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— Abstract —

Théories séculaires et
dynamique orbitale au-delà
de Neptune

La structure dynamique de
la région transneptunienne est
encore loin d’être entièrement
comprise, surtout concernant les
objets ayant un périhélie très
éloigné. Dans cette région,
les perturbations orbitales sont
très faibles, autant de l’intérieur
(les planètes) que de l’extérieur
(les étoiles de passage et les
marées galactiques). Pourtant,
de nombreux objets ont des or-
bites très excentriques, ce qui
indique qu’ils ne se sont pas
formés tels qu’on les observe ac-
tuellement. De plus, certaines
accumulations dans la distribu-
tion de leurs éléments orbitaux
ont attiré l’attention de la com-
munauté scientifique, conduisant
à de nombreuses conjectures
sur l’origine et l’évolution du
Système Solaire externe.

Avant d’envisager des
théories plus “exotiques”,
une analyse exhaustive doit
être menée sur les différents
mécanismes qui peuvent re-
produire les trajectoires ob-
servées à partir de ce qui est
jugé “certain” dans la dyna-
mique du Système Solaire, à
savoir les perturbations par
les planètes connues et par les
marées galactiques. Cependant,
nous ne pouvons pas nous fier
uniquement aux simulations
numériques pour explorer ef-
ficacement l’espace des com-
portements possibles. Dans ce
contexte, notre objectif est de
dégager une vision globale de
la dynamique entre Neptune et
le nuage de Oort, y compris les
orbites les plus extrêmes (même
si elles sont peut-être impro-

Teorie secolari e dina-
mica orbitale oltre Nettuno

La struttura dinamica della
regione trasnettuniana è an-
cora lontana dall’essere intera-
mente capita, soprattutto per
ciò che concerne gli oggetti che
hanno un perielio molto di-
stante. In questa regione le per-
turbazioni orbitali sono molto
deboli, sia dall’interno (i pia-
neti) che dall’esterno (le stelle
di passaggio e le maree galat-
tiche). Eppure, numerosi og-
getti hanno delle orbite molto
eccentriche, il che dimostra che
non si sono formati cos̀ı come
li osserviamo ora. Inoltre, al-
cune accumulazioni nella distri-
buzione dei loro elementi orbi-
tali hanno attratto l’attenzione
della comunità scientifica, pro-
ducendo innumerevoli conget-
ture sull’origine e l’evoluzione
del Sistema Solare esterno.

Prima di considerare teorie
più “esotiche”, un’analisi com-
pleta deve essere condotta sui
diversi meccanismi che possono
produrre le traiettorie osservate
partendo da quello che è con-
siderato “certo” nella dinamica
del Sistema Solare, cioè le per-
turbazioni dai pianeti conosciuti
e dalle maree galattiche. Tutta-
via, non ci si può fidare solo delle
simulazioni numeriche per esplo-
rare efficacemente lo spazio dei
comportamenti possibili. In tale
contesto, il nostro obbiettivo è
di sviluppare una visione globale
della dinamica tra Nettuno e la
Nube di Oort, comprese le orbite
più estreme (anche se sono forse
improbabili).

Le orbite completamente
esterne alla regione planetaria
possono essere divise in due
macroclassi: da una parte gli

Secular theories and or-
bital dynamics beyond Nep-
tune

The dynamical structure of
the trans-Neptunian region is
still far from being fully un-
derstood, especially concerning
high-perihelion objects. In that
region, the orbital perturbations
are very weak, both from in-
side (the planets) and from out-
side (passing stars and galactic
tides). However, numerous ob-
jects have very eccentric orbits,
which indicates that they did
not form in their current orbital
state. Furthermore, some in-
triguing clusters in the distri-
bution of their orbital elements
have attracted attention of the
scientific community, leading to
numerous conjectures about the
origin and evolution of the ex-
ternal Solar System.

Before thinking of “exotic”
theories, an exhaustive survey
has to be conducted on the dif-
ferent mechanisms that could
produce the observed trajector-
ies involving only what we take
for granted about the Solar Sys-
tem dynamics, that is, the or-
bital perturbations by the known
planets and/or by galactic tides.
However, we cannot rely only
on numerical integrations to effi-
ciently explore the space of pos-
sible behaviours. In that con-
text, we aim at developing a
general picture of the dynamics
between Neptune and the Oort
Cloud, including the most ex-
treme orbits (even if they are
maybe improbable).

The orbits entirely exterior
to the planetary region can be di-
vided into two broad classes: on
the one hand, the objects under-
going a diffusion of semi-major



bables).
Les orbites entièrement

extérieures à la région planétaire
peuvent être divisées en deux
classes générales : d’un côté, les
objets soumis à une diffusion du
demi grand-axe (ce qui empêche
toute variation importante du
périhélie) ; de l’autre côté les
objets qui présentent une dyna-
mique intégrable à court terme
(ou quasi-intégrable). La dy-
namique de ces derniers peut
être décrite par des modèles
séculaires. Il existe deux sortes
d’orbites régulières : les orbites
non résonnantes (demi grand-
axe fixe) et celles piégées dans
une résonance de moyen mou-
vement avec une planète (demi
grand-axe oscillant).

La majeure partie de ce tra-
vail de thèse se concentre sur
le développement de modèles
séculaires pour les objets trans-
neptuniens, dans les cas non
résonnant et résonnant. Des
systèmes à un degré de liberté
peuvent être obtenus, ce qui
permet de représenter chaque
trajectoire par une courbe de ni-
veau du hamiltonien. Ce type de
formalisme est très efficace pour
explorer l’espace des paramètres.
Il révèle des trajectoires me-
nant à des périhélies éloignés,
de même que des “mécanismes
de captures”, capables de main-
tenir les objets sur des orbites
très distantes pendant des mil-
liards d’années. L’application
du modèle séculaire résonnant
aux objets connus est également
très instructive, car elle montre
graphiquement quelles orbites
observées nécessitent un scénario
complexe (comme la migra-
tion planétaire ou un per-
turbateur extérieur), et les-
quelles peuvent être expliquées
par l’influence des planètes
connues. Dans ce dernier cas,

oggetti sottoposti a una diffu-
sione del semiasse maggiore (che
impedisce una variazione impor-
tante del perielio); dall’altra gli
oggetti che presentano una dina-
mica integrabile a breve termine
(o quasi-integrabile). La dina-
mica di questi ultimi può essere
descritta con modelli secolari. Ci
sono due tipi di orbite regolari:
le orbite non risonanti (semiasse
maggiore fisso) e quelle intrap-
polate in una risonanza di moto
medio con un pianeta (semiasse
maggiore oscillante).

La maggior parte di questo
lavoro di dottorato si concen-
tra sullo sviluppo di modelli se-
colari per gli oggetti trasnettu-
niani relativi ai due casi non
risonante e risonante. Sistemi
con un grado di libertà pos-
sono essere ottenuti in modo tale
che ogni traiettoria sia rappre-
sentata da una curva di livello
dell’Hamiltoniana. Questo tipo
di formalismo è molto efficace
per esplorare lo spazio dei pa-
rametri. Esso rivela traietto-
rie che conducono a perieli lon-
tani, insieme a dei “meccanismi
di cattura”, in grado di mante-
nere questi oggetti su delle orbite
molto distanti per miliardi di
anni. L’applicazione del modello
secolare risonante agli oggetti co-
nosciuti fornisce inoltre molte in-
formazioni, dato che mostra gra-
ficamente quali orbite osservate
necessitano di uno specifico sce-
nario (come la migrazione plane-
taria o un perturbatore esterno)
e quali possono essere spiegate
mediante l’azione dei pianeti co-
nosciuti. In quest’ultimo caso, la
storia dinamica dei piccoli corpi
può essere tracciata fin dalla loro
cattura in risonanza.

L’ultima parte di questo la-
voro è dedicata all’utilizzo del
modello secolare non risonante
esteso al caso di un pertur-

axis (which prevents any large
variation of the perihelion dis-
tance); on the other hand, the
objects which present an integ-
rable (or quasi-integrable) dy-
namics on a short timescale.
The dynamics of the latter can
be described by secular mod-
els. There are two kinds of
regular orbits: the non-resonant
ones (fixed semi-major axis) and
those trapped in a mean-motion
resonance with a planet (oscillat-
ing semi-major axis).

