin 2004). Therefore, one has to turn to other mechanisms
to explain the high tidal dissipation in Saturn’s system that
we report here, with k2/Q ranging from 1.4 × 10−4 to 3.4 ×
10−4. For instance, the contribution to tidal dissipation of a
stably stratified layer surrounding the core, due to the settling
of helium when it ceases to be soluble in metallic hydrogen
(Morales et al. 2009; Fortney & William 2003), remains to be
evaluated. Another possibility could be the presence of a dense
core, as predicted by most models (Guillot 1999). In Saturn, this
core is expected to be relatively larger than in Jupiter, which
would be consistent with the relatively lower tidal dissipation in
that planet: k2/Q = (1.102 ± 0.203) ×10−5, as determined by
the same method (Lainey et al. 2009).

So far, the averaged lower bound of Saturn’s Q was derived
from theoretical considerations, assuming that all main moons
formed above the synchronous orbit 4.5 Byr ago (Goldreich
& Soter 1966). Considering Mimas, the innermost mid-sized
satellite, and using the averaged equations for a tidally evolving
system, Sinclair (1983) derived a present-day reference value
of Q ! 18,000 (assuming k2 = 0.341 from Gavrilov &
Zharkov 1977). If the observed high value of Saturn’s k2/Q
determined in this work represents well the long-term averaged
value, then a very large tidal expansion of the moon orbits
should have occurred. In particular, the conventional assumption
of Saturnian satellites forming contemporaneously with their
parent planet has to be dismissed. Recently, Charnoz et al. (2011)
suggested a new mechanism of formation of Saturnian satellites
at the outer edge of the rings. While the satellites evolve outward
in their model due to exchange of angular momentum with the
rings and tides that rose in the primary, they noticed, however,
that a strong tidal dissipation in Saturn is mandatory to place the
satellites at their current observed positions. It is noteworthy that
the tidal dissipation quantification presented here allows their
model to form and place the Saturnian satellites at the proper
distance to their primary.

Since the discovery of the very active province at Enceladus’
south pole by the Cassini spacecraft in 2005 (Spencer et al.
2009; Porco et al. 2006), a variety of theoretical models have
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Figure 12. Test of the da/dt perturbation in the two-body problem case.
(A color version of this figure is available in the online journal.)
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Figure 13. Mimas’ semi-major axis variation under the influence of da/dt
perturbation (full model).
(A color version of this figure is available in the online journal.)

been proposed to explain the huge thermal emission and the
associated eruptions of water vapor and ice particles (Meyer &
Wisdom 2007; Nimmo et al. 2007; Tobie et al. 2008; O’Neill
& Nimmo 2010; Howett et al. 2011). The amount of energy
produced at present by radioactive decay in the rocky core of
Enceladus contributes less than 2% to the total emitted power
(15.8 ± 3.1 GW; Howett et al. 2011), suggesting another internal
energy source such as tidal dissipation. Previous studies based
on the former estimation of Saturn’s Q (!18,000) (Sinclair
1983) showed that tidal heating at orbital equilibrium, required
to maintain the resonant Enceladus–Dione orbital configuration,
could not account for more than 1.1 GW (Meyer & Wisdom
2007). This was suggesting that either the resonant system
oscillates around equilibrium with dissipated power varying
from almost zero to the observed value or more, or the satellite
episodically releases the internal heat that is continuously
produced at a rate compatible with orbital equilibrium (Tobie
et al. 2008; O’Neill & Nimmo 2010). None of these solutions
were fully satisfactory.

The new dissipation factor of Saturn reported here totally
changes our understanding of Enceladus’ heat production mech-
anism. As shown in Figure 3, with the new inferred Q value,
equilibrium tidal heating can now account for the observed heat
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perturbation (full model).
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Figure 15. Variational equations test of da/dt parameter from Mimas position.
(A color version of this figure is available in the online journal.)

power. This indicates that Enceladus’ interior could be close
to thermal equilibrium at present, with surface heat loss being
balanced by heat produced by tidal dissipation. Large tidal dissi-
pation in Enceladus implies that the satellite probably possesses
a liquid water layer decoupling the outer ice shell from the rocky
core (Nimmo et al. 2007; Tobie et al. 2008). For Saturnian Q
lower than 2000, Enceladus can remain highly dissipative during
a very long period of time without damping its orbital eccen-
tricity, and the long-term stability of a subsurface ocean would
thus be possible.

7. CONCLUSION

We have quantified Saturn’s tidal dissipation ratio k2/Q to
be (2.3 ± 0.7) × 10−4 using astrometric observations spanning
123 years. Moreover, such a quantification directly derived from
observations is provided here at various frequencies, for the first
time in a giant planet. As a consequence, we conclude that tidal
dissipation may mostly occur in Saturn’s core and its boundary.
Moreover, tidal heating equilibrium is now a possible state for
Enceladus.

The present quantification of Saturnian tidal dissipation is
incompatible with a satellite formation scenario in Saturn’s
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Figure 17. Variational equations test of Saturn’s Q parameter from Mimas
position.
(A color version of this figure is available in the online journal.)

subnebulae for all moons below Titan. However, it is fully
compatible with a formation at the edge of Saturn’s rings
(Charnoz et al. 2011).

During all fitting procedures, we obtain an extra acceleration
on Mimas’ orbital longitude, related to a negative value of da/
dt = −(15.7 ± 4.4) × 10−15 AU day−1 (combination of all fit
values). A possible source of error explaining such decay could
be the proximity of Mimas to Saturn’s halo. But if confirmed
in the future, Mimas’ orbital decay could have significant
implications on Saturn’s rings.
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APPENDIX

A.1. Testing Our Numerical Model

It is not possible to show the very large amount of tests that
have been performed over years when developing the NOE code.
Nevertheless, in the following section we provide several tests
that can be considered as fundamental to our study.

Unless explicitly mentioned, the tested model here introduces
the Enceladus equilibrium scenario with constant Q.

A.1.1. Numerical Precision

To test the numerical precision of our integrations of the
equations of motion, we performed backward and forward
integrations (see also the conservation of energy test). Figure 4
shows the difference, for each moon, between backward and
forward integration expressed as Euclidian distance in km, over
one century. These variations are all below 400 m. Since our
integrations have been performed over no longer than 64 years
(we recall that our fit epoch is 1950, and we cover the period
1886–2009), we can conclude that the numerical precision of the
satellite positions in our study is a few hundreds of meters.

A.1.2. Conservation of Energy

Checking the conservation of energy is quite important for
two reasons:

1. It provides another way to quantify numerical error (here
the numerical accuracy).

2. More importantly, it checks the validity of the force model.

Nevertheless, energy is not always conserved for “any” force
model (nonconservative forces, use of planetary ephemerides,
introduction of forced precession, and spin–orbit coupling).
In the following test (see Figure 5), we did not introduce
(1) da/dt “force,” (2) tidal dissipation, and (3) Saturn’s pre-
cession. Moreover, solar and Saturnian motions have been in-
tegrated explicitly (no use of planetary ephemerides) and the
rotation of the moons has been frozen.

As one can see in Figure 5, energy is conserved up to 13 digits
(use of double precision) over 100 years, in our model.

A.1.3. Testing the Tidal Model

Since conservation of energy cannot be used to check the
validity of our tidal model, we have used analytical expression
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Table 6
Testing the Tidal Model (Tides in the Satellites/Two-body Problem)

Moon ∆a ∆e
(km)

Mimas −5.402801100992870E−002 −8.537669664267916E−006
Enceladus −1.587689542119058E−003 −6.236475859717691E−007
Tethys −1.229629000688473E−004 −2.139456833055286E−007
Dione −8.724264672974581E−005 −6.140003928510260E−008
Rhea −1.158774729219763E−005 −9.617269239444934E−009
Titan −5.787519520775916E−004 −8.114568451206283E−009

of da/dt and de/dt to check the code. In particular, we recall
that we have (as a first approximation) for the tides raised in the
primary (Kaula 1964)

da
dt

= 3k2mnR5

QMa4

(
1 +

51
4

e2
)

de
dt

= 57k2mn

8QM

(
R

a

)5

e

(A1)

and for the tides raised in the 1:1 spin–orbit satellite (Peale &
Cassen 1978)

da
dt

= −21ks
2MnR5

s

Qsma4
e2

de
dt

= −21ks
2Mn

2Qsm

(
Rs

a

)5

e

. (A2)

To make the comparison straightforward, we first considered a
two-body problem for each moon. However, integrating the Sat-
urnian system by modeling only two-body interactions requires
considering a different eccentricity when using Equations (A1)
and (A2). In particular, we have found that using our nominal
solution as initial conditions, the eccentricity of each moon was
changed to 0.017011, 0.00534, 0.000976, 0.00188, 0.00114, and
0.02895 for Mimas to Titan, respectively.

Tides in the Planet (Two-body Problem). Over 100 years,
variations on a are expected to be 8.37, 6.08, 10.722, 4.889,
1.641, 0.952 m for, respectively, S1, . . ., S8 (Mimas, . . ., Titan).
Similarly, variations on e are expected to be 1.81 × 10−9, 3.24 ×
10−10, 8.46 × 10−11, 5.78 × 10−11, 8.42 × 10−12, and 5.30 ×
10−11.

Comparing such estimations with our numerical simulation
offers a good agreement (see Figures 6 and 7; numerical table
is available on request).

Tides in the Satellites (Two-body Problem). Over 100 years
and assuming arbitrarily k2

s/Qs = 10−2 for all moons, variations
on a are expected to be −54.607, −1.597, −0.124, −0.087,
−0.012, −0.544 m for, respectively, S1, . . ., S8 (Mimas, . . .,
Titan). Similarly, variations on e are expected to be −8.66 ×
10−6, −6.28 × 10−7, −2.15 × 10−7, −6.15 × 10−8, −9.61 ×
10−9, and −7.68 × 10−9.

Our numerical simulation offers a good match with analytical
formulation (see Figures 8 and 9 and Table 6). In particular, the
use of a quite simplified force model greatly decreases numerical
errors during integration, making the comparison possible (up to
two digits at least, which may be the accuracy of the analytical
formulation we consider).

Tides in the Planet (Full Model). One can try checking
the tidal model with the full model considered in this work,
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position.
(A color version of this figure is available in the online journal.)
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Figure 20. Variational equations test of Enceladus’ Q parameter from Dione
position.
(A color version of this figure is available in the online journal.)

even though perturbations will make the comparison with an
analytical formulation more difficult. In particular, the expected
drift on a and e may be masked by large short-period oscillations.
Nevertheless, changes on a can still be checked by looking at the
associated acceleration in longitude. Expected variations over
100 years in a from Equation (A1) are 8.38, 6.08, 10.72, 4.89,
1.64, and 0.95 m for Mimas to Titan, respectively. This translates
to 1522, 761, 975, 306, 62, and 10 km in the mean longitudes.

In the simulations below, Tethys and Dione have been
removed from the model to avoid resonances (which would
make the analytic formulation of Equation (A1) invalid).

We obtain clearly a pretty good agreement (see Figures 10
and 11). A similar agreement can be found with the satellite
case (full model).

A.1.4. Testing da/dt Acceleration

As for the tidal model, the “da/dt” force cannot be tested by
the conservation of energy. Using Gauss’ equations, we recall
that we have introduced a force on Mimas that affects only its
semi-major axis by a constant drift da/dt. Checking the validity
of this force can be done easily by checking Mimas’ semi-major
axis variations after integration.

17



The Astrophysical Journal, 752:14 (19pp), 2012 June 10 Lainey et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120

E
uc

lid
ia

n 
di

st
an

ce
 d

iff
er

en
ce

s 
(k

m
)

Time (years) starting from epoch 02/01/1900

Mimas
Enceladus

Tethys
Dione

Figure 21. Position differences between JPL-SPICE sat317 ephemeris and the
present work.
(A color version of this figure is available in the online journal.)