The major part of this Ph.D.
work is focussed on the devel-
opment of secular models for
trans-Neptunian objects, both in
the non-resonant and resonant
cases. One-degree-of-freedom
systems can be obtained, which
allows to represent any traject-
ory by a level curve of the
Hamiltonian. Such a formal-
ism is pretty efficient to explore
the parameter space. It re-
veals pathways to high perihe-
lion distances, as well as “trap-
ping mechanisms”, able to main-
tain the objects on very distant
orbits for billions of years. The
application of the resonant secu-
lar model to the known objects
is also very informative, since
it shows graphically which ob-
served orbits require a complex
scenario (as the planetary migra-
tion or an external perturber),
and which ones can be explained
by the influence of the known
planets. In this last case, the dy-
namical history of the small bod-
ies can be tracked back to the
resonance capture.

The last part of this work is
devoted to the extension of the
non-resonant secular model to
the case of an external massive
perturber. If it has a substan-
tial eccentricity and/or inclina-
tion, it introduces one or two
more degrees of freedom in the



l’histoire dynamique des petits
corps peut être retracée depuis
leur capture en résonance.

La dernière partie de
ce travail est consacrée à
l’extension du modèle séculaire
non résonnant au cas d’un
perturbateur extérieur mas-
sif. S’il est doté d’une excen-
tricité et/ou d’une inclinaison
non négligeable, cela introduit
un, voire deux degrés de liberté
supplémentaires dans le système,
d’où une dynamique en général
non intégrable. Dans ce cas,
l’analyse peut être réalisée à
l’aide de sections de Poincaré,
qui permettent de distinguer les
régions chaotiques et régulières
de l’espace des phases. Pour
des demi grands-axes croissants,
le chaos se propage très rapide-
ment. Les structures les plus
persistantes sont des résonances
séculaires produisant des trajec-
toires alignées ou anti-alignées
avec la planète distante.

Le développement des
modèles séculaires est décrit
dans Saillenfest et al. (2016),
et l’exploration de l’espace des
paramètres dans Saillenfest et al.
(2017a). L’application aux ob-
jets transneptuniens connus,
incluant les corps au périhélie
distant récemment découverts,
est présentée dans Saillen-
fest and Lari (2017). Finale-
ment, l’extension du modèle non
résonnant au cas d’un pertur-
bateur extérieur est décrite et
explorée dans Saillenfest et al.
(2017b).

batore esterno massiccio. Se
questo presenta un’eccentricità
e/o un’inclinazione significativa,
introduce uno o persino due
gradi di libertà aggiuntivi nel si-
stema, dando luogo, in generale,
ad una dinamica non integrabile.
In tal caso, l’analisi si può con-
durre mediante sezioni di Poin-
caré, che permettono di differen-
ziare le regioni caotiche e rego-
lari dello spazio delle fasi. Au-
mentando il semiasse maggiore,
il caos si estende molto rapida-
mente. Le strutture più per-
sistenti sono risonanze secolari
che conducono a traiettorie alli-
neate o anti-allineate col pianeta
esterno.

Lo sviluppo dei modelli se-
colari è descritto in Saillenfest
et al. (2016), e l’esplorazione
dello spazio dei parametri
in Saillenfest et al. (2017a).
L’applicazione agli oggetti tra-
snettuniani conosciuti, che inclu-
dono i corpi con perielio distante
scoperti di recente, è presentata
in Saillenfest and Lari (2017).
Infine, l’estensione del modello
non risonante al caso di un per-
turbatore esterno è descritta in
Saillenfest et al. (2017b).

system, so the secular dynam-
ics is non integrable in gen-
eral. In that case, the ana-
lysis can be realised by Poin-
caré sections, which allows to
distinguish the chaotic regions of
the phase space from the regu-
lar ones. For increasing semi-
major axes, the chaos spreads
very fast. The most persistent
structures are secular resonances
producing trajectories aligned or
anti-aligned with the orbit of the
distant planet.

The development of the sec-
ular models is described in Sail-
lenfest et al. (2016), and the ex-
ploration of the parameter space
in Saillenfest et al. (2017a). The
application to the known trans-
Neptunian objects, including re-
cently discovered high-perihelion
bodies, is presented in Sail-
lenfest and Lari (2017). Fi-
nally, the extension of the non-
resonant model to the case of an
external perturber is described
and explored in Saillenfest et al.
(2017b).
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autres personnes ont joué un rôle important pour moi pendant ces trois ans. Je ne les
nomme pas individuellement car j’oublierais certainement du monde. Je les invite à se
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Introduction

This Ph.D. project focusses on the development of secular theories for the orbital dy-
namics beyond Neptune and on their application to the known population of trans-
Neptunian objects. Chapter 1 presents a brief overview of the history of celestial mech-
anics and its major issues, in particular concerning the external regions of the Solar
System. The present work can be considered as a straight continuation of numerous
previous studies, and the most recent and influential ones are also introduced. Then,
Chapter 2 exposes most of the theoretical tools and concepts used throughout this re-
port. (Readers already familiar with the two-body problem and perturbation theories
in Hamiltonian systems can safely skip this chapter.) The essence of the problem is
addressed in Chp. 3, where we introduce both the non-resonant and resonant secular
models designed to describe the long-term orbital dynamics beyond Neptune. Since
the resonant dynamics was found extremely rich, the whole Chapter 4 is dedicated to
the exploration of the possible types of trajectories driven by a mean-motion resonance
with Neptune. The confrontation to observed trans-Neptunian objects is also realised,
as well as to a large simulated sample. In Chp. 5, we study the influence of a distant
massive planet on the non-resonant secular dynamics by the means of Poincaré sec-
tions. Finally, Chp. 6 summarises our results and highlights some points which should
be further explored in future works.

In appendix, Chp. A presents the general principle of the frequency analysis of
J. Laskar, along with some arguments (both theoretical and numerical) about its imple-
mentation. This tool, introduced in Laskar (1988, 1990), allows to study any integrable
or weakly-chaotic dynamical system by tracking its main frequencies from numerical
solutions. The work presented in this chapter was mainly realised for my Master thesis,
but it was reused during this Ph.D. and it led in particular to the published paper by
Renner et al. (2016).
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Chapter 1

Statement of the problem

Starting this chapter, Sect. 1.1 presents a brief overview of celestial mechanics from
the oldest records found by archaeologists until the present day. Once the historical
background is set, Sect. 1.2 particularises the current state of research about the region
of interest in the scope of this work, namely, the external Solar System. Finally, Sect. 1.3
introduces our objectives and specific approach.

1.1 Historical context

Various references were used to build that section, among them Les comètes et les
astéröıdes by A.-C. Levasseur-Regourd (in particular the part by P. de La Cotardière);
Gravitation Classique by J. Perez; Solar System Dynamics by C. D. Murray and S. F.
Dermott.

1.1.1 The birth of astronomy

The first evidence of astronomical activities is reported in the Sumerian civilisation,
5000 years ago, developing in parallel with astrology (these two activities were in-
dissociable at the time). From about 750 BC, the Babylonians instigated systematic
observations and measures of the positions of celestial bodies, recorded on clay tab-
lets engraved with cuneiform writing. The complete set of records is thought to have
covered a period extending to AD 75, but numerous tablets were lost. Considered as
“science”, the beginning of occidental astronomy can be placed in the sixth century
BC, when philosophers of Ancient Greece and Rome began to reflect upon the essence
of the world in their will to understand natural phenomena.

The most developed and longest-lived theory from that time is attributed to Ar-
istotle (384-322 BC). It states that the sublunary world, imperfect and corrupted by
nature (because stemming from inhomogeneous mixtures of the different elements) is
to be opposed to the cosmos, perfect and immutable (because constituted of pure es-
sences). In that context, Plato formulates the problem raised by the motion of celestial
bodies, as considered in Ancient Greece: since the cosmos is defined as perfect, it can be

17
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composed only of the purest geometrical objects, that is, spheres rotating with constant
velocities. Therefore, in what way can such spheres be arranged to “save face” and ac-
count for the seemingly erratic motions of the planets? This question was disconnected
from the observed motions of comets, which were considered as atmospheric phenom-
ena and thus placed on the “impure” side. The remarkable discernment of Seneca in
the first century, who considered the comets as celestial bodies possibly returning on
very long periods, remained quite unnoticed in his time. The Aristotelian conception
of the world was rethought and enriched by Ptolemy in the second century, leading to
intricate planetary spheres with increasing complexity. Ptolemy gathered the work of
his predecessors in an incredibly rich and complete master work, the Almagest, in which
the Earth is considered spherical and at the centre of the world. From the support of
the Christian Church, the picture of Aristotle got deeply rooted in occidental science
and philosophy, and remained virtually untouched for fourteen centuries. In parallel,
the cometary astrology grew to such extent that even astronomers associated comets
with misfortune and disasters.