Here we consider the difference between two numerical
simulations, with/without Mimas’ da/dt (Mimas’ semi-major
axis input) equal to −16.9 × 10−15 AU day−1.

Two-body Problem. We provide below such a test (Figure 12),
assuming a two-body problem with only Saturn and Mimas.
Clearly, the force acting on Mimas (input) and its expected effect
on Mimas’ semi-major axis (output) are in full agreement.

The other elements are not affected by the da/dt force, in the
limit of accuracy of our integration.

Full Model. As for tidal effects, one may expect the com-
parison between input/output to be more difficult using the full
model (Enceladus equilibrium scenario and constant Saturn’s
Q). Nevertheless, we can still use the mean longitude drift for
the test and have a pretty good agreement with the two fig-
ures (Figures 13 and 14; Tethys has been removed from the
simulation to avoid the Mimas–Tethys resonance). In particu-
lar, da/dt = −16.9 × 10−15 AU day−1 translates to 16,776 km
in Mimas’ mean longitude after 100 years. Figures 13 and 14
show the variations in semi-major axis and in positions (which
corresponds essentially to the mean longitude variations).

A.1.5. Testing the Variational Equations

Partial derivatives of the moon state vectors as functions
of initial conditions and physical parameters are computed by
solving the so-called variational equations (see Equation (4)).
Having accurate partial derivatives is a fundamental requirement
when fitting a dynamical model to astrometric data. Solutions
of the variational equations are routinely tested in our code.
To check the accuracy of such computations, we compared
our numerical solutions with their approximations using the
centered difference method (i.e., f ′(x) ≃ [f (x + h) − f (x −
h)]/2h).

It is not possible to provide here the tests of all partial
derivatives. Hence, we will restrict the number of figures
by showing the computation of partial derivatives related to
da/dt (Figures 15 and 16), Saturn’s Q (Figures 17 and 18), and
Enceladus’ Q (denoted hereafter by Qs2; Figures 19 and 20),
only. Any other plots are available on request.

We recall that cl denotes an unspecified parameter of the
model that shall be fitted. For more details on the method used,
we refer to Lainey et al. (2004).

Plots for cl = da/dt on Mimas position are shown in Figures
15 and 16.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120

E
uc

lid
ia

n 
di

st
an

ce
 d

iff
er

en
ce

s 
(k

m
)

Time (years) starting from epoch 02/01/1900

Rhea
Titan

Hyperion
Iapetus

Figure 22. Position differences between JPL-SPICE sat317 ephemeris and the
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Figure 23. Mimas–Tethys resonant angle variation obtained with our model.
(A color version of this figure is available in the online journal.)

As can be seen in Figures 15 and 16, numerical computation
of ∂ r/∂cl, where r = r1 and cl = da/dt, is in agreement with
its approximation derived from the center difference method.
The scattering behavior evident in Figure 15 is usual and
corresponds to a nonlinear configuration occurring when the
satellite reaches its maximum value along one Cartesian axis.
As shown in Figure 16, these configurations occur when the
distance differences (on the considered axis) are pretty small.
Hence, this does not affect the fitting procedure. See also Lainey
et al. (2004) for more details.

Plots for cl = Q on Mimas position and Tethys position are
shown in Figures 17 and 18, respectively.

As can be seen in Figures 17 and 18, numerical computation
of ∂ r/∂cl, where r = r1 or r = r3 and cl = Q, is in agreement with
its approximation derived from the center difference method.

Plots for cl = Qs2 on Enceladus position and Dione position
are shown in Figures 19 and 20, respectively.

As can be seen in Figures 19 and 20, numerical computation of
∂ r/∂cl, where r = r2 or r = r4 and cl = Qs2, is in agreement with
its approximation derived from the center difference method.

A.2. SPICE Kernel NOE-6-2011-MAIN.bsp

We have derived ephemerides of the eight main Saturnian
moons for the Enceladus equilibrium and constant Q scenario.
Our ephemerides are available as a SPICE kernel on the

18



The Astrophysical Journal, 752:14 (19pp), 2012 June 10 Lainey et al.

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 1880  1900  1920  1940  1960  1980  2000  2020  2040

A
m

pl
itu

de
 (

de
gr

ee
s)

Time (years)

Figure 24. Enceladus–Dione resonant angle variation obtained with our model.
(A color version of this figure is available in the online journal.)

FTP server of IMCCE: ftp://ftp.imcce.fr/pub/ephem/satel/NOE/
SATURNE/.

Figures 21 and 22 show the Euclidian distance differences
between our ephemerides and the JPL ones (kernel: sat317.bsp).
Differences in the interval [1980, 2011] are between a few tens
of km to less than 200 km, except for Hyperion and Iapetus,
whose dynamics are less well constrained by the astrometric
observations we used.

Since we have fitted a large da/dt term for Mimas, while JPL
probably did not, one could expect large differences in Mimas’
position. But as one can see, the large differences arise only
before the 1970s. This suggests that it is the use of a large time
span that makes possible the derivation of da/dt.

A.3. Resonances

While analytical developments require introducing explicitly
orbital resonances, the latter are a simple consequence of initial
conditions with numerical models. Figures 23 and 24 show
the evolution of the resonant arguments associated with the
Mimas–Tethys and Enceladus–Dione resonances, respectively.
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a b s t r a c t 
Using astrometric observations spanning more than a century and including a large set of Cassini data, 
we determine Saturn’s tidal parameters through their current effects on the orbits of the eight main and 
four coorbital Moons. We have used the latter to make the first determination of Saturn’s Love number 
from observations, k 2 = 0.390 ± 0.024, a value larger than the commonly used theoretical value of 0.341 
(Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which 
the static k 2 ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn’s interior, the new 
constraint can lead to a significant reduction in the number of potential models, offering great opportu- 
nities to probe the planet’s interior. In addition, significant tidal dissipation within Saturn is confirmed 
(Lainey et al., 2012) corresponding to a high present-day tidal ratio k 2 / Q = (1.59 ± 0.74) ×10 −4 and im- 
plying fast orbital expansions of the Moons. This high dissipation, with no obvious variations for tidal 
frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a 
solid core, implying a core viscosity typically ranging between 10 14 and 10 16 Pa.s (Remus et al., 2012). 
However, a dissipation increase by one order of magnitude at Rhea’s frequency could suggest the exis- 
tence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting 
on tidal waves in the fluid envelope of Saturn (Ogilvie & Lin, 2004; Fuller et al. 2016). 

© 2016 Elsevier Inc. All rights reserved. 
1. Introduction 

Tidal effects among planetary systems are the main driver in 
the orbital migration of natural satellites. They result from physical 
processes arising in the interior of celestial bodies, not observable 
necessarily from surface imaging. Hence, monitoring the Moons’ 

∗ Corresponding author. 
E-mail address: lainey@imcce.fr (V. Lainey). 

motions offers a unique opportunity to probe the interior proper- 
ties of a planet and its satellites. In common with the martian and 
jovian systems ( Lainey et al., 2007, 2009 ), the orbital evolution of 
the saturnian system due to tidal dissipation can be derived from 
astrometric observations of the satellites over an extended time 
period. In that respect, the presence of the Cassini spacecraft in 
orbit around Saturn since 2004 has provided unprecedented astro- 
metric and radio-science data for this system with exquisite pre- 
cision. These data open the door for estimating a potentially large 
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number of physical parameters simultaneously, such as the gravity 
field of the whole system and even separating the usually strongly 
correlated tidal parameters k 2 and Q . 

The present work is based on two fully independent analyses 
(modeling, data, fitting procedure) performed at IMCCE and JPL, 
respectively. Methods are briefly described in Section 2 . Section 3 
provides a comparison between both analyses as well as a global 
solution for the tidal parameters k 2 and Q of Saturn. Section 4 de- 
scribes possible interior models of Saturn compatible with our 
observations. Section 5 discusses possible implications associated 
with the strong tidal dissipation we determined. 
2. Material and methods 

Both analyses stand on numerical computation of the Moons’ 
orbital states at any time, as well as computation of the derivatives 
of these state vectors (see Section 2.1 ) with respect to: (i) their ini- 
tial state for some reference epoch; (ii) many physical parameters. 
Tidal effects between both the Moons and the planet are intro- 
duced by means of the amplitude of the tidal bulge and its time 
lag associated to dissipation processes. The gravitational effect of 
the tidal bulge is classically described by the tidal Love number k 2 
and the tidal ratio k 2 / Q . The Love number k 2 is defined as the ratio 
between the gravitational potential induced by the tidally-induced 
mass redistribution and the tide-generating potential. As the inte- 
rior does not respond perfectly to the tidal perturbations, because 
of internal friction applied on tides, there is a time lag between the 
tide-raising potential and the tidally-induced potential. The torque 
created by this lag is proportional to the so-called tidal ratio k 2 / Q . 
The amplitude and lag of the tide potential can also be described 
using a complex representation of the Love number, where the real 
part correspond to the part of the potential aligned with the tide- 
raising potential, while the imaginary part describes the dissipa- 
tive part (see also Section 4 ). The factor Q, often called the quality 
factor ( Kaula 1964 ), or the specific dissipation function, Q −1 , in its 
inverse form, is inversely proportional to the amount of energy dis- 
sipated by tidal friction in the deformed object. Coupled tidal ef- 
fects such as tidal bulges raised on Saturn by one Moon and acting 
on another are considered. Besides the eight main Moons of Sat- 
urn, the coorbital Moons Calypso, Telesto, Polydeuces, and Helene 
are integrated in both studies. 

Although the two tidal parameters k 2 and Q often appear inde- 
pendently in the equations of motion, the major dynamical effect 
by far is obtained when the tide raised by a Moon on its primary 
acts back on this same Moon. In this case, only the ratio k 2 / Q is 
present as a factor for the major term, therefore preventing an in- 
dependent fit of k 2 and Q . However, the small co-orbital satellites 
raise negligible tides on Saturn and yet react to the tides raised on 
the planet by their parent satellites (see Figure in Appendix A.1 ). 
This unique property allows us to make a fit for k 2 that is almost 
independent of Q (see Appendix A.1 ). In particular, we find that the 
modeling of such cross effects between the coorbital moons allows 
us to obtain a linear correlation between k 2 and Q of only 0.03 
( Section 3 and Appendix A.4 ). Thanks to the inclusion of Telesto, 
Calypso, Helene and Polydeuces, we can estimate k 2 essentially 
around the tidal frequencies of Tethys and Dione. 
2.1. IMCCE’s approach 

The IMCCE approach benefits from the NOE numerical code 
that was successfully applied to the Mars, Jupiter, and Uranus sys- 
tems ( Lainey et al., 20 07, 20 08, 20 09 ). It is a gravitational N-body 
code that incorporates highly sensitive modeling and can gener- 
ate partial derivatives needed to fit initial positions, velocities, and 
other parameters (like the ratio k 2 / Q ) to the observational data. 
The code includes (i) gravitational interaction up to degree two in 

the spherical harmonics expansion of the gravitational potential for 
the satellites and up to degree 6 for Saturn ( Jacobson et al. 2006 ); 
(ii) the perturbations of the Sun (including inner planets and the 
Moon by introducing their mass in the Solar one) and Jupiter using 
DE430 ephemerides; (iii) the Saturnian precession; (iv) the tidal ef- 
fects introduced by means of the Love number k 2 and the quality 
factor Q . 