1.1.2 From Copernicus to Newton

In 1543, though, the work of Copernicus De revolutionibus orbium coelestium achieved
an extraordinary revival. In his conception of the world, the Earth appeared as a planet
just like the other ones, all of them following circular trajectories around the Sun. Some
heliocentric (or partly heliocentric) theories were also reported from Ancient Greece, but
none of them managed to destabilise the views of Aristotle. One can be impressed, for
instance, by the simplicity and ingenuity of the consideration by Aristarchus of Samos,
comparing the relative sizes of the Earth and the Sun: “Why make the fly turn around
the torch?” (quoted from J. Perez’s book). The breakthrough of Copernicus could be
partly due to his very cautious behaviour: indeed, he accepted to publish his work only
under the pressure of his young assistant, starting from a careful extract. His overall
work was finally published shortly before his death. Intentionally or not, Copernicus did
not underline any of the fundamental consequences implied by his model to the very
conception of the world. He did not address the question of infinity, either, though
inherent to his theory. From his work, it simply appeared that some astronomical
phenomena (as the temporary retrograde motion of planets as seen from the Earth)
could be described in terms of simple geometrical effects. This left the possibility for
the Church to consider the work of Copernicus as an elegant mathematical formulation,
with no link to the physical world.

Meanwhile, the Aristotelian conception of comets was known to be in contradiction
with observations, and their nature and their origin (extra or sublunary) were open
problems. However, during the 1500-year period extending from Seneca to Copernicus,
the historical mentions of comets were almost exclusively related to portents or evil
signs, with no new scientific interpretation. In that context, Tycho Brahe, a Danish
astronomer, was convinced that information about the nature and motion of celestial
bodies could only be obtained from accurate and repeated observations. He accumu-
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lated an enormous amount of measures of the positions of stars, comets and planets,
with an unprecedented precision for naked eyes. In 1577, a very bright comet appeared
in the sky and he charged one of his colleagues to measure its position simultaneously
from Prague, at about 1000 km from his observatory. The very small parallax obtained
with respect to the background stars made them deduct that comets are astronom-
ical objects, located way beyond the Moon. From his observations, Tycho Brahe even
considered the possibility that comets follow “oval” orbits with non-uniform velocity.
In 1600, he employed the young and skilled Kepler as assistant but died a year later,
leaving to him his incredible observational records.

Kepler had a complicated life, constrained notably to interrupt his works to save
his mother from being burned as a witch (he did not manage to save his aunt from
the same fate). His studies were themselves distributed between superstitions and sci-
ence: he wrote down horoscopes and he was convinced that the dynamical properties
of the planets (as the sizes of their orbits or their velocities) were not accidental. Con-
sequently, Kepler looked empirically for laws governing their motions, constants linking
their characteristics, or the geometrical figures their trajectories could form. Thanks to
the remarkable observations by Tycho Brahe and after many years of work (1600-1619),
Kepler found the three laws that made him famous, distributed among complex theories
involving geometric figures, music and astrology:

1. The planets move in ellipses in which the Sun occupies one focus.

2. The line connecting the Sun to a planet sweeps out equal areas in equal durations.

3. The square of the orbital period of a planet is proportional to the cube of its
semi-major axis.

The planetary model of Kepler, based exclusively on observations, included thus non-
circular orbits (ellipses), followed with non-uniform velocities (the second law implies a
higher velocity when the planet is closer to the focus occupied by the Sun). These were
other arguments against the perfection of the cosmos inherited from Aristotle, more
than 2000 years before. Thanks to Copernicus, though, new ideas had begun to spread.

Contemporaneous to Kepler, Galileo was a precursor of the modern scientific meth-
ods, based on observation and experimentation. His works on the falling bodies (partly
conducted when he was professor of mathematics in the University of Pisa) would turn
out to be of great importance in the history of science. In 1609, his revolutionary use
of the refracting telescope for sky observations1 had a tremendous effect on the sci-
entific community and the general public: indeed, the Moon proved to be covered with
mountains and “seas”! Galileo even proposed that the tenuous light coming from the
dark part of the Moon could be due to the “earthshine” as seen from the Moon. He
also discovered Jupiter’s satellites (appearing as small luminous points moving around

1It is too bad that English does not make as clear a distinction as the French words “lunette” and
“télescope” (or in Italian “cannocchiale” and “telescopio”)!
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Jupiter just like the Moon around the Earth), and phases on Venus. Finally, the dif-
fuse regions of the Milky Way proved to be constituted of a gigantic amount of stars.
Such discoveries gave rise to very audacious ideas for that time, such as the possibil-
ity of other worlds or the notion of infinity. Despite Galileo’s pretentious and ironic
attitude when presenting his results, his discoveries did not suffer much from the In-
quisition, maybe partly because of his relations with the Medici family (it took some
time, though, to convince people that his observations were not due to artefacts coming
from the telescope).

After the success of Kepler and Galileo, some astronomers began to think that
comets, which were known from Tycho Brahe to evolve beyond the Moon, could also
verify Kepler’s laws. They could follow indeed very large elliptic orbits, bringing them
back after long periods of time, such that their tiny paths in the vicinity of the Earth
would seem rectilinear (which was the theory often admitted at the time). In 1668, the
visionary Hevelius envisaged also parabolic or hyperbolic trajectories.

More generally, the very existence of Kepler’s laws, based on strong observational
evidence, was addressed by researchers. How could they be explained? Newton, a dis-
tinguished mathematician from Cambridge university, started to work on that question
in 1666, with already the idea that the Moon could fall toward the Earth just as an
apple does. His interest was reinforced by two very bright comets (1680 and 1682),
and he soon verified that the accelerations of the Moon and the apple were inversely
proportional to the square of their distance to the Earth, making an audacious link
between Galileo’s experiments of falling bodies and planetary motions. The genius of
Newton led him actually to much more: after having developed the required formalism
(the infinitesimal calculus, the ancestor of derivatives and integrals), he applied his
inverse-square law to two isolated massive bodies, which is known today as the “two-
body problem”. Despite the complexity of the question (even addressed with modern
tools, see Sect. 2.1), he succeeded in demonstrating which types of trajectories obey to
such dynamics... which were nothing else than Kepler’s ellipses, followed at velocities
implying the two other laws as natural consequences!

Contemporaneously, Halley, another English astronomer, was also eager to link
Kepler’s empirical relations to mathematical proofs. The idea of an inverse-square
law had already been suggested by some scientists, but without any conclusive proof.
In 1684, Halley visited Newton for advice, and asked him which would be, in his opin-
ion, the trajectories obeying such a law. Newton answered immediately: ellipses, I
have calculated that! A few months later, Newton sent him some of his works, in which
he showed that the first law of Kepler is actually generalised to all conics (not only
ellipses), and he detailed the proofs for the two other laws. Very enthusiastic, Halley
encouraged him to pursue his work, and above all to publish it. Newton, mainly inter-
ested by the results (and not by their possibly controversial exposure), finally accepted
Halley’s request, and in 1686, he presented his work to the Royal Society. As feared by
Newton, this immediately produced quite hostile reactions from other mathematicians,
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who claimed (incorrectly) the priority on some results2. In reaction, Newton considered
the option of removing a large part of his manuscript before publication. Only the great
diplomacy used by Halley allowed to bypass Newton’s unwillingness (he even provided
himself the money for the first edition of the works). In 1687, the Philosophiae naturalis
principia mathematica were finally published, presenting the unified version of Kepler’s
and Galileo’s results in a new conception of astronomical and terrestrial dynamics, both
subject to the “universal attraction”. Newton detailed also the context of application
of this law, namely his three principles on the motions of bodies:

1. Any isolated body remains at rest or in a uniform motion of translation (principle
of inertia).

2. The mass-acceleration product of a body is equal to the total external force acting
on it (fundamental principle of dynamics).

3. Any object exerting a force on another object is in return subject to an equal
force with opposite direction (action-reaction principle).