The dynamical equations are numerically integrated in a Sat- 
urncentric frame with inertial axes (conveniently the Earth mean 
equator J20 0 0). The equation of motion for a satellite P i can be ex- 
pressed as ( Lainey et al. 2007 ) 
¨⃗ r i = −G ( m 0 + m i ) ⃗ r i 

r i 3 + N ∑ 
j =1 , j ̸ = i G m j (⃗ r j − ⃗ r i 

r i j 3 −
⃗ r j 
r j 3 

)

+ G ( m 0 + m i ) ∇ i U ̄i ̂ 0 + N ∑ 
j =1 , j ̸ = i G m j ∇ j U ̄j ̂ 0 

+ ( m 0 + m i ) 
m i m 0 (

⃗ F T 
ī ̂ 0 − ⃗ F T 

0̄ ̂ i ) − 1 
m 0 

N ∑ 
j =1 , j ̸ = i 

(
⃗ F T 

j̄ ̂ 0 − ⃗ F T 
0̄ ̂ j ) + GR (1) 

Here, ⃗  r i and ⃗  r j are the position vectors of the satellite P i and a 
body P j (another satellite, the Sun, or Jupiter) with mass m j , sub- 
script 0 denotes Saturn, U ̄

k ̂ l is the oblateness gravity field of body 
P l at the position of body P k , GR are corrections due to General Rel- 
ativity ( Newhall et al. 1983 ) and ⃗ F T 

l̄ ̂ k the force received by P l from 
the tides it raises on P k . This force is equal to ( Lainey et al. 2007 ) 
⃗ F T 
l̄ ̂ k = −3 k 2 G m l 2 R 5 !t 

r kl 8 
(

2 ⃗ r kl ( ⃗ r kl · ⃗ v kl ) 
r kl 2 + ( ⃗ r kl × ⃗ " + ⃗  v kl ) ) (2) 

where ⃗ r kl = ⃗  r k − ⃗ r l , ⃗  v kl = d ⃗ r kl /dt, ⃗ ", R , and !t being the instanta- 
neous rotation vector, equatorial radius and time potential lag of 
P k , respectively. The time lag !t is defined by 
!t = T arctan ( 1 / Q ) / 2 π (3) 
where T is the period of the main tidal excitation. For the tides 
raised on Enceladus, T is equal to 2 π / n ( n being Enceladus’ mean 
motion) as we only considered the tide raised by Saturn. For Sat- 
urn’s tidal dissipation, T is equal to 2 π /2( "- n i ) where " is the spin 
frequency of Saturn and n i is the mean motion of the tide raising 
saturnian Moon P i . !t depends on the tidal frequency and on Q , 
therefore it is not a constant parameter. 

It is clear from the second term in the right hand side of Eqs. 
( 2 ) and ( 3 ) that k 2 and Q are completely correlated. To separate 
both parameters, we consider the action on any Moon of the tides 
raised on Saturn by all other Moons (see also Appendix A.1 ). Ne- 
glecting tidal dissipation in that case provides the extra terms 
∑ N 

j =1 , j ̸ = i 
⇀ 
F T i j 
m i = 3 k 2 G m j R 5 

2 r 5 
i r 5 j 
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r 2 
i + r 2 j ⇀ r i + 2 (⇀ 
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(4) 

For an unspecified parameter c l of the model that shall be fitted 
(e.g. ⃗ r ( t 0 ) , d ⃗ r /dt( t 0 ) , Q…), a useful relation is ( Lainey et al. 2012 
and references therein) 
∂ 
∂ c l 

(
d 2 ⃗  r i 
d t 2 

)
= 1 

m i 
[ 

∑ 
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(
∂ ⃗  F i 
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∂ c l + ∂ ⃗  F i 
∂ ̇ ⃗ r j ∂ ̇

 ⃗ r j 
∂ c l 

)
+ ∂ ⃗  F i 

∂ c l 
] 

, (5) 
where ⃗ F i is the right hand side of Eq. (1) multiplied by m i . Partial 
derivatives of the solutions with respect to initial positions and ve- 
locities of the satellites and dynamical parameters are computed 
from simultaneous integration of Eqs. (5) and (1) . 
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Here, fourteen Moons of Saturn are considered all together, i.e. 

the eight main Moons and six coorbital Moons (Epimetheus, Janus, 
Calypso, Telesto, Helene, and Polydeuces). All the astrometric ob- 
servations already considered in Lainey et al. (2012) and Desmars 
et al. (2009) are used, with the addition of a large set of ISS-Cassini 
data ( Tajeddine et al., 2013, 2015; Cooper et al. 2014 ). We also 
include a new reduction of old photographic plates, obtained at 
USNO between the years 1974 and 1998. As part of the ESPaCE 
European project, the scanning and new astrometric reduction of 
these plates were performed recently at Royal Observatory of Bel- 
gium and IMCCE, respectively ( Robert et al. 2011, 2016 ). We use 
a weighted least squares inversion procedure and minimize the 
squared differences between the observed and computed positions 
of the satellites in order to determine the parameters of the model. 
For each fit, the following parameters are released simultaneously 
and without constraints: the initial state vector and mass of each 
Moon, the mass, the gravitational harmonic J 2 , the orientation and 
the precession of the pole of Saturn as well as its tidal parameters 
k 2 and Q . Tidal dissipation within the Moons is neglected, except 
in Enceladus for which strong tides are believed to take place. No 
da/dt term is released for Mimas. In particular, it appears that the 
large signal obtained in Lainey et al. (2012) can be removed after 
fitting the gravity field of the Saturn system. Indeed, due to its long 
period libration (about 70 years), the 2:1 Mimas-Tethys resonance 
strongly affects the dynamical evolution of Mimas’ orbit over the 
considered time span of observations. Due to exchange of angu- 
lar momentum between the rings and Mimas, a quadratic effect 
on Mimas’ longitude may be strongly correlated with the libration 
amplitude. Since the libration is conditioned by the mass of Mi- 
mas and Tethys, Lainey et al. (2012) fixed their value to former es- 
timates that benefited from the first Cassini data ( Jacobson 2006 ) 
to solve for da/dt. Unfortunately, even a small error on the mass 
of the two Moons was sufficient to generate erroneous behavior in 
the libration angle, strongly affecting the da/dt determination. In 
this work, and thanks to Cassini data, the mass of Saturn and all 
main Moons are fitted accurately. 

2.2. JPL’s approach 
The second approach incorporates the tidal parameters into the 

ongoing determination of the satellite ephemerides and Saturnian 
system gravity parameters that support navigation for the Cassini 
Mission. Initial results from that work appear in Jacobson et al. 
(2006) . For Cassini the satellite system is restricted to the eight 
major satellites, Phoebe, and the lagrangians Helene, Telesto, and 
Calypso. The analysis procedure is to repeat all of the Cassini navi- 
gation reconstructions but with a common set of ephemerides and 
gravity parameters. We combine these new reconstructions with 
other non-Cassini data sets to obtain the updated ephemerides and 
revised gravity parameters. The non-Cassini data include radiomet- 
ric tracking of the Pioneer and Voyager spacecraft, imaging from 
Voyager, Earth-based and HST astrometry, satellite mutual events 
(eclipses and occultations), and Saturn ring occultations. We pro- 
cess the data via a weighted least-squares fit that adjusts our mod- 
els of the orbits of the satellites and the four spacecraft (Pioneer, 
Voyager 1, Voyager 2, Cassini). Peters (1981) and Moyer (20 0 0) de- 
scribe the orbital models for the satellites and spacecraft, respec- 
tively. The set of gravity related parameters adjusted in the fit 
contains the GMs of the Saturnian system and the satellites (He- 
lene, Telesto, and Calypso are assumed massless), the gravitational 
harmonics of Saturn, Enceladus, Dione, Rhea, and Titan, Saturn’s 
polar moment of inertia, the orientation of Saturn’s pole, and the 
tidal parameters k 2 and Q . 

3. Results 
Since tidal effects within Saturn and Enceladus have almost 

opposite orbital consequences, Lainey et al. (2012) could not 
solve for the Enceladus tidal ratio k 2 E / Q E . Here, we face a sim- 
ilar strong correlation and follow their approach by considering 
two extreme scenarios for Enceladus’ tidal state. In a first in- 
version, we neglect dissipation in Enceladus and obtain for Sat- 
urn k 2 , k 2 (I) = 0.371 ± 0.003, k 2 (J) = 0.381 ± 0.011 (formal error bar, 
1 σ ) where the indices I and J refer to the IMCCE and JPL so- 
lutions, respectively. The Saturn tidal ratio that we obtain is 
k 2 / Q (I) = (1.32 ± 0.25) ×10 −4 , k 2 / Q (J) = (1.04 ± 0.19) ×10 −4 ). In a sec- 
ond inversion, we assume Enceladus to be in a state of tidal equi- 
librium ( Meyer & Wisdom, 2007 ), obtaining k 2 (I) = 0.372 ± 0.003, 
k 2 (J) = 0.402 ± 0.011 and k 2 / Q (I) = (2.07 ± 0.26) ×10 −4 , k 2 / Q (J) = (1.22 
± 0.23) ×10 −4 . If both studies are generally in good agreement 
within the uncertainty of the measurements (see also Tables 1 and 
2 ), the last k 2 / Q (I) value stands at 3 σ of the JPL estimation. This 
possibly reflects the difference in the data sets, since JPL intro- 
duced radio-science data, while IMCCE introduced scanning data. 
Nevertheless, both estimates suggest strong tidal dissipation, at 
least about five times larger than previous theoretical estimates 
( Sinclair, 1983 ). Merging IMCCE’s and JPL’s results into one value 
by overlapping the extreme 1 σ values, we get k 2 = 0.390 ± 0.024 
and k 2 / Q = (1.59 ± 0.74) ×10 −4 . These last error bars are not formal 
1 σ values anymore, but the likely interval of expected physical 
values. 

Last, to assess a possibly large variation in Saturn’s Q as func- 
tion of tidal frequency, we followed Lainey et al. (2012) and re- 
leased as free parameters four different Saturnian tidal ratios k 2 / Q 
associated with the Enceladus’, Tethys’, Dione’s, and Rhea’s tides 
(see Tables 1 and 2 ). It turns out that no significant change for 
the k 2 estimation arises with an overall result of k 2 = 0.390 ± 0.024. 
Moreover, global solutions for k 2 / Q ratios are equal to (20.70 + /- 
19.91) ×10 −5 , (15.84 + /- 12.26) ×10 −5 , (16.02 + /- 12.72) ×10 −5 , 
(123.94 + /- 17.27) ×10 −5 at Enceladus’, Tethys’, Dione’s and Rhea’s 
tidal frequency, respectively. Increasing the number of frequencies 
to be tested may be problematic. If the tidal bulges raised by Titan 
on Saturn are much larger than those raised by the other Moons, 
their feedback on Titan’s orbit is significantly smaller. This can eas- 
ily be checked from analytical expression of orbital expansion of 
Moons raising tides on their primary ( Kaula 1964 ). As a conse- 
quence, we did not release Saturn’s k 2 / Q at Titan’s tidal frequency. 
Moreover, since Mimas and Tethys are locked in a mean motion 
resonance, they share their orbital energy and angular momentum. 
Hence, the action of tides raised on Saturn by Mimas and Tethys is 
distributed among the resonant pair. In the limit of our current 
measurements, this prevented solving simultaneously for Saturn’s 
k 2 / Q at Mimas and Tethys frequencies. Hence, Saturn’s k 2 / Q was 
kept fixed at its former constant estimation (see above) for Mi- 
mas as well as for all other Moons, with the exception of Ence- 
ladus, Tethys, Dione and Rhea. We provide in Fig. 1 a plot showing 
all global k 2 / Q ratios associated with constant and non-constant 
assumptions. 
4. Modeling Saturn’s interior 

To model the tidal response of Saturn’s interior and to compare 
it to the k 2 and k 2 / Q values inferred in the present study, we con- 
sider a wide range of interior models consistent with the gravita- 
tional coefficients measured using the Cassini spacecraft ( Helled & 
Guillot 2013 ). In total, 302 interior models, corresponding to var- 
ious core size and composition, helium phase separation and en- 
richment in heavy elements in the external envelope, have been 
tested. Each interior model is characterized by radial profiles of 
density, ρ , and bulk modulus, K . 
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Table 1 
Fitting k 2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and Rhea (S5) frequencies. 

k 2 k 2 / Q (S2) k 2 / Q (S3) k 2 / Q (S4) k 2 / Q (S5) 
IMCCE 0.372 + / − 0.003 (7.4 + / − 3.1) ×10 −5 (10.9 + / − 6.1) ×10 −5 (16.1 + / − 3.8) ×10 −5 (122.3 + / − 15.0) ×10 −5 
JPL 0.377 + / − 0.011 (5.5 + / − 4.7) ×10 −5 (6.0 + / − 2.4) x 10 −5 (21.5 + / − 7.3) ×10 −5 (125.8 + / − 14.9) ×10 −5 

Table 2 
Fitting k 2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and Rhea (S5) frequencies assuming Enceladus’ tidal 
equilibrium. 

k 2 k 2 / Q (S2) k 2 / Q (S3) k 2 / Q (S4) k 2 / Q (S5) 
IMCCE 0.372 + / − 0.003 (18.1 + / − 3.1) ×10 −5 (11.9 + / − 6.1) ×10 −5 (15.0 + / − 3.8) ×10 −5 (121.6 + / − 15.0) ×10 −5 
JPL 0.394 + / − 0.011 (27.1 + / − 13.5) ×10 −5 (21.5 + / − 6.6) ×10 −5 (5.4 + / − 2.1) ×10 −5 (127.9 + / − 13.3) x 10 −5 

Fig. 1. Variation of the Saturnian tidal ratio k 2 /Q as a function of tidal frequency 2( !-n), where ! and n denote its rotation rate and the Moon’s mean motion, respectively. 
Four frequencies are presented associated with Enceladus’, Tethys’, Dione’s and Rhea’s tides. IMCCE and JPL solutions are in red and green, respectively. They are shown 
slightly shifted from each other along the X-axis for better visibility. Orange lines refer to the global estimation k 2 / Q = (15.9 + / − 7.4) ×10 −5 . (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article). 