Incidentally, the reader will note that the very same laws, along with Newton’s gravit-
ation theory, are used all along this Ph.D. work: we will simply study their implication
for the trans-Neptunian objects. The Newtonian gravitation solved also the problem
of cometary trajectories (even if himself still spoke of rectilinear motions): they are
subject to the same law as the planets and should thus follow indeed very elongated
ellipses, or even parabolas or hyperbolas which are also conic sections. Newton de-
scribed his conception on the nature of comets as solid bodies from which emanate
streams of vapour when they are close to the Sun (what a remarkable intuition!). He
even proposed methods to compute the orbital elements of celestial bodies from three
observations. Finally, from his studies on the light, Newton invented the reflecting tele-
scope, allowing the use of an instrument much more compact that Galileo’s refracting
telescope for the same precision. Very modestly, he wrote in a 1676 famous letter to
Hooke: “If I have seen further, it is by standing on the shoulders of giants”, referring
to his predecessors. History would reveal, though, that Newton has himself his place
among the tallest giants.

1.1.3 Perturbation methods and predictions

From 1695 on, Halley relied on the published works of Newton to renew the idea of
periodical returns of comets, and tried to apply his method of orbit determination to
the comets observed during long-enough periods of time. In 1705, he published an
application to 24 comets, and most of all, he postulated that the historical comets of
1531, 1607 and 1682, recorded as different objects, could actually be several passages

2It should be noted that Hooke, one of the greatest rivals of Newton, had already proposed the
inverse square law. However, his claim of priority was unjustified since he did not draw any valuable
conclusion from it, contrary to the extremely rich work of Newton.
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of one single comet. On this hypothesis, the fact that its orbital elements seemed to
be slightly different at each passage could be explained by the planetary perturbations
(since the system is not strictly a Sun-comet two-body problem). Consequently, he
predicted the return of that comet around the year 1758, but he died in 1742 at the
age of 85. Since then, astronomers tackled the task to calculate precisely the date
of the new return of this comet (supposing that the observations came indeed from
a single comet), taking into account the planetary perturbations. Their goal was to
get a prediction accurate enough to prevent a mistaken conclusion that the comet had
not returned. Clairaut, a French mathematician, developed the appropriate formulas
using successive approximations, more or less equivalent to the temporal steps of our
modern numerical integrators. The problem was that without a computer, every single
step had to be computed by hand. The extremely laborious work was realised by his
young colleague Lalande, with the help of the mathematician Nicole-Reine Lepaute. In
1758, after months of uninterrupted calculus, they finally announced their prediction
for the next perihelion passage of the comet: April 1759 with a error bar of a month
(the comet had been delayed by 618 days due to the perturbations from Jupiter and
Saturn). And indeed, the comet was observed from the end of December 1758, passed
its perihelion a month before the prediction, and remained visible until the end of June
1759: it became Halley’s comet. This was a tremendous success for Newton’s theory of
gravitation, which was still questioned by numerous scientists. Comets lost also some
credibility as occult phenomena, since they obeyed to universal laws and their returns
could be predicted.

The scope of Newton’s theories was extremely vast, and besides the trajectories of
comets, astronomers began to develop accurate ephemeris of the Moon and the planets,
taking into account their mutual perturbations. A lot of famous mathematicians were
involved in that period, very rich in theoretical discoveries (with among them Euler,
D’Alembert, Laplace, Lagrange...), leading to always finer verifications of Newton’s
laws. Indeed, after Herschel discovered the planet Uranus in 1781 (by telescopic obser-
vations), Gauss showed in 1801 that they could have predicted its presence from the
observed trajectories of the other planets. Thereafter, Adams (1841) and Le Verrier
(1845) conjectured, from the orbital perturbations undergone by Uranus, that an eighth
massive planet should evolve in the external Solar System. Their prediction proved to
be correct (despite erroneous calculations), since Neptune was discovered in 1846.

1.1.4 Planets, asteroids and trans-Neptunian objects

Similarly to Kepler and his three laws (preceding their demonstration by Newton), the
searches for simple ratios between astronomical quantities were frequently conducted,
leading to as many theoretical discoveries as tenacious misconceptions. Let us recall,
for instance, the Titius-Bode relation, published by Titius and renewed by Bode in
1772. They presented that, taking as unit of length the average distance between the
Earth and the Sun, the average distances of the others planets can be obtained by the
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sequence:
Dn = 0.4 + 0.3× 2n with n = −∞, 0, 1, 2, 4, 5 (1.1)

This relation accounts for the distances of Mercury, Venus, the Earth, Mars, Jupiter
and Saturn, but with an intriguing “absence of planet” for n = 3. This questioning
was reinforced by the discovery of Uranus, which had an orbit compatible with n = 6.
On the basis of the empirical rule by Titius, Bode became the instigator of a search for
the missing planet. Organised groups of observers were formed, each of them with the
task to monitor an assigned portion of the sky. In 1801, an observer discovered indeed
a small body having the required distance to the Sun, to which the name of Ceres was
given. However, between 1802 and 1807, three other bodies were observed, and then
plenty of others from 1845, reaching the number of 300 in 1890. They had a clearly
different status than the previously known planets, so they were called asteroids (or
more generically minor planets). Their orbital region, stretching between the orbits of
Mars and Jupiter, is nowadays called the Main Belt. The Titius-Bode relation, though
totally empirical with no physical nor mathematical foundation, opened thus a large
field of research still relevant today3. It was however definitively abandoned after the
discovery of Neptune, which has an average distance to the Sun quite different from the
value obtained by putting n = 7 (the existence of Neptune was in turn predicted from
consistent mathematical calculations). Actually, a small number of bodies with random
spacings have a quite large probability to present a sequence similar to the Titius-Bode
relation (Murray and Dermott, 1999).

In 1906, the American astronomer Lowell found some unexplained features in the
orbits of Uranus and Neptune, and by the same argument as Le Verrier in his time,
he attributed them to another, more distant, still unobserved planet4. He immediately
started a large search campaign, realised by comparing photographic plates and locating
by eye any moving point, but he remained unable to locate his “Planet X”. After his
death in 1916, the Lowell Observatory pursued the researches, and in 1930 Tombaugh
found a body in the vicinity of the predicted position. This ninth planet, named Pluto,
appeared as a confirmation of Lowell’s predictions. However, further observations of
Pluto always tended to decrease its mass estimate, until in 1978, its mass could be
precisely measured thanks to the discovery of its satellite Charon. The very low value
obtained (0.2% of the mass of the Earth, smaller than the Moon) made it unable
to perturb substantially the motion of Uranus and Neptune. The anomalies in their
observed positions were later understood to result from a slight error in the estimates
of Neptune’s mass. From 1992 on, many other objects were found with orbits beyond
Neptune (whence their denomination of trans-Neptunian objects). In particular, Eris,
discovered in 2005, was announced by NASA as the tenth planet of the Solar System.
Its mass could be estimated thanks to its small satellite, revealing that it is more
massive than Pluto. Moreover, numerous smaller objects were found to follow orbits

3More than 700 000 asteroids are known today and they allow the study of very deep questions
about the formation and evolution of the Solar System.

4Lowell is also known for his conviction that artificial canals were visible on the surface of Mars,
popularising the idea of an intelligent Martian life.
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similar to that of Pluto (called Plutinos). This raised the same controversy that had
followed the discovery of Ceres and the asteroids two hundred years before: if Pluto
and Eris were classified as planets, what strong argument could be used to justify that
other large trans-Neptunian objects were not, nor the largest asteroids? The question
was addressed in 2006 by the International Astronomical Union. It was agreed that
the denomination of “planet” should be given only to objects having: i) an orbit
around the Sun; ii) a rounded shape due to hydrostatic equilibrium; iii) a large-enough
gravitational influence such that no other body can share their orbits. Objects fulfilling
only i and ii were thus downgraded to dwarf planets (as Pluto, Eris and Ceres), whereas
the ones fulfilling only i were called generically small Solar System objects.