In giant planets, two main mechanisms are invoked for tidal 
dissipation: the viscous dissipation associated to viscoelastic defor- 
mation of a solid core (as initially proposed by Dermott (1979) and 
further explored here) and the fluid friction applied on tidal waves 
propagating in the deep gaseous envelope (see e.g. Ogilvie & Lin 
2004 and the discussion hereafter). As demonstrated in Guenel, 
Mathis and Remus (2014) , these two mechanisms may have com- 
parable strengths and superpose. 

Here, the tidal response of Saturn’s interior is first computed 
from all the considered density profiles assuming that the core is 
solid and viscoelastic, with radius R core (varying typically between 
70 0 0 and 16,0 0 0 km) overlaid by a thick non-dissipative fluid en- 
velope (to explore the own effect of the core), similar to the ap- 
proach of Remus et al. (2012, 2015 ). The envelope is only taken 
into account for the hydrostatic effects it applies on the core. The 
complex Love number k c 2 (including both the response aligned 
with tide-raising potential and the dissipative part in quadrature) 
is computed by integrating the 5 radial functions, y i , describing the 
displacements, stresses, and gravitational potential from the planet 

center to the surface, following the formalism initially introduced 
by Alterman et al. (1959) . The viscoelastic deformation in the solid 
viscoelastic core is computed using the compressible elastic for- 
mulation of Takeuchi & Saito (1972) , adapted to viscoelastic media 
(see Tobie et al., 2005 for more details). For the fluid envelope, the 
static formulation of Saito (1974) is used. In this formalism, the 
fluid friction is not modeled. However, it allows us to take into ac- 
count the gravitational effects of the fluid envelope on the solid 
core deformation, which has a strong impact in the case of very 
thick fluid envelope like in the case of Saturn as demonstrated by 
Dermott (1979) and Remus et al. (2012, 2015 ). The system of dif- 
ferential equations (6 in the core and 2 in the envelope) is solved 
by integrating from the center to the surface three independent 
solutions using a fifth order Runge-Kutta method with adaptive 
stepsize control, and by applying the appropriate condition at the 
solid core/fluid envelope interface and at the surface (see Takeuchi 
& Saito 1972 and Tobie et al. 2005 for more details). The com- 
plex Love number k 2 c is determined from the complex 5th radial 
function at the planet surface, y 5 c (R s ) , and the global dissipation 
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function by the ratio between the imaginary part and the modulus 
of k 2 c : k 2 = | k 2 c | = | y 5 c ( R s )-1|; Q −1 = -Im( k 2 c )/| k 2 c |. 

For the solid core, a compressible Maxwell rheology, character- 
ized by the bulk modulus K , the shear modulus µ, and the vis- 
cosity η, is assumed. As the mechanical properties of such a core 
are totally unknown, a wide range of parameter values is consid- 
ered. As we will show hereafter, the Q factor of Saturn can be ex- 
plained only for a limited range of viscoelastic parameters, thus 
providing useful constraints on Saturn’s core structure and rheol- 
ogy. The shear modulus is determined from the bulk modulus as- 
suming a constant µ/K ratio varying between 0.001 and 1, and the 
viscosity is assumed constant over a range varying between 10 12 
and 10 18 Pa.s. For comparison, the µ/K ratio in the inner core of 
the Earth is about 0.12 ( Dziewonski and Anderson, 1981 ), and its 
viscosity is estimated typically between 10 14 and 10 20 Pa.s ( Karato, 
2008 ). Obviously, Saturn’s core is different from Earth’s metallic in- 
ner core due to difference in pressure and composition. However, 
this comparison gives us an estimate of the typical parameter val- 
ues we might expect in Saturn. 

In order to test the validity of our numerical code, we com- 
pared our numerical solutions with the analytical solutions derived 
by Remus et al. (2012 ) for a viscoelastic core and a fluid envelope 
with constant density. As illustrated on Fig. A.2 , we reproduce al- 
most perfectly the analytical value of the tidal Love number. For 
the dissipation function, the agreement is also very good, the dif- 
ference between the analytical and numerical solutions never ex- 
ceed a few per cent. To further test our code, we also compared 
with the solution provided by Kramm et al. (2011) for a density 
distribution of a n = 1 polytrope: we obtained k 2 = 0.5239, while the 
value reported by Kramm et al. (2011) is 0.5198, which corresponds 
to a difference of less than 0.8%. 

Our calculations confirm that the real part of the tidal Love 
number ( k 2 ) of the planet is almost entirely determined by the 
density profile; therefore it is a very close to the fluid Love num- 
ber. For the 302 tested interiors models, corresponding to various 
core size and composition of the core and fluid envelope, we ob- 
tained values of k 2 ranging between 0.355 and 0.381. The lowest 
values are obtained obtained for fast deep rotation (10h32’) and 
high-density core (modeled with the EOS of pure rock), while the 
highest values correspond to slow deep rotation (10h39’) and low- 
density core (modeled with the EOS of pure ice). All tested models 
are consistent with the equatorial radius and the gravitational co- 
efficients ( J 2 , J 4 and J 6 ) determined by Cassini, within error bars. 
Although we did not test all possible models, based on these re- 
sults, we can reasonably conclude that a k 2 value as high as 0.39 is 
incompatible with the observed gravitational coefficient. For slow 
rotation cases, all models with a low density ice-rich core have 
a k 2 value above 0.366, the lower limit inferred from astromet- 
ric measurements, while only about half of the models with a high 
density core exceeds this value. For fast rotation cases, only four 
tested models exceed this limit: all of them have a low-density 
core and a helium separation occurring at 1 Mbar, in line with re- 
cent determinations of hydrogen-helium phase separation ( Morales 
et al., 2009 ). Even if we can notice some tendencies as a func- 
tion of core size ( Fig. 2 ), the k 2 value is controlled by several other 
internal parameters (core composition, helium separation, enrich- 
ment in heavy elements in the external envelope), which precludes 
any simple interpretation of the measured k 2 value in term of in- 
ternal structure. Tests performed for a wide range of mechanical 
parameters for the core show that they have only very minor ef- 
fects on the k 2 value. Varying the µ/K ratio from 0.001 to 1 results 
in only 0.2% of variations on the amplitude of k 2 . Nevertheless, it 
strongly affects the imaginary part of k 2 , and hence the quality 
factor, Q . 

As shown in Fig. 3 a and b, the global Q factor depends on the 
assumed shear modulus (hence the µ/K ratio) and the viscosity in 

Fig. 2. Mass of the core and k 2 Love number for interior models of Saturn from 
Helled & Guillot (2013) . Filled circles indicate models assuming a low density core 
(modeled using the equation of state of pure ice) while empty circles indicate mod- 
els assuming a high density core (modeled using the EOS of rocks). Models in blue 
assume a “slow” deep rotation of 10h39m while models in red assume a “fast” deep 
rotation of 10h32m, more in line with the recent determination of Helled et al. 
(2015) . The grey area indicates where values of k 2 are incompatible with our as- 
trometric determination. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article). 
the core as well as on its size. The minimal values Q min shown in 
Fig. 3 a were obtained by systematically exploring the core viscosity 
for values comprised between 10 12 and 10 17 Pa.s. This shows that 
for µ/K ∼0.1-0.5, Q < 30 0 0 can be obtained for core size comprised 
between 80 0 0 and 17,0 0 0 km, with values as low as 20 0–30 0 for 
the largest core size (corresponding to ice-rich core). Fig. 3 b shows 
the range of viscosity values for which Q remains below 30 0 0. For 
models with ice core, Q < 30 0 0 for viscosity values ranging between 
about 2.10 13 and 2.10 16 Pa.s. For small core radii ( < 11,0 0 0 km) cor- 
responding to a rock core, Q values lower than 30 0 0 can also be 
found, but for a more restricted range of viscosity values, between 
typically 10 15 and 10 16 Pa.s. For a very low µ/K ratio (0.01), Q < 
30 0 0 can be obtained for large ice-rich cores and viscosity values 
of the order of 5.10 13 −5.10 14 Pa.s. These possible ranges of viscosity 
are compatible with those derived previously in Remus et al. (2012, 
2015 ) where simplified two-layer planetary models were used. 

As illustrated in Fig. 4 , the computed k 2 / Q values vary only very 
weakly with tidal frequency, when compared to the frequency de- 
pendence expected for dissipation due to dissipation of tidal waves 
in the fluid envelope (e.g. Ogilvie & Lin, 2004 ). We obtained a weak 
frequency dependence with logarithmic rate of change with fre- 
quency ranging between −1 and + 1, depending on the shear mod- 
ulus and viscosity of the core. The slope, negative or positive, is 
determined by the Maxwell time, which is defined as the ratio 
between the viscosity and the shear modulus: τ= η/ µ, relative to 
the forcing period. As in our models, the shear modulus vary as 
a function of radius in the core, the local Maxwell time vary as 
a function of radius. As an example, for µ /K = 0.1 and a viscosity 
value of 10 15 −10 16 Pa.s, the Maxwell time typically varies between 
0.9-9 hours at the center of the core to 0.2-2 hours at the core 
surface, while the tidal period varies between 6 and 8 h. As a con- 
sequence, for η= 10 15 Pa.s, the slope is negative, while it is positive 
for η= 10 16 Pa.s. In both cases, the weak frequency dependence is 
comptabile with the tendencies inferred from astrometric observa- 
tions for Enceladus, Tethys and Dione frequencies. Remarkably, for 
this viscosity range, we can reproduce the typical value of the ob- 
served k 2 / Q . 

Even though Q values as low as 200 can be obtained for large 
cores and appropriate viscoelastic parameters, it is not possible to 
explain with viscoelastic dissipation, Q values of the order of a few 
thousands at Enceladus’ tidal frequency and of a few hundred at 
Rhea’s tidal frequency. Additional dissipation processes in the deep 
gaseous envelope are thus required to explain the high dissipa- 
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Fig. 3. (a) Minimum value of the quality factor, Q min , as a function of core radius for three different values of µ/K (0.01, 0.1, 0.5); (b) Range of viscosity values, ηmax ( ") 
- ηmin ( ∇), for which Q < 30 0 0 for the three µ/K ratios displayed in (a). The dashed line indicates the transition between high density (rock-dominated) core and low density 
(ice-dominated) core. For this computation, the tidal frequency was fixed at 2.6 ×10 −4 rad.s −1 . 