1.1.5 From Poincaré to modern celestial mechanics

Despite the fast progress of perturbation methods in the 19th century, the dynamical
properties of the N-body problem (with an implicit N > 2) remained badly understood.
In particular nobody knew whether an analytical solution existed in the general case,
which could be expressed generically as a convergent series of usual functions. This
became the subject of an international mathematical challenge organised in 1887 in
honour of the king of Sweden. The prize was won by Poincaré, although he only par-
tially answered the question. The revision of his work (which actually contained a now
famous mistake), made him conclude that such a convergent series does not exist in
the general case: indeed, extremely small changes of initial conditions were found to
lead to completely different solutions (whereas absolutely deterministic). This opened
a new area in the study of dynamical systems: the theory of chaos. Poincaré is often
considered as one of the last “generalist” scientists, since he addressed successfully a
very broad range of questions from theoretical physics, mathematics and philosophy.
After him, the study of dynamical systems became a whole field of mathematics, and
moved away somehow from physics and celestial mechanics (though related to them).
A major breakthrough in this field was realised by the so-called KAM theorem (named
after Kolmogorov, Arnold and Moser), developed from 1954 to 1962. It deals with
the general case of a perturbed Hamiltonian (that is conservative) system, which is
integrable when the perturbation is set to zero. Under some conditions, it was shown
that some sets of integrable quasi-periodic5 trajectories do persist (while being more
or less distorted) for non-zero but small-enough perturbations. In simple words, KAM
theorem gave the conditions for the convergence of the perturbation method presented
in Sect. 2.3.2. Please note that Poincaré worked on the same type of system (namely
the integrable two-body problem perturbed by a third perturbing mass), but the scope
of KAM theorem stretches well beyond celestial mechanics. Though extremely powerful
from a mathematical point of view, it is besides not directly applicable to Solar System
dynamics: using the original form of the theorem, Hénon (1966) remarked that integ-
rable trajectories are proved to persist for planet masses smaller than ∼ 10−320 times

5A trajectory is said to be quasi-periodic when it is composed of several non-commensurable fixed
frequencies. It thus never returns exactly to its initial position, but it can pass arbitrarily close to it.
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the mass of the Sun (versus ∼ 10−3 for Jupiter)! The development of new versions of
KAM theorem, restricted for instance to finite timescales, are an active field of modern
research in mathematics. On the other hand, the increasing power of computers, at the
end of the twentieth century, allowed astronomers to study the stability of the Solar
System from more physicist-like approaches, based on semi-analytical models or purely
numerical experiments. It was notably proved that it is unstable in general (Laskar,
1989), with possible ejections or collisions of inner planets over a few hundred million
years, even if some components, such as the orbits of the giant planets, are indeed
stable. This chaotic nature prevents from predicting the precise position of the inner
planets after about 100 Myrs, since tiny imprecisions in their initial conditions lead
to errors larger that the sizes of their orbits. Moreover, even if the initial conditions
were known to arbitrary precision and the numerical integrations were exact, the uncer-
tainty would anyway be brought by the approximations of the dynamical model itself,
since it is impossible to take every effect into account (as mutual interactions between
asteroids).

Even if the problem is now known to be chaotic, we saw that approximate (but
accurate) solutions can be obtained on relatively short timescales by analytical series
and/or successive approximations. In 1859, a fundamental problem was raised by Le
Verrier, who showed that the predicted orbital variations of Mercury due to the other
planets and a possible flattening of the Sun were notably different from the observed
ones. Far from questioning the very validity of Newton’s laws, a series of hypotheses
were proposed, including the existence of a planet “Vulcan” orbiting very close to the
Sun. As we can imagine, planet hunters were moreover misled by various round sun-
spots which seemed to “orbit” the Sun. The definitive answer was brought by Einstein
in 1915 and his theory of General Relativity. Indeed, he had the intuition that if the
inertial mass (measuring the difficulty to set an object in motion) and the gravitational
mass (measuring the mutual attractions of the planets) were indeed equal, they should
not appear in an independent way as in Newton’s theory. General Relativity describes
the gravitation as a curvature of the space-time itself, which contrasts singularly with
a force-like conception of the gravitational interaction. It led people to rethink the
world, and in particular the absolute nature of time-spans and lengths. However, des-
pite its very important implications in fields like signal propagation, galaxy dynamics,
cosmology or particle physics, General Relativity cannot be said to have brought a “re-
volution” in the Solar System dynamics. In such weak gravitational fields, it diverges
only very slightly from the Newtonian theory, so that its orbital effects are only detect-
able for objects very close to the Sun (as Mercury). Moreover, the use of Einstein’s
equations is very cumbersome compared to the simple laws of Newton. Consequently,
General Relativity, when it has indeed notable effects, is usually introduced as addi-
tional perturbative terms in Newton’s equations: this allows to keep their convenient
structure. More subtle effects of General Relativity are completely negligible at the level
of the Solar System. Hence, its very intricate dynamical structure can be essentially
described by the simple inverse-square law, and this makes it even more fascinating. In
the trans-Neptunian region, very far from the Sun, perturbations issued from General
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Relativity or non-gravitational forces can be safely ignored (we will not even mention
them anymore).

1.2 The dynamics of the Solar System

1.2.1 The formation scenario

The shapes and dynamics of the planets and small Solar System bodies are qualitatively
well explained by the currently accepted formation scenario of the Solar System. The
Solar System is nowadays considered to have been formed about 4.6 billion years ago6,
from the gravitational collapse of a giant molecular cloud. The instability initiating
this collapse could have been produced by the nearby explosion of a supernova. The
compression of the solar nebula, constituted of gas and dust, made drastically increase
the temperature in its centre. Starting from a very low residual rotation, the contrac-
tion made it spin rapidly from the conservation of angular momentum. This rotation
caused the nebula to flatten naturally into a protoplanetary disk, surrounding the cent-
ral denser region constituting the protosun. By direct contact, particles of the disk
stuck together and formed grains. Some of them grew enough to exert a substantial
gravitational influence on their neighbourhood and accreted more and more material
from the nebula (this is indeed what is observed around young stars, see Fig. 1.1). The
complex interaction between the planets and the disk are also known to result in the
migration of the planets themselves inside the disk.

Figure 1.1 – Image of the young star TW
Hydrae surrounded by its protoplanetary
disk. It is located at about 180 light-years
from the Solar System. The circular gaps
in the disk are thought to be created by
forming planets, accreting and sweeping
particles away. This image was taken in
2016 by the Atacama Large Millimeter Ar-
ray (ALMA).

The gradient of temperature in the protoplanetary disk caused different compositions
of the bodies formed: rocky near the hot star and icy beyond some distance called
the frost line. Then, the strong and irregular solar wind coming from the young Sun

6The age of the Solar System can be estimated by dating the earliest formed components of met-
eorites and asteroids, by the relative abundance of radioactive isotopes. It corresponds thus to the
time-span from the formation of the first solid grains until today.
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(in its so-called T Tauri phase) swept away the remaining gas and dust, and some
remained only trapped around the massive-enough bodies, that is, the giant planets
Jupiter, Saturn, Uranus and Neptune. The telluric planets, on the contrary, were left
only with their rocky core. They were probably more numerous than today, occasioning
various collisions (as the one thought to have created the Moon). From the solar nebula,
no large bodies could have formed just beyond the orbit of Mars because of the strong
disrupting gravitational influence of Jupiter and Saturn: this formed the Main Asteroid
Belt, only constituted of relatively small rocky bodies. Beyond Uranus and Neptune,
on the contrary, the density of the solar nebula was too weak to form large bodies: this
resulted in the Kuiper Belt objects, constituted of small icy bodies.

According to recent theories, the four giant planets underwent several migration
phases across the Solar System during its early stages. This is necessary to match both
the formation mechanisms deduced from observed exoplanetary systems and the size
and distribution of Solar System objects. At first, Jupiter and Saturn are thought to
have migrated inward due to the action of the protoplanetary gas, but they subsequently
drifted back again to larger heliocentric distances because of their mutual perturbations
(Walsh et al., 2011). This explains the characteristics of the Main Asteroid Belt and of
the terrestrial planets, as well as the current position of Jupiter and Saturn compared
to the numerous “hot Jupiter” exoplanets found very close to their host star. Moreover,
Uranus, Neptune and the trans-Neptunian objects were probably located initially much
closer to the Sun, just beyond Jupiter and Saturn (Tsiganis et al., 2005). The interaction
of the four giant planets with the numerous smaller bodies made them slowly migrate,
until Jupiter and Saturn passed the 2 : 1 mean-motion resonance7. This had very
important consequences on the whole dynamical structure of the Solar System, driving
Uranus and Neptune inside the Kuiper Belt up to their current orbits, and projecting
many small rocky and icy bodies in every direction. That mechanism can explain the
Late Heavy Bombardment, which is a resurgence of cratering events observed on the
Moon (Gomes et al., 2005a). It predicts also the existence of the Oort Cloud, constituted
of the icy bodies ejected very far but still bound to the gravitational attraction of the
Solar System.

1.2.2 The dynamics beyond Neptune

The dynamical structure of the Solar System as it is observed now is represented schem-
atically on Fig. 1.2. Please note that the axis ticks are not regular, and that they refer
to the semi-major axes of the orbits followed by the objects. The trajectories of the
planets and of the Main Belts asteroids are quite circular, so the scale gives an idea of
their mutual distances. On the contrary, the orbits of the trans-Neptunian objects and
of the comets can be very eccentric, so their trajectories in the physical space span a

7A mean-motion resonance occurs when two or more bodies follow orbits of commensurable periods,
which make them always “meet” in the same configuration. Instead of cancelling out, their mutual
perturbations become organised and pile up, producing important effects (stabilising or destabilising).
This will be more detailed in the following.



28 CHAPTER 1. STATEMENT OF THE PROBLEM

?

M
ai

n 
Be

lt resonant objects

Oort Cloud

cu
rre

nt
ly

 c
lo

se
st

 s
ta

r

semi-major axis (AU)

0 1 5 30 100 103 105

(1.6 ly)
2.7x105

(4.2 ly)

Kuiper Belt

Figure 1.2 – Current dynamical structure of the Solar System as it is considered today. The bodies
sizes are not to scale. The horizontal axis represents the semi-major axes of the orbits, and the vertical
placement gives an idea of the inclinations. The arrows symbolise the creation of long-period comets,
Centaurs and Halley-type comets. The latter two are produced from trans-Neptunian and Oort Cloud
objects through close encounters with the planets.

very large range of distances (from the Sun to very remote regions). In the figure, ob-
jects as Centaurs and Halley-type comets8 are not represented as “populations”, since
they are usually considered as unstable transitional orbital states.

Bodies of the Oort Cloud have so large semi-major axes that they are affected by
galactic tides (that is, an acceleration from the whole Galaxy which is slightly different
that the one felt by the barycentre of the Solar System). Passing stars can also have
a strong influence on them, creating sporadic “comets showers” toward the planetary
region if they pass close enough. As a result of these perturbations, the Oort Cloud is
thought to be quite spherical, at least beyond 104 AU. Oort Cloud comets that have a
perihelion inside the planetary region spend almost all their orbital period away, near
aphelion (from Kepler’s second law).

The trans-Neptunian region is usually decomposed into three main components: i)
the Kuiper Belt, formed of objects with small inclinations and eccentricities (thus re-

8Centaurs and Halley-type comets can have any eccentricity and inclination but only moderate
semi-major axes.
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sembling the primordial population); ii) the Scattered Disk, composed of objects which
“diffuse” chaotically in the orbital elements space due to the effect of the planets; iii) the
resonant objects, locked in mean-motion resonances with Neptune, which can raise their
inclinations to high values. Whereas the shape of the Kuiper Belt component is quite
well explained by the admitted formation scenario of the Solar System (Sect. 1.2.1),
the overall dynamics and past evolution of the trans-Neptunian region is still poorly
understood. This holds, especially at high-perihelion distances, where it connects the
Oort Cloud. This is firstly due to the lack of observational data (since it is very difficult
to observe such distant objects), but also because the few observed objects have orbits
which are incompatible with the formation scenario of the Solar System detailed in
Sect. 1.2.1. Indeed, objects as Sedna or 2012VP113 have very eccentric orbits (0.85 and
0.69) but also very high perihelion distances (76 and 80 AU), which indicates that: i)
they cannot have been formed in their current state, otherwise their orbits would be
quite circular; ii) they are too far to have been scattered in their current position by
the planets; iii) they are not far enough to be substantially affected by the galactic
tides. Various numerical experiments showed that mean-motion resonances are also
unlikely to be able to produce such orbits (Morbidelli and Levison, 2004). However,
it is known from a long time by numerical ways that the secular dynamics in a mean-
motion resonance can produce high-amplitude oscillations of the perihelion distance
and of the inclination (see for example Gomes et al., 2005b). Consequently, the main
goal of this work is to characterize and quantify that kind of mechanism by other means
than statistics on the output of numerical simulations. The quite smooth nature of the
numerical solutions in case of mean-motion resonance should allow the development of
analytical or semi-analytical models, which could reveal, at least qualitatively, what
types of trajectories are allowed.

During the course of this work, some authors put forward again the hypothesis
of a still undiscovered planet orbiting in the far trans-Neptunian region (Batygin and
Brown, 2016a). Indeed, the six most distant objects known appear to have roughly
aligned orbits, and numerical simulations show that a distant Neptune-mass planet
could produce such an accumulation. This would also explain their unexpectedly dis-
tant and eccentric orbits (though the problem would be moved toward the origin of this
planet itself!). This new study, published a few days before the submission of our first
paper (Saillenfest et al., 2016), caused great bustle in the planetary science community.
Tens of articles about this “Planet 9” were published during the following months, deal-
ing with its formation or capture, its effects on the known planets, its orbital stability,
its current probable position, its physical characteristics, its observability... Alternative
journals even discussed its astrological effects on mankind! A year later, as I am writing
these lines, the initial exaltation has calmed down, but various observation campaigns
are being organised to locate this hypothetical ninth planet. Even if the results were
negative, this search will probably lead to the discovery of numerous trans-Neptunian
objects, allowing in any case a deeper knowledge of the external Solar System. Whereas
Adams and Le Verrier did predict the existence of Neptune, please remember that the
Titius-Bode relation led to the discovery of the asteroids (with Ceres as false positive),
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and the calculations of Lowell led to the discovery of the trans-Neptunian objects (with
Pluto as a false positive).

Despite tremendous announcements made by some media, the results by Batygin
and Brown (2016a) remain sufficiently vague and hypothetical (because of the scarce
dataset available) to legitimate further studies of the external Solar System without
unknown perturber. We thus used the model introduced in our first article to explore
the resonant dynamics only driven by the known planets (Saillenfest et al., 2017a), and
to discuss the long-term evolution of some recently-discovered trans-Neptunian objects
(Saillenfest and Lari, 2017). The introduction of an external perturber, leading to a
very different dynamical system, was then discussed in Saillenfest et al. (2017b).

1.3 Secular models

Several methods can be used to investigate the dynamics in a whole region of the Solar
System. Even if there is no analytical representation in the general case, accurate nu-
merical integrations (analogous to the method of Clairaut, applied by hand to compute
the return date of Halley’s comet) can give an insight of the solution for given initial
conditions. The confrontation between the real equations and their numerical solu-
tions, however, is always a very subtle problem... On the other hand, some suitable
approximations, valid for very specific cases, are sometimes able to give good analytical
representations of the solutions and lead to a deeper understanding of the problem.
When the dynamics is highly chaotic, however, the numerical integration is often un-
avoidable, associated with stability studies (frequency analysis, Lyapounov exponents,
statistical estimators, etc.). The two approaches are complementary: numerical integ-
rations can provide an insight of the different types of possible trajectories, guiding
the development of analytical theories, explaining in turns the forms of the trajector-
ies obtained numerically (which are only discrete examples of whole varieties of orbits
revealed by the analytical approach).