Fig. 4. k 2 / Q values as a function of tidal frequency, ω, for two core viscosity values (10 15 (a) and 10 16 (b) Pa.s) for six different values of core radius. The µ/K ratio was fixed 
to 0.1 for these calculations. 
tion inferred from observation at Rhea’s tidal frequency. The best 
candidate is turbulent friction applied to tidal inertial waves (their 
restoring force is the Coriolis acceleration) in the deep, rapidly ro- 
tating, oblate convective envelope of Saturn that dissipates their 
kinetic energy ( Ogilvie & Lin, 2004; Braviner & Ogilvie, 2015 ). This 
fluid dissipation is resonant and its amplitude can therefore vary 
by several orders of magnitude as a function of the tidal frequency 
( Ogilvie & Lin, 2004; Auclair-Desrotour, Mathis & Le Poncin-Lafitte, 
2015 ), particularly in the case of weak effective turbulent viscos- 
ity expected in the case of rapidly rotating planets ( Mathis, 2016 ). 
Hence, it can explain the increase by one order of magnitude of 
the dissipation over the small frequency range arising between 
Dione and Rhea. Fuller et al. (2016) also proposed an alternative 
scenario by studying gravito-inertial waves (their restoring forces 
are the Coriolis acceleration and the Archimedean buoyancy force) 
that propagate and are trapped in resonance in a potential stably- 
stratified layer surrounding the core ( Fuller et al. 2014 ). 
5. Discussion 

In 1977, Gavrilov and Zharkov (1977) computed the value 
of Saturn’s Love numbers and obtained for the lowest degree 
quadripolar coefficient k 2 = 0.341. Even though this value is often 
used as the reference, it stands on physical assumptions and inter- 
nal structure models that have since been improved ( Guillot 1999, 
20 05; Hubbard et al., 20 09; Kramm et al., 2011; Nettelmann et al., 
2013; Helled & Guillot, 2013 ). Although all the models we consid- 

ered following the approach of Helled and Guillot (2013) repro- 
duced the gravitational coefficients J 2 , J 4 and J 6 with error bars, 
they lead to significant variations in k 2 . J 2 and k 2 are both sen- 
sitive to the density profile, but in a different manner. For slowly 
rotating bodies, J 2 and fluid Love number k f 2 (which is very close 
to the tidal Love number in the case of Saturn) can be related 
through the classical relationship J 2 = qk f 2 /3 with q the rotational 
parameter: q = ω 2 a 3 /GM, with ω the rotation frequency, a the equa- 
torial radius, M the mass of the planet and G the gravitational con- 
stant. For Saturn, the rotational ratio q ranges between 0.1544 and 
0.1584 for rotation periods between 10h32’ and 10h39’. Such a high 
q ratio, the fluid Love number predicted from the simple J 2 rela- 
tionship is about 0.31, which is about 13–18% less than the fluid 
Love number computed from the density profile. This is due to the 
strong flattening of the planet and the gravitational signatures of 
the flattened internal interfaces. As already anticipated from the 
pioneer work of Gavrilov and Zharkov (1977) and further explored 
by Kramm et al. (2011) , the Love number k 2 is very sensitive to 
the degree of mass concentration toward the center of the planet, 
but differently from J 2. It evaluates the amplitude of the hydro- 
static adjustment of the planet’s structure to the tidal perturba- 
tions while J 2 gives the strength of the hydrostatic response to the 
centrifugal acceleration. Determinations of the tidal Love numbers 
( k 2 , k 3 ) and of the gravitational coefficients thus provide comple- 
mentary information to constrain the density structure of Saturn. 
From the variety of internal models we explored in the present 
study, we notice that a large fraction of models compatible with 



292 V. Lainey et al. / Icarus 281 (2017) 286–296 
the J n coefficients are compatible with the inferred k 2 because the 
uncertainties are still large. However, any further improvement in 
the estimation of k 2 and the spin rate will allow to restrict the 
number of acceptable models and provide crucial constraints on 
Saturn’s interior. 

Our estimation of Saturn’s Q confirms the values previously de- 
rived by Lainey et al. (2012) , which is one order of magnitude 
smaller than the value derived from the usually expected long 
term evolution of the Moons over the age of the Solar System 
( Sinclair, 1983 ). We recall that earlier studies constrained Saturn’s 
Q using the current positions of the innermost main Moons. Con- 
sidering the Moons’ motions back in time, the averaged exchange 
of angular momentum between the planet and the Moons asso- 
ciated with tidal dissipation must have been limited in order to 
prevent the Moons from crossing their Roche limit 4.5 Byr ago 
( Goldreich & Soter 1966 ). Such a Q value was then re-evaluated 
by Gavrilov & Zharkov (1977) using a more realistic k 2 for Saturn 
and by Sinclair (1983) considering in detail the Mimas-Tethys 2:1 
mean motion resonance. The low Q or high dissipation rate ob- 
tained in this work, implying rapid orbital expansion, suggests that 
either the dissipation has significantly changed over time, or that 
the Moons formed later after the formation of the Solar System 
( Charnoz et al. 2011; Ćuk 2014 ). Since tidal dissipation may arise 
both in the planet’s fluid envelope and its presumably solid core 
( Guenel et al., 2014 ), we can look in more detail at the frequency 
dependency of the tidal ratio k 2 / Q shown in Fig. 1 . Despite large 
error bars, the tidal ratios associated with Enceladus, Tethys and 
Dione do not depart from their former constant estimates. On the 
other hand, we obtain a strong increase of dissipation at Rhea’s 
frequency. Such a dissipation corresponds to an orbital shift in the 
longitude of about 75 km (see Appendix A.3 ). The fact that the 
strong orbital shift at Rhea is observed using both the IMCCE and 
JPL models, makes systematic errors unlikely. As Rhea has no or- 
bital resonance with any other Moon, and no significant dynamical 
interaction with the rings, its strong orbital shift is more likely the 
consequence of strong tides. 

The rather constant dissipation inferred at tidal frequencies as- 
sociated with Enceladus, Tethys and Dione suggests dissipation 
processes dominated by anelastic tidal friction in a solid core 
( Remus et al., 2012, 2015 ). This is confirmed by the calculations 
performed here using more realistic density profiles. We further 
show that a Q factor lower than 30 0 0 required a core viscosity 
lower than 10 16 Pa.s. For large low-density ice-rich cores, Q values 
as low as 20 0–30 0, compatible with the k 2 / Q estimate obtained at 
Rhea’s frequency, can be obtained. However, due to the weak fre- 
quency dependence of dissipation in a viscoelastic core, a Q value 
of 150 0–250 0 at Enceladus, Tethys and Dione’s frequency cannot 
be match simultaneously with a value as low as 300 at Rhea’s. 
This suggests either that additional dissipation processes exist in 
Saturn at Rhea’s frequency to reduce the apparent Q value, or that 
a value as low as 300 is representative of Saturn’s dissipation that 
the orbital consequences of such a strong dissipation in Saturn 
is partially compensated by strong dissipation in the Moons. The 
best candidate for additional processes in Saturn to explain the re- 
duced Q at Rhea’s is friction applied to tidal inertial (or gravito- 
inertial) waves in the deep, rapidly rotating, gaseous envelope of 
Saturn that dissipates their kinetic energy ( Ogilvie & Lin, 2004; 
Fuller et al., 2016 ). It can explain the increase by one order of mag- 
nitude of the dissipation over the small frequency range arising be- 
tween Dione and Rhea. 
6. Conclusion 

Using a large set of astrometric observations including ground- 
based observations and thousands of Cassini-ISS data, we provide 
the first observationally-derived estimate of the Love number of 

Saturn, k 2 . This determination could be done thanks to the pres- 
ence of the lagrangian Moons of Tethys and Dione in the dy- 
namical modeling. Moreover, we confirm the strong tidal dissi- 
pation found by Lainey et al. (2012) , but associated with an in- 
tense frequency-dependent peak of tidal dissipation for Rhea’s tidal 
frequency. Modeling the likely interior of Saturn, it appears two 
different tidal mechanisms may arise simultaneously within the 
planet. The first one is tidal friction within the dense core, while 
significant tidal dissipation may also occur inside the outer fluid 
envelope at Rhea’s tidal frequency. 
Note added in proof 

Wahl et al. (2016) recently presented theoretical calculations 
for one symmetrically spherical Saturn model yielding a value of 
k 2 = 0.367, in agreement with the theoretical static values presented 
in Section 4. However, they show that accounting for dynamical 
flattening due to rotation increases the total theoretical k 2 value 
by + 0.046. This is still compatible with our constraint k 2 = 0.390 
+ / − 0.024 but would imply that our analysis in Fig. 2 should be 
reconsidered. 
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Appendix 
A.1. The tidal effects on coorbital satellites 

The effects of tidal bulges on one Moon’s motion are gener- 
ally far below detection, unless those tides are raised by the same 
Moon. Indeed, such a configuration produces a secular effect on 
the orbit that may be detectable after a sufficient amount of time. 
On the other hand, tidal bulges associated with another Moon 
will introduce essentially quasi-periodic perturbations, with much 
lower associated signal on the orbits. There exists an exception, 
however, if one considers the special case of lagrangian Moons. In- 
deed, in such a case the tidal bulges are oriented on average with 
a constant angle close to 60 ° (see figure below). 

As a consequence, tidal effects arising on one Moon and acting 
on a lagrangian Moon will provide a significant secular signature 
on the orbital longitude that is hopefully detectable. To quantify 
how large this effect can be, we rely here on numerical simulation. 
A simple look at the differences on the positions of the coorbital 
Moons after adding/removing the cross tidal effects over about 10 
years (roughly the time span of Cassini data) will be meaningless. 



V. Lainey et al. / Icarus 281 (2017) 286–296 293 

Indeed, one needs to take into account the fitting procedure of the 
initial conditions to the observations. In particular, the difference 
in modeling may be partly masked by a slight change of the ini- 
tial conditions. As a consequence, the true incompressible part of 
the cross tidal effects in the dynamics will be revealed only after 
having fitted one simulation onto the other. We provide below pr- 
efit and postfit residuals associated with these cross-tidal effects, 
for 14 Moons of Saturn. The postfit simulations are obtained af- 
ter having fitted all initial state vectors, masses, Saturn’s J 2 , polar 
orientation and precession, Saturn’s tidal Q . 

We can see that the largest effects indeed appear on the coor- 
bital Moons, with the highest effects on the lagrangian satellites of 
Tethys and Dione. When not considering these cross-tidal effects, 
the astrometric residuals of these former Moons can easily reach a 
few tens of kilometers, much above the typical 5 km residuals we 
obtained in the present work (see Appendix A.4 and Fig. A.4 ). 
A.2. Validation of Love number computation 
A.3. Rhea’s orbital acceleration under strong Saturnian tides 

To estimate the impact of the large k 2 / Q value obtained at 
Rhea’s tidal frequency, we perform prefit and postfit simulations 
(fitting the state vectors of all Moons) over a century. Assuming 
k 2 / Q = 122.28 ×10 −5 (see IMCCE solution in Table 1 ), the postfit 
residuals below show that Rhea’s longitude is affected by a sig- 
nal of a bit more than 75 km. This corresponds to about 12.5 mas 
(0.0125 arc second) at opposition, which represents roughly 10% 
of the global astrometric residuals from the ground ( Lainey et al. 
2012 ), and a huge signal when comparing with Cassini data. 

Table A.4.1 
(One single Moon per image): Statistics of the ISS-NAC astrometric residuals 
computed from IMCCE model (no tidal dissipation within Enceladus scenario) 
in pixel. µ and σ denote respectively the mean and standard deviation of the 
residuals computed on sample and line. N s and N l are the number of observa- 
tions considered for the respective coordinate. 