Secular theories are kinds of “simplified models” (introduced in Chp. 2). They are
widely used in celestial mechanics because in some cases they allow to study graphic-
ally in a glance a large variety of trajectories (see for instance Morbidelli, 2002). We
give here a succinct context of their applications to trans-Neptunian objects. In 1962,
Kozai developed an analytical secular model for asteroids with arbitrary inclination and
eccentricity. His model is designed for an external perturbing planet (namely Jupiter)
and the article presents the dynamics given by the first terms of the analytical expan-
sion. Then, Kozai (1985) added the possibility of a mean-motion resonance between
the particle and its perturber and turned to semi-analytical methods. As it assumes a
fixed value of the resonant angle, that second model can only be used as a rough insight
of the true resonant dynamics. Thanks to the increasing power of computers, Thomas
and Morbidelli (1996) used a semi-analytical approach to generalise the non-resonant
model of Kozai for several planets. They presented a collection of secular level curves
for semi-major axes larger than 30 AU with a special attention given to perihelion dis-
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tances inside the planetary region (the collision curves appear as pinch lines). Lastly,
Gallardo et al. (2012) made a thorough review of the variety of trajectories beyond Nep-
tune. They adapted the analytical model of Kozai (1962) to a set of internal perturbing
planets and used it, as well as semi-analytical methods, to describe qualitatively the
non-resonant dynamics for a perihelion outside the planetary region. They also mod-
ified the semi-analytical resonant model of Kozai (1985) to deal with a more realistic
sinusoidal evolution of the resonant angle. As we will see, their method is however still
unsatisfactory, since the evolution of mean-motion-resonance angles in that region can
actually undergo strong variations during the dynamics (centre, amplitude, frequency).
Besides, these variations are unknown a priori. Some improvements had thus to be
realised in order to take into account the precise variation of the resonant angle, so as
to get accurate representations of the dynamics.

To sum up, the background for secular dynamics beyond Neptune is now well estab-
lished but the analyses found in the literature remained vague and qualitative. Since
quasi-integrable motions beyond Neptune are known to be responsible for large vari-
ations of orbital elements (through mean-motion resonances and Kozai mechanism),
a special effort has to be deployed to construct secular models, designed to explore
in a straightforward way all the possible regular orbits. For instance, it could help
to determine in a categorical way how far the known planets can raise the perihelion
distances of small bodies, or if that kind of dynamics could explain the distribution of
the observed distant objects. In this line of thinking, our first goals were to provide a
thorough analysis of the non-resonant case and to develop an accurate resonant secular
model9. In the non-resonant case, the introduction of a distant massive planet will be
presented in Chp. 5.

9To prevent any confusion in the following, please note that we will not deal with so-called “secular
resonances”. What we call here a “resonant secular model” is a secular model that takes into account
a mean-motion resonance between the particle and one of the planets.
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Chapter 2

Theoretical background

This chapter is designed to get that work as self-explanatory as possible and readable
also by non-specialists. Any required theoretical concept is thus introduced briefly, from
the two-body problem (Sect. 2.1) to Hamiltonian systems (Sect. 2.2) and the Lie-series
formalism (Sect. 2.3). These notes can also be used as a memory aid throughout the
reading. Naturally, the reader only interested by “new” results can directly jump to
Chp. 3.

This chapter is based mainly on my master courses, in particular in Paris Obser-
vatory: Gravitation by J. Souchay, Systèmes hamiltoniens by P. Robutel, Géométrie
des systèmes hamiltoniens by J. Féjoz, and in Pisa University: Dinamica del sistema
solare by A. Milani. The lessons by L. Duriez and A. Milani in the book Modern meth-
ods in celestial mechanics (Éditions Frontières 1990) allowed to add complementary
explanations.

2.1 The two-body problem

That problem was stated and solved by Newton around 1680. It gave a mathematical
justification of Kepler’s empirical laws and led to a revolution of celestial mechanics
(see Sect. 1.1). The classic method of resolution and the corresponding set of variables
are widely used throughout this work, so it seems necessary to recall them succinctly.

2.1.1 Analytical solution

We consider two isolated point bodies1, with masses (m1,m2) and positions (r1, r2) in
a three-dimensional inertial reference system. Their respective accelerations are gov-
erned by the gravitational force only, leading to the equations of motion (fundamental

1As long as there is no contact between them, two homogeneous (or layered) spherical bodies can
be considered as well, since they produce the same external gravitational field as a point gathering all
the mass (as shown by Newton in 1685).

33
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principle of dynamics):

m1r̈1 = −Gm1m2
r1 − r2
|r1 − r2|3 and m2r̈2 = −Gm2m1

r2 − r1
|r2 − r1|3 (2.1)

where G is the gravitational constant. Knowing the positions and velocities of the two
particles at a given time t0, we are looking for the expression of r1 and r2 as functions
of the time t. This is a Cauchy problem with 12 dimensions. The classical resolution
consists in using the constants of motion, also called first integrals, to reduce the number
of dimensions of the problem. By definition, the barycentre r0 of the two bodies writes:

(m1 +m2)r0 = m1r1 +m2r2 (2.2)

and from (2.1) we get r̈0 = 0. Hence, the barycentre r0 follows a rectilinear motion
with constant velocity:

r0 = a t+ b (2.3)

where a and b are two constant vectors directly obtained from the initial conditions.
We can take advantage of these 6 first integrals by considering only the relative position
of the two bodies r = r2 − r1 (or equivalently r1 − r2). Indeed, (r0, r) is equivalent to
(r1, r2) from the equation (2.2) and r0 is a known function of the time. By (2.1), we
obtain straightforwardly:

r̈ = −μ
r

|r|3 (2.4)

where μ = m1+m2. This new problem has 6 dimensions, that is 6 less than the original
system.

Another way to reduce the system is to use a barycentric reference frame, that is the
new coordinates (q1,q2) = (r1 − r0 , r2 − r0). From the equation (2.3), such a reference
frame is inertial, so the equations of motion in the new coordinates remain unchanged.
This time, though, the direct link:

q1 = −m2

m1

q2 (2.5)

implies that it is enough to study the motion of only one particle, say q2. Introducing
(2.5) in (2.1), we obtain:

q̈2 = −μb
q2

|q2|3 (2.6)

with μb = Gm3
1/(m1 + m2)

2. This equation is the same as in the case of the relative
motion (2.4), so the resolution is generic. In the following, (r, μ) could thus be replaced
by (q2, μb). Please note that if one mass (say m2) is negligible with respect to the other,
the barycentric and relative motions are equivalent (q2 = r and μ = μb = Gm1).

From the equation of motion (2.4), we get:

ṙ · r̈+ μ
r

|r|3 · ṙ = 0 ⇐⇒ d

dt

(
1

2
ṙ2 − μ

|r|
)

= 0 (2.7)
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thus revealing a new constant of motion, namely the energy per unit of mass. It writes:

h =
1

2
ṙ2 − μ

|r| (2.8)

and is determined by the initial conditions. In order to go further in the resolution, let
us introduce the angular momentum per unit of mass C = r × ṙ. This is a constant
vector, since from (2.4):

Ċ = ṙ× ṙ+ r×
(
−μ

r

|r|3
)

= 0 (2.9)

Given that C is perpendicular to r and ṙ (by the definition of the cross product), its
constancy implies that the motion takes place in a plane2. Consequently, we can use
a system of coordinates such that the third component of r is always zero. Starting
from an arbitrary system of coordinates, this is realised by a simple rotation (see the
following section). Using polar coordinates (r, θ) for the first two components of r, the
energy integral becomes:

h =
1

2
ṙ2 +

1

2
r2θ̇2 − μ

r
(2.10)

Considering that the (conserved) norm of C writes C = r2θ̇, we can now reduce the
system to only one degree of freedom:

h =
1

2
ṙ2 +

1

2

C2

r2
− μ

r
(2.11)

Incidentally, one can note that the conservation of C implies naturally the second law
of Kepler3. The geometry of the trajectory, dropping for now the temporal information,
would be given by r as a function of θ. At this point a famous trick consists in replacing
r in (2.11) by the variable:

u =
C2

μ

1

r
− 1 (2.12)

assuming that C is different from 0. Indeed we have:

du

dθ
=

du

dr

dr

dt

dt

dθ
= −C2

μ

ṙ

r2θ̇
= −C

μ
ṙ (2.13)

such that the equation (2.11) becomes:

(
du

dθ

)2

+ u2 = 1 + 2
C2h

μ2
(2.14)

2We will not consider the case C = 0. It corresponds to a degenerate rectilinear motion.
3Indeed, the area swept out by r in a duration Δt = t2− t1 is equal to A =

∫ t2
t1

r ·rθ̇ dt = ∫ t2
t1

C dt =
CΔt. For a same time span Δt, the area A is thus the same.
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in which the right-hand term is non-negative. The equation (2.14) has the obvious
general solution u(θ) = e cos(θ − θ0), where the constant θ0 is given by the initial
conditions and with:

e =

√
1 + 2

C2h

μ2
(2.15)

Noting ν = θ − θ0, the expression of r is finally obtained from (2.12):

r(ν) =
p

1 + e cos ν
(2.16)

where p = C2/μ and the angle ν is called the “real anomaly”. This is the polar equation
of a conic, with parameter p and eccentricity e. The value of e governs the geometric
type of the trajectory, namely a circle (e = 0), an ellipse (0 < e < 1), a parabola (e = 1)
or a hyperbola (e > 1). This proves the first law of Kepler.