Satellite µs σ s µl σ l N s N l 
Epimetheus −0 .0094 4.3180 0 .1805 4.5340 350 350 
Janus 0 .0096 0.9780 0 .5378 1.1566 322 322 
Mimas 0 .4190 0.2813 −0 .0460 0.6600 20 20 
Enceladus −0 .0014 0.3547 −0 .1116 0.2783 108 108 
Tethys −0 .1232 0.5284 0 .0814 0.2600 25 25 
Dione −0 .0278 0.4808 0 .0748 0.4730 84 84 
Rhea −0 .2925 0.4644 −0 .0035 0.2055 58 58 
Titan 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Hyperion 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Iapetus 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Calypso −0 .0348 0.2508 −0 .1742 0.2546 230 230 
Telesto −0 .0190 0.2220 −0 .0366 0.2960 279 279 
Helene −0 .0164 0.2731 −0 .0456 0.2492 262 262 
Polydeuces −0 .0554 0.2508 −0 .0584 0.2422 139 139 

Table A.4.2 
(Multiple Moon per image): Statistics of the ISS-NAC astrometric residuals 
computed from IMCCE model (no tidal dissipation within Enceladus scenario) 
in pixel. µ and σ denote respectively the mean and standard deviation of the 
residuals computed on sample and line. N s and N l are the number of observa- 
tions considered for the respective coordinate. 

Satellite µs σ s µl σ l N s N l 
Epimetheus 0 .0203 0.2778 0 .0449 0.2912 28 28 
Janus −0 .0203 0.2778 −0 .0449 0.2912 28 28 
Mimas 0 .0255 0.1784 −0 .0064 0.2745 134 134 
Enceladus −0 .0307 0.1784 0 .0084 0.1248 327 327 
Tethys 0 .0211 0.1088 0 .0186 0.1359 424 424 
Dione −0 .0204 0.1061 0 .0054 0.1070 592 592 
Rhea 0 .0175 0.1370 −0 .0234 0.1208 556 556 
Titan 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Hyperion 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Iapetus 0 .0 0 0 0 0.0 0 0 0 0 .0 0 0 0 0.0 0 0 0 0 0 
Calypso 0 .1470 0.0 0 0 0 −0 .5137 0.0 0 0 0 1 1 
Telesto −0 .0997 0.0702 0 .2454 0.1691 3 3 
Helene −0 .1308 0.0508 0 .2090 0.0096 2 2 
Polydeuces 0 .1379 0.0731 −0 .2135 0.1657 3 3 

A.4. Astrometric residuals and linear correlations 
To illustrate the various simulations that we performed, we pro- 

vide astrometric residuals of the IMCCE solution that considered a 

Fig. A.1.1. Prefit residuals associated with cross-tidal effects. 
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Fig. A.1.2. Postfit residuals associated with cross-tidal effects. 

Fig. A.2. Comparison between numerical (black crosses) and analytical (orange squares) solutions of tidal Love number, k 2 (left) and dissipation factor, Q (right) as a function 
of core radius, R core , computed for a solid viscoelastic core and a fluid envelope with constant density, assuming a core viscosity of 10 15 Pa.s and a shear modulus of 10 0 0 
GPa. 

Fig. A.3.1. Left: residuals in distance (km); right: residuals in the orbital longitude (rad). 
constant k 2 / Q ratio and no tidal dissipation scenario within Ence- 
ladus. To save space, we do not provide here statistics of ground- 
based and HST data, since they are pretty similar to the ones 
published in Lainey et al. (2012) . We provide below the plots of 
the O-Cs, only. Full statistics are available on request. 

Fig. A.4 shows the astrometric residuals of the lagrangian satel- 
lites of Tethys and Dione. Tables A .4.1–A .4.3 provide the astromet- 
ric residuals of all observations for the 14 Moons considered. Table 
A.4.4 provides the correlations between all our fitted parameters 
and the tidal parameters k 2 and Q . 
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Fig. A.4.1. Astrometric residuals of the four lagrangian satellites from ISS-Cassini. Telesto and Calypso are the two coorbital Moons of Tethys. They move around the lagrangian 
stable points L4 and L5. Helene and Polydeuces are in equivalent orbital configurations but along the orbit of Dione. The associated ISS-NAC astrometric data are fitted in 
sample and line coordinates (pixel). Residuals are here converted to kilometres. 

Table A.4.3 
(One Moon per image): Statistics of the ISS-NAC astrometric residuals computed 
from IMCCE model (no tidal dissipation within Enceladus scenario) in km. µ and 
σ denote respectively the mean and standard deviation of the residuals com- 
puted on RA and DEC. N RA and N DEC are the number of observations considered 
for the respective coordinate. 

Satellite µRA σ RA µDEC σ DEC N RA N DEC 
Mimas −1 .1001 3 .9151 −1 .1401 2 .8370 826 826 
Enceladus −0 .1979 2 .8234 0 .2713 2 .6588 732 732 
Tethys 0 .0532 4 .5654 −0 .0123 3 .5007 924 924 
Dione −0 .2068 4 .1726 −0 .5264 3 .4 94 8 948 949 
Rhea −0 .3170 3 .3581 −0 .1138 2 .4739 1021 1021 
Titan 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 0 
Hyperion −0 .1292 15 .4526 −5 .9373 12 .7287 92 90 
Iapetus 1 .4754 5 .1951 −1 .1544 5 .4322 1534 1534 

Table A.4.4 
Correlation between all our fitted parameters and the tidal parameters k 2 and Q. 
Here a is the semi-major axis, l is the mean longitude, e is the eccentricity, "
is the longitude of the node, ω is the argument of the periapsis, k = e cos( "+ ω), 
h = e sin( "+ ω), q = sin(i/2) cos( ") and p = sin(i/2) sin( "). Numbers 1,2,3,…,14 refer to 
Epimetheus, Janus, the eight main Moons (Mimas,…Iapetus), Calypso, Telesto, He- 
lene, Polydeuces, respectively. Full table is available on request. 

k 2 Q 
a 1 0 .006 0 .023 
l 1 0 .002 −0 .014 
k 1 −0 .0 0 0 −0 .001 
h 1 0 .002 0 .002 
q 1 −0 .0 0 0 −0 .002 
p 1 0 .0 0 0 0 .003 
a 2 0 .008 0 .025 
l 2 −0 .004 −0 .029 
k 2 −0 .001 0 .002 
h 2 −0 .002 0 .001 
q 2 0 .0 0 0 −0 .001 
p 2 −0 .0 0 0 0 .002 
a 3 0 .009 0 .025 

Table A.4.4 ( continued ) 
k 2 Q 

l 3 −0 .013 0 .232 
k 3 −0 .013 0 .017 
h 3 −0 .003 0 .002 
q 3 0 .017 −0 .024 
p 3 0 .002 0 .070 
a 4 0 .009 0 .027 
l 4 −0 .012 0 .182 
k 4 0 .017 0 .084 
h 4 −0 .026 −0 .026 
q 4 0 .004 −0 .0 0 0 
p 4 −0 .006 0 .127 
a 5 0 .009 0 .024 
l 5 0 .009 −0 .223 
k 5 0 .0 0 0 0 .020 
h 5 −0 .003 −0 .074 
q 5 −0 .027 0 .012 
p 5 0 .011 0 .069 
a 6 0 .009 0 .026 
l 6 0 .002 −0 .509 
k 6 0 .011 −0 .005 
h 6 −0 .010 0 .082 
q 6 0 .005 −0 .012 
p 6 −0 .007 0 .154 
a 7 0 .009 0 .023 
l 7 −0 .003 −0 .216 
k 7 −0 .006 −0 .029 
h 7 −0 .003 −0 .008 
q 7 −0 .006 0 .203 
p 7 −0 .007 0 .036 
a 8 0 .010 0 .019 
l 8 −0 .002 −0 .005 
k 8 −0 .002 −0 .003 
h 8 0 .003 0 .025 
q 8 0 .006 0 .059 
p 8 0 .002 −0 .013 
a 9 0 .007 0 .016 
l 9 −0 .001 −0 .005 
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Table A.4.4 ( continued ) 

k 2 Q 
k 9 −0 .001 0 .001 
h 9 0 .002 0 .014 
q 9 −0 .003 −0 .0 0 0 
p 9 0 .0 0 0 −0 .018 

a 10 0 .008 0 .008 
l 10 −0 .004 −0 .007 
k 10 −0 .008 −0 .005 
h 10 −0 .007 −0 .007 
q 10 0 .0 0 0 0 .005 
p 10 −0 .002 −0 .022 
a 11 0 .010 0 .025 
l 11 −0 .024 −0 .114 
k 11 0 .034 0 .003 
h 11 −0 .012 −0 .002 
q 11 −0 .028 0 .029 
p 11 0 .018 0 .051 
a 12 0 .008 0 .025 
l 12 0 .142 −0 .216 
k 12 −0 .002 −0 .011 
h 12 −0 .012 −0 .006 
q 12 0 .025 −0 .018 
p 12 0 .011 0 .026 
a 13 0 .005 0 .025 
l 13 −0 .028 −0 .254 
k 13 0 .010 0 .033 
h 13 −0 .002 0 .026 
q 13 −0 .0 0 0 −0 .031 
p 13 0 .001 0 .062 
a 14 0 .010 0 .029 
l 14 −0 .073 −0 .254 
k 14 0 .020 −0 .055 
h 14 0 .007 −0 .052 
q 14 0 .004 −0 .021 
p 14 −0 .005 0 .054 

M 0 .009 0 .026 
m 1 −0 .004 0 .003 
m 2 −0 .004 0 .003 
m 3 −0 .001 −0 .378 
m 4 0 .038 −0 .064 
m 5 0 .118 −0 .019 
m 6 0 .120 0 .029 
m 7 0 .011 −0 .062 
m 8 0 .0 0 0 0 .004 
m 9 0 .0 0 0 −0 .003 

m 10 −0 .005 −0 .011 
a 0 0 .003 −0 .591 
d 0 −0 .010 0 .138 

c 20 −0 .005 0 .014 
da/dt 0 .017 0 .186 
dd/dt 0 .012 −0 .129 

k 2 1 .0 0 0 −0 .030 
Q −0 .030 1 .0 0 0 
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Abstract

We have developed a new dynamical model of the main Uranian satellites, based on numerical integration and fitted to astrometric
observations. Old observations, as well as modern and Voyager observations have been included. This model has provided ephemerides
that have already been used for predicting the mutual events during the PHE-URA campaign. It is updated here to improve the
prediction of these events. We also tried to assess the real accuracy of our ephemerides by checking the distance differences of the
Uranian satellites, using simultaneously our former and new model. It appears that both solutions are very close to each other (within
few tens of kilometers), and most probably accurate at the level of few hundred of kilometers. Using new available meridian observations
of the Uranian satellites, we have checked the Uranian ephemeris accuracy using DE406. An error of more than 0.1 arcsec on the
Uranian position is observed.
r 2008 Elsevier Ltd. All rights reserved.

Keywords: Uranian satellite; Orbital dynamics; Ephemerides

1. Introduction

The Uranian mutual events (occurring mainly between
May 2007 and February 2008) are an opportunity to
observe Uranus and its satellites with a high accuracy.
Observations of these events will provide photometric
lightcurve drops, and after proper reduction some highly
accurate astrometric positions of these satellites. The
feasibility to observe these events is dependent on our
capacity to predict them. In particular, accurate ephemer-
ides of the Uranian satellites are required.

In the middle of the 1980s, analytical ephemerides of the
Uranian satellites were developed for the need of the
Voyager 2 mission (Laskar, 1986; Laskar and Jacobson,
1987). These ephemerides, called GUST86, were comple-
tely analytical and fitted to an important set of observa-
tions covering the years 1911–1986. The computational
precision over 12 years of the model was estimated, by
comparison with numerical integration, to be between few
tens of kilometers (Miranda, Ariel and Umbriel), to one
hundred kilometers (Titania and Oberon). More difficult is
estimating the real accuracy of a theory. In particular, the

time elapsed since the development of GUST86 leads one
to expect a decrease of the accuracy. Hence, these
ephemerides may have more important residuals when
compared to nowadays observations. Stone (2001) found
discrepancies between GUST86 and FASTT astrometric
observations suggesting the necessity to perform a new fit.
In the other hand, further analytical developments should
be done to increase GUST theory, like increasing the
number of analytical terms in the series and adding the
Solar perturbation (Laskar and Jacobson, 1987).
More recently, Taylor (1998) has developed ephemerides

of the Uranian satellites by means of numerical integration.
He used a smaller set of observations spanning from 1977
to 1995. Despite the probably higher accuracy of this
model for the present day computations, mutual events of
the Uranian satellites have essentially been predicted by
GUST86 theory (Christou, 2005; Arlot et al., 2006).
Arlot et al. (2006) predicted the Uranian mutual events

using two different ephemerides. As mentioned above, the
first ones were the GUST86 ephemerides, while the second
ones, called LA06, have been developed by a new
numerical model, and fitted to observations from 1948 to
2003. Differences of few tens of seconds on the prediction
of the midtime events were commonly found, and most of
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the events were predicted within 5min (one minute of time
corresponding roughly to a position shift of 180 and
400 km for respectively Oberon and Miranda, which are
the slowest and the fastest among the main Uranian
satellites). Very few were the number of events that have
been predicted by one model only. However, the flux drop
differences reached frequently up to 50%. It is a critical
parameter when one wants to observe mutual events of
such faint objects. The second model, however, is expected
to be a better predictor of the satellite positions, as it is
based on numerical integration and considers more recent
observations. Nevertheless, it is difficult to deduce the real
accuracy of a model, and so of the mutual event
predictions. It is clear that the use of new observations
can help to solve this problem. By computing the residuals
for a new set of observations, one can estimate the
accuracy of the ephemerides. Another way is to perform
a new fit, and then, check the differences on the satellite
positions delivered from the model before/after the new fit.
Both approaches are explored in this paper.

Observations of Titania and Oberon, done between 2001
and 2006 at Flagstaff with the FASTT instrument, have
recently been released on the internet via the United States
Naval Observatory (USNO) FTP server1 (thanks to the
effort of A.Monet), as well as observations done at
Bordeaux observatory between 1997 and 2003 (courtesy
of G. Dourneau). We have tried to quantify the accuracy of
LA06 ephemerides by using these new sets of observations.
New ephemerides, called LA07, that take into account
some of these observations and the former sets introduced
in LA06 have been developed. By looking at the differences
between LA06 and LA07, as well as the residuals with the
Bordeaux observations we tried to estimate the real
accuracy of the Uranian satellite ephemerides. In the same
time, we had an opportunity to check the accuracy of the
Uranian ephemeris by looking for systematic errors on the
Uranian satellite residuals.

Section 2 presents the astrometric observations used in
this paper. In Section 3, we summarize the equations and
perturbations introduced in the numerical model that were
only briefly mentioned in Arlot et al. (2006). Section 4
presents the fitting method and the residuals of LA07
ephemerides. Section 5 discusses the real accuracy of these
ephemerides.

2. The observations used

The observations used in this work are almost the same
as those mentioned in Arlot et al. (2006). Just two sets of
observations are new. The first one consists of the recently
available observations of the FASTT meridian telescope
done between 2001 and 2006. These observations done
each year can be found on the FTP server of the USNO,
doubling the number of observations previously available
with this instrument. The second set of observations is a

courtesy of G. Dourneau. All these observations were done
at the meridian telescope of Bordeaux (Floirac).
During our fitting procedure we have used the inter-

satellite method to get rid of the inaccuracy of the Uranian
position. Meridian observations usually do not allow for
having the astrometric positions of a complete satellite
system at exactly the same time. However, FASTT
observations are reduced with a specific treatment that
provides astrometric observations of Titania and Oberon
at the same time (Stone et al., 1996). The only exception is
the year 2006 for which no observations of Titania are
available. Hence, we have benefited from all the FASTT
observations during the fit process, except for the year
2006. For the same reason, we have not used Bordeaux
observations in the fit. However, we could still use these
observations as two independent observational sets to test
the accuracy of the Uranian ephemeris and the present
Uranian satellite ones.

3. The numerical model

The software used for numerical integration is called
Numerical Orbit and Ephemerides (NOE). It was devel-
oped for computing the ephemerides of the natural
satellites, and has been applied successfully to the Martian
system (Lainey et al., 2007). It is an N-body code that
incorporates highly sensitive modeling and can generate
partial derivatives, which are needed to fit the initial
positions, velocities, and other parameters (masses, oblate-
ness coefficients, precession frequency, etc) to the observa-
tional data.
The model presented in this work takes into account: (i)

the Uranian gravity field up to degree 4 adopting the
numerical values from French et al. (1988), (ii) the
perturbations of the Sun using DE406 ephemerides
(Standish, 1998), (iii) the mass of each Uranian satellite
with numerical values from Jacobson (1992), and (iv) the
IAU2000 Uranian northern pole orientation (Seidelmann
et al., 2002).
The dynamical system is numerically integrated in a

planetocentric frame with inertial axes (conveniently the
Earth mean equator J2000). Hence, denoting ri the position
vector of a satellite, the related equation of motion has the
usual form of

€ri ¼ "
Gðm0 þmiÞri

r3i
þ
XN

j¼1;jai

Gmj
rj " ri

r3ij
"

rj

r3j

 !

þ Gðm0 þmiÞriU {̄0̂ þ
XN

j¼1;jai

GmjrjU |̄0̂ (1)

where U |̄0̂ denotes the oblateness gravity potential of the
planet. The associated force is computed using a rotation
matrix of angles2 ða0 þ p=2; p=2" d0;W Þ and its associated
inverse.
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Denoting cl as an unspecified parameter of the model
that shall be fit (e.g. rðt0Þ; _rðt0Þ;m0; . . . ;) a useful relation is

q
qcl

d2ri

dt2

! "
¼

1

mi

X

j

qFi

qrj

qrj

qcl
þ

qFi

q_rj

q_rj

qcl

! "
þ

qFi

qcl

" #

(2)

Hence, partial derivatives of the solutions with respect to
initial positions and velocities of the satellites and
dynamical parameters are computed from numerical
integration of Eq. (1) and simultaneously with Eq. (2).
For an explicit formulation of the dynamical equations and
the variational equations used, we refer to Peters (1981)
and Lainey et al. (2004).

The integrator subroutine is from Everhart (1985) and
called RA15. It was chosen for its computational speed and
accuracy. During the different integrations, a constant step
size of Dt ¼ 0:025 day was used. To increase the numerical
accuracy during the fitting procedure, we performed
forward and backward integrations starting at an initial
Julian epoch of 2446299.5 (22/08/1985 TDB). This epoch
was chosen to keep high precision during the time span of
the Voyager observations. The numerical accuracy of our
simulation in computing the satellite positions is at the level
of a hundred meters over one century.

Before fitting the numerical model to the astrometric
observations, we used the GUST86 theory to start with
proper initial conditions. A sample of 759 Cartesian
coordinates in a J2000 Earth mean equatorial frame
centered on Uranus was used with a step size of 4.5 days.

Post-fit residuals after few least square iterations are shown
in Fig. 1.
The residuals are found to be of the same order of the

ones presented in Laskar (1986). Only the residuals on
Miranda are found to be much larger. This is easily
understandable as we did not use the same physical
modeling for the Uranian system. In particular, our values
of the masses and gravity coefficients are not the same.
Being the closest satellite to Uranus, Miranda is affected
the most by errors in the Uranian GM and zonal
harmonics.3 Nevertheless, such agreement was sufficient
to fit the numerical model and provide LA06 ephemerides
of the Uranian satellites. In the present work, we used
LA06 initial conditions to perform the fit of LA07.

4. Post-fit residuals

Despite the possibility to fit the masses and Uranian
precession of the system, we only fitted the initial positions
and velocities of each satellite. A global solution involving
the fit of a complete set of physical parameters and the use
of older observations is still an ongoing work and shall
benefit from the coming PHE-URA observations. Such
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Fig. 1. Differences in distance after fitting the numerical model to the GUST86 ephemerides. The satellite initial positions and velocities have only been
fitted here. The horizontal axes are in years relative to Julian day 2446299.5 (22/08/1985).

3This can be easily checked by computing different simulations with
slightly modified values of the Uranian gravity field and check the position
differences (simulations not shown here). In addition, a former fit to
GUST using the same gravity field introduced in GUST provided similar
differences for all satellites to the ones presented in Laskar (1986).
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work will be presented in a future paper. Residuals between
observed and computed position (O–C)s were fitted using
the least squares method. Convergence problem of the
least-squares method had been noticed in Taylor (1998),
and resolved by fitting the initial elliptical elements of each
satellite, instead of the usual initial state vectors in
Cartesian coordinates. This problem had also been
encountered by Lainey et al. (2007) in the case of the
Martian system. The present ephemerides have been done
by fitting the initial elliptical elements.

Each observational set has been arranged by satellite and
coordinate (right ascension and declination), and assigned

a specific weight corresponding to the standard deviation
of a former iteration. Observations with residuals higher
than 2.5 sigmas were rejected in the corresponding
iteration.
Intersatellite positions were used to cancel out the

uncertainty of the Uranian ephemeris. However, Miranda
is much fainter and difficult to observe than the other main
Uranian satellites. To avoid the diffusion of the higher
observational errors of Miranda on the other satellite fits,
we fitted Miranda’s initial elements with Uranocentric
positions, only. Hence, we may expect a much better fit for
Ariel, Umbriel, Titania and Oberon, but a worse one for
Miranda.
Fig. 2 and Tables 1–3 present the post-fit residuals of our

numerical model to the ground and Voyager 2 astrometric
observations. The tables can be directly compared to the
ones in Arlot et al. (2006). No important differences
between the post-fit residuals of LA06 and LA07 can be
found. This was expected as, firstly, the new observations
concern the modern period only, and secondly, are not very
numerous compared to the global amount of observations
used in LA06. However, we may compare the residuals of
FASTT observations in the present paper with those of
Arlot et al. (2006). It appears that the new residuals in
LA07 with the addition of roughly 200 new observations
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Table 1
Table showing the values of the mean hni and standard deviations s on
right ascension and declination in arcseconds for each satellite

Observations hnai sa hndi sd N Satellite

1983–1998 0.0040 0.0668 0.0094 0.1084 1536 Ariel
Veiga et al. (2003) 0.0005 0.0665 0.0135 0.1081 1526 Umbriel

0.0018 0.0680 0.0146 0.1087 1541 Titania
0.0049 0.0744 0.0049 0.1113 1541 Oberon
!0.0130 0.2317 !0.0493 0.4350 1320 Miranda

1987–1994 0.0137 0.3019 !0.0189 0.3339 106 Titania
Chanturiya et al.
(2002)

0.0439 0.3270 0.0117 0.3220 103 Oberon

1998–2005 !0.0159 0.1868 !0.0171 0.1293 360 Titania
Stone (2001), !0.0393 0.1827 !0.0275 0.1310 398 Oberon
Monet (priv. com.)

1999 !0.0100 0.0150 0.3380 0.1454 3 Ariel
Owen (1999) !0.0105 0.0229 !0.2028 0.1025 3 Umbriel

0.0925 0.0731 !0.0719 0.0122 3 Titania
!0.0720 0.0590 !0.0633 0.0386 3 Oberon

2001 !0.0531 0.0320 0.2141 0.0213 3 Umbriel
Owen (2001) 0.0208 0.0154 !0.1495 0.0189 3 Titania

0.0323 0.0229 !0.0647 0.0085 3 Oberon

2003 !0.0163 0.0332 0.0528 0.0152 6 Titania
McNaught et al. (2003) 0.0163 0.0332 !0.0528 0.0152 6 Oberon

1984–1986 0.0025 0.0240 !0.0021 0.0175 34 Ariel
Walker et al. (1988) !0.0014 0.0236 !0.0009 0.0284 33 Umbriel

!0.0038 0.0238 0.0032 0.0250 34 Titania
!0.0052 0.0210 !0.0014 0.0288 34 Oberon
0.0668 0.0771 0.0096 0.1348 4 Miranda

1981–1985
Pascu et al. (1987) !0.0050 0.1149 0.0523 0.0779 76 Miranda

1979–1983 !0.0024 0.0384 0.0051 0.0424 88 Ariel
Harrington et al.
(1984)

!0.0014 0.0525 !0.0005 0.0528 85 Umbriel

0.0069 0.0417 0.0043 0.0368 86 Titania
0.0010 0.0447 0.0025 0.0477 88 Oberon
!0.0118 0.1032 !0.0330 0.0907 30 Miranda

1977–1982 !0.0042 0.0583 0.0047 0.0622 343 Ariel
Veillet (1983) 0.0020 0.0627 0.0003 0.0635 340 Umbriel

!0.0049 0.0506 0.0045 0.0575 343 Titania
!0.0123 0.0459 !0.0003 0.0556 345 Oberon
0.0290 0.0997 !0.0138 0.0926 230 Miranda

N being the number of observations used by satellite. Note that some sets
of data include too few observations to provide confident statistical data.

Table 2
Table showing the values of the mean hni and standard deviations s on
right ascension and declination in arcseconds for each satellite

Observations hnai sa hndi sd N Satellite

1981
Veillet (1983) !0.0070 0.1136 !0.0436 0.1144 78 Miranda

1975–1977 0.0231 0.0813 !0.0093 0.0761 28 Ariel
Walker et al. (1978) 0.0111 0.0707 0.0195 0.0711 28 Umbriel

!0.0082 0.1028 !0.0051 0.0732 28 Titania
0.0022 0.0990 0.0092 0.1066 28 Oberon
!0.0146 0.2754 !0.0294 0.1923 26 Miranda

1948–1964 !0.0145 0.1429 !0.0036 0.2242 91 Ariel
Van Biesbroek (1970) !0.0005 0.1084 !0.0054 0.1531 108 Umbriel

!0.0196 0.0918 0.0168 0.1072 111 Titania
0.0199 0.1174 0.0132 0.1712 107 Oberon
0.0254 0.1714 !0.0421 0.2348 56 Miranda

N being the number of observations used by satellite.

Table 3
Table showing the values of the mean hni and standard deviations s on
right ascension and declination in kilometers for each satellite

Observations hnai sa hndi sd N Satellite

1985–1986 5.7216 167.9484 !17.8270 126.0694 104 Ariel
Jacobson (1992) !6.9481 123.4069 !36.6868 176.7214 103 Umbriel

7.6498 169.6340 !18.2472 144.8569 66 Titania
!42.9281 298.7524 67.0665 257.9650 64 Oberon
!76.9120 222.9311 !73.5027 248.1120 102 Miranda

N being the number of observations used by satellite.
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for both Titania and Oberon are worse. This happens
because some bad observations usually deleted in the
FASTT reduction treatment were kept in the present
sample (A.Monet priv. com.). Anyway, residuals between
LA06 and LA07 are generally in good agreement.

5. Discussion

The problem of quantifying the accuracy of an
ephemeris is recurrent in celestial mechanics. At least we
can quantify the differences between LA06 and LA07, and
estimate the influence of adding new astrometric observa-
tions. Fig. 3 presents the distance differences between the
two ephemerides for the five Uranian satellites.

Titania and Oberon have the highest residuals as they
are the only ones observable with FASTT. The residuals
present linear trends but do not exceed 45 km. We may
conclude that at least over a short time scale (few years) the
ephemerides are drifting linearly. In particular, we expect
the lack of observations available in 2006 and 2007 to
decrease the accuracy of LA07 ephemerides of roughly
10–20 km.

Table 4 gives the residuals with LA07 of the FASTT
observations of Oberon in 2006 and Bordeaux observa-
tions. As already explained, these observations can be used
as an independent way to estimate the accuracy of LA07,
but also of the ephemeris of Uranus. Neglecting the only 20
observations of Umbriel (that is also a satellite more
difficult to observe than Titania and Oberon), one finds a
shift in Bordeaux’s observations of !0:15 arcsec in the

mean of the residuals on the declinations. A less agreement
is found when considering the mean on right ascensions.
Anyway, a clear discrepancy of at least !0:1 arcsec
appears. The observations of Oberon done in 2006 at
Flagstaff present also some significant bias. The low
number of observations, however, prevent us to be very
confident in an accurate estimation of such bias. To test the
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Table 4
Table showing the values of the mean hni and standard deviations s on
right ascension and declination in arcseconds for each satellite

Observations hnai sa hndi sd N Satellite

1997–2003 !0.1154 0.2165 !0.0402 0.2421 20 Umbriel
G. Dourneau (priv. com.) !0.1146 0.1488 !0.1508 0.1929 96 Titania

!0.1431 0.2052 !0.1523 0.2486 117 Oberon

2006
A. Monet (priv. com.) !0.1634 0.2104 !0.0870 0.2616 39 Oberon

1997–2003
Odd observations !0.0427 0.2330 !0.1531 0.2065 10 Umbriel

!0.1418 0.1411 !0.1585 0.1866 48 Titania
!0.1568 0.2594 !0.1332 0.2473 59 Oberon

Even observations !0.1883 0.1696 0.0726 0.2217 10 Umbriel
!0.0878 0.1513 !0.1432 0.1988 48 Titania
!0.1294 0.1268 !0.1718 0.2485 58 Oberon

2006
Odd observations !0.1668 0.2217 !0.1039 0.2763 20 Oberon
Even observations !0.1598 0.1978 !0.0692 0.2440 19 Oberon

N being the number of observations used by satellite.
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Fig. 3. Distance differences between LA06 and the present ephemerides LA07.
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steadiness of our results, we divided both observational sets
in two subsets, each one containing respectively the even
and odd observations. Residuals are also shown in Table 4.
Again, a clear bias of at least 0.1 arcsec on right ascension
and declination is present.

The quantification of the accuracy of LA06 and LA07 is,
however, difficult to deduce from Table 4. Standard
deviation for all sets reach frequently roughly 0.2 arcsec.
It is difficult to explain such residuals by the error of LA07,
as residuals for such ephemerides with, for example, the
observations of Veiga et al. (2003) and Stone (2001) are
much smaller. In the other hand, the accuracy can be
somewhat deduced from all the observational residuals
already presented in Section 4. The high differences on the
residuals from one set of observations to another one
reflect essentially the differences of the observational
errors. Hence one can expect the error of the ephemerides
to be much lower. We remind that 0.1 arcsec is at
opposition roughly equal to 1300 km at the distance of
Uranus. Under such considerations, one can expect the
accuracy of LA07 to be of the order of few hundreds of
kilometers, only.

6. Conclusion

We have developed a new numerical model of the five
main Uranian satellites. Observations done between 1948
and 2005 have been introduced in the model fitting
procedure. The produced ephemerides can be used to
predict the mutual events occurring in 2007 and 2008.
These ephemerides can also be used for the reduction
treatment of the related photometric lightcurves. A
consequent error of at least 0.1 arcsec has been confirmed
on the ephemeris of Uranus (DE406). LA06 and LA07
ephemerides have an expected accuracy of few hundreds of
kilometers. They are available as FORTRAN subroutines
on request to the author.

Acknowledgments

The author is greatly indebted to A. Monet for having
provided all FASTT observations done these last few years,
and to G. Dourneau for sharing the observations done at
Bordeaux observatory. The author would also like to
thank M. Standish and an other anonymous referee for
useful suggestions and significant improvements in the
present paper.

References

Arlot, J.E., Lainey, V., Thuillot, W., 2006. Predictions of the mutual
events of the uranian satellites occurring in 2006-2009. Astron.
Astrophys. 456, 1173–1179.

Chanturiya, Kisseleva, Emelianov, 2002. Izvestia Pulkovo, 216, 349.
Christou, Apostolos, A., 2005. Mutual events of the uranian satellites 2006

2010. Icarus 178, 171–178.
Everhart, E., An efficient integrator that uses Gauss-Radau spacings,

1985, ASSL Vol. 115: IAU Colloq. 83: Dynamics of Comets: Their
Origin and Evolution, 185.

French, R.G., Elliot, J.L., French, L.M., Kangas, J.A., Meech, K.J.,
Ressler, M.E., Buie, M.W., Frogel, J.A., Holberg, J.B., Fuensalida,
J.J., Joy, M., 1988. Uranian ring orbits from earth-based and Voyager
occultation observations. Icarus 73, 349–378.

Harrington, R.S., Walker, R.L., 1984. Positions of planets and natural
satellites. II. Astron. J. 89, 889–898.

Jacobson, R.A., 1992. Astrographic observations of the major Uranian
satellites from Voyager 2. Acta Astronautica 96, 549–563.

Lainey, V., Duriez, V., Vienne, A., 2004. New accurate ephemerides for
the Galilean satellites of Jupiter. I. Numerical integration of elaborated
equations of motion. Astron. Astrophys. 420, 1171–1183.

Lainey, V., Dehant, V., Pätzold, M., 2007. First numerical ephemerides of
the Martian moons. Astron. Astrophys. 465, 1075–1084.

Laskar, J., 1986. A general theory for the Uranian satellites. Astron.
Astrophys. 166, 349–358.

Laskar, J., Jacobson, R.A., 1987. GUST86—an analytical ephemeris of
the Uranian satellites. Astron. Astrophys. 188, 212–224.

McNaught, R.H., Garradd, G.J. 2003. NSDC Comm. UM008.
Owen, W.M., 1999. NSDC Comm. UM004.
Owen, W.M., 2001. NSDC Comm. UM005.
Pascu, D., Seidelmann, P.K., Schmidt, R.E., Santoro, E.J., Hershey, J.L.,

1987. Astrometric CCD observations of Miranda-1981-1985. Astron.
J. 93, 963–967.

Peters, C.F., 1981. Numerical integration of the satellites of the outer
planets. Astron. Astrophys. 104, 37–41.

Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., Bergh, C.d.,
Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P.,
Thomas, P.C., 2002. Report of the IAU/IAG Working Group on
Cartographic Coordinates and Rotational Elements of the Planets and
Satellites: 2000, Celestial Mechanics and Dynamical Astronomy, 82,
83-111.

Standish, E.M., 1998. JPL Planetary and Lunar Ephemerides, JPL IOM,
312.F-98-048.

Stone, R.C., 2001. Positions for the Outer Planets and Many of Their
Satellites. V. FASTT Observations Taken in 2000–2001. Astron.
J. 122, 2723–2733.

Stone, R.C., Monet, D.G., Monet, A.K.B., Walker, R.L., Ables, H.D.,
1996. The Flagstaff Astrometric Scanning Transit Telescope (FASTT)
and Star Positions Determined in the Extragalactic Reference Frame.
Astron. J. 111, 1721–1742.

Taylor, D.B., 1998. Ephemerides of the five major Uranian satellites by
numerical integration. Astron. Astrophys. 330, 362–374.

Van Biesbroek, G. 1970. Comm. to Lunar and Planetary laboratory, 8,
179.

Veiga, C.H., Vieira Martins, R., Andrei, A.H., 2003. Positions of Uranus
and Its Main Satellites. Astron. J. 125, 2714–2720.

Veillet, C. 1983. Ph.D. University of Paris VI.
Walker, R.L., Harrington, R.S., 1988. Positions of planets and natural

satellites. III. Astron. J. 95, 1562–1566.
Walker, R.L., Christy, J.W., Harrington, R.S., 1978. Positions of planets

and natural satellites. Astron. J. 83, 838–844.

ARTICLE IN PRESS
V. Lainey / Planetary and Space Science 56 (2008) 1766–17721772