In the following, we will consider the bounded case (e < 1), that is when the two
bodies cannot go to infinity with respect to each other. We can note that in (2.16),
the origin of the coordinate system (that is, the body 1 or the barycentre) is located
at one of the two focusses of the conic. In celestial mechanics, it is more common to
parametrise the ellipse by its semi-major axis a, given by the relation p = a(1− e2). It
is directly linked to the energy integral, since from (2.15) we get:

C2/μ = a(1− e2) ⇐⇒ h = − μ

2a
(2.17)

The semi-major axis being defined positive (as p > 0 and 0 � e < 1), we see that the
energy integral is negative in the bounded case. Along the trajectory, the points of
the closest and farthest approaches of the two bodies are called the “pericentre” and
“apocentre” (or perihelion and aphelion for a motion relative to the Sun). They are
reached respectively for ν = 0 and π. The corresponding distances, generally noted q
and Q, can be directly obtained from r(ν):

q = a(1− e) and Q = a(1 + e) (2.18)

Although (2.16) gives the shape of the trajectories, we still do not have the solution
as a function of the time. The next step is thus to determine an expression for the
real anomaly ν(t). This is realised through an intermediary angle called the “eccentric
anomaly” E. Let us consider the circle of radius a with the same centre as the ellipse,
such that their only contact points are q and Q. Let P = (r(ν), ν) be a point on
the ellipse. Then, the eccentric anomaly of P is defined as the polar angle measured
around the centre of the ellipse (instead of its focus) of the vertical projection of P on
the circle4. That projection is obtained in a natural way by considering that the circle
is a vertical dilation of the ellipse by a factor 1/

√
1− e2 . We show easily that:

r = a (1− e cosE) (2.19)

4The introduction of the angle E is not as far-fetched as it could appear. Indeed, the description of
a point moving on a circle should be simpler than on an ellipse. Moreover, it corresponds to the real
motion of the particle if e = 0, since in that case ν = E.
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and by mixing (2.16) and (2.19) we get:

dν

dE
=

a

r

√
1− e2 (2.20)

This is also recoverable from the direct relation between E and ν:

tan
(ν
2

)
=

√
1 + e

1− e
tan

(
E

2

)
(2.21)

The temporal information can be introduced by the conservation of the angular mo-
mentum, since:

C = r2θ̇ = r2ν̇ = r2
dν

dE
Ė = a2

√
1− e2 (1− e cosE)Ė (2.22)

That expression can be integrated to give:

Ct = a2
√
1− e2 (E − e sinE) + const. ⇐⇒ E − e sinE = n(t− t0) (2.23)

where t0 is function of the initial conditions and corresponds to the instant of the last
passage at pericentre. The constant n is called the “mean motion” and it writes:

n =
C

a2
√
1− e2

=

√
μ

a3
(2.24)

This expression naturally implies the third law of Kepler5. The mean motion represents
the constant frequency of the angle:

M = E − e sinE (2.25)

known as the “mean anomaly”. The expression of M in terms of E is historically called
“Kepler’s equation”. Its gives in particular the useful relations:

dM

dE
=

r

a
and thus

dM

dν
=

r2

a2
√
1− e2

(2.26)

Through (2.25) and (2.21), the explicit expression of the mean anomalyM(t) = n(t−t0)
allows to obtain the true anomaly ν at any time t (the equation 2.25 is implicit, though,
and requires an iterative procedure, see appendix C.1). This closes the resolution of
the bounded two-body problem.

5Indeed, the rotation period of the body is given by T = 2π/n = (2π/
√
μ )a3/2. Considering that

the masses of the planets are negligible compared to the Sun’s (the difference was undistinguishable
given the precision of the observations used by Kepler), their heliocentric two-body motion is obtained
using μ = G(mp +m�) ≈ Gm�, leading to a constant quantity T 2/a3 among the planets.
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2.1.2 The Keplerian elements

We saw that the trajectories in the bounded two-body problem are ellipses, and we
obtained the position of the considered body along its ellipse as a function of time.
Hence, the motion in the plane of the trajectory is entirely determined. It writes
(r(ν) cos ν, r(ν) sin ν, 0) in Cartesian coordinates. However, it is more useful in prac-
tice to describe it in an arbitrarily oriented reference frame. Since the two coordinate
systems have the same origin, the passage from one to the other is a rotation, decom-
posable as three elementary rotations. Several combinations of angles are possible. The
most commonly used in celestial mechanics is presented in Fig. 2.1 and corresponds to
the 313 combination.

Figure 2.1 – Traditional orbital elements in the mutual or barycentric reference frame (in which the
focal point O of the ellipse is the position of the second body, or the position of the mutual barycentre
of the two bodies, respectively). Two parameters describe the shape of the ellipse: the semi-major
axis a and the eccentricity e. One angle gives the position of the particle on the ellipse (the true
anomaly ν, related to the mean anomaly M), and three angles represent the position of the ellipse in
a three-dimensional reference frame centred on O (the inclination I, the longitude of ascending node
Ω and the argument of pericentre ω).

The angle I is called the “inclination”, whereas Ω and ω are respectively the “longit-
ude of ascending node” and the “argument of pericentre”. They cover all the possible
configurations by setting I ∈ [0, π] and Ω, ω ∈ [0, 2π]. In the arbitrarily oriented refer-
ence frame, the position of the body writes finally:

r = R3(Ω)R1(I) R3(ω)

⎛
⎝r(ν) cos ν
r(ν) sin ν

0

⎞
⎠ (2.27)
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By computing explicitly the products of the three rotation matrices, we obtain:

r = r(ν)

⎛
⎝cos(ω + ν) cosΩ− sin(ω + ν) sinΩ cos I
cos(ω + ν) sinΩ + sin(ω + ν) cosΩ cos I

sin(ω + ν) sin I

⎞
⎠ (2.28)

with:

|r| = r(ν) =
a (1− e2)

1 + e cos ν
(2.29)

The complete set of orbital elements, defining unequivocally the position of the two
bodies at a time t in an arbitrary reference frame centred on the second body (or on
the two-body barycentre), is finally given by (a, e, I, ω,Ω,M). Here, the real anomaly is
seen as an implicit function ν(E(M, e), e) of the mean anomaly M via (2.21) and (2.25).
Of course, the mean anomaly can be equivalently replaced by E or ν, or by the time t0
of last passage at perihelion (see Sect. 2.1.1).

This set of orbital elements is singular for I = 0 (Ω and ω are ill-defined) and for
e = 0 (ω and M are ill-defined). They are only singularities of the coordinates used,
though, with no dynamical meaning. In the zero-inclination case, Ω and ω bring a
redundant information, so they can be replaced by the angle � = ω + Ω called the
“longitude of pericentre”. This removes the singularity. In the same way, M and ω can
be replaced by M + ω in the circular case. Finally, Ω, ω and M should be replaced by
the “mean longitude” λ = ω + Ω + M in the zero-inclination circular case. In order
to allow a generic treatment, a complete non-singular set of coordinates is sometimes
required, such as the “equinoctial elements”:

a ; λ ; z = e exp(i�) ; ζ = sin
I

2
exp(iΩ) (2.30)

In that formulation, z and ζ are complex numbers (i =
√−1 ). The equinoctial elements

are regular whatever the bounded orbit considered. They are useful for instance to deal
with a large number of orbits without the necessity to study particular cases. For a
generic orbit, though, they are much less self-explanatory than the classic Keplerian
elements.

2.1.3 Osculating elements

In Sect. 2.1.1, we presented the analytical solution of the two-body problem. Numerous
integration constants appeared through the successive steps of the resolution and were
structured in the form of the Keplerian elements (Sect. 2.1.2). However, their link to-
ward the initial conditions (t, r, ṙ) is still far from obvious. Following Duriez (1990), we
summarise here the general procedure. Each step can be recovered from the resolution
presented above.

The position and velocity are supposed already written in the suitable reference
frame (relative or barycentric, with the corresponding μ constant). As before, we will
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consider here only the bounded non-collisional case (h < 0 and C 	= 0). We will also
suppose that I and e are different from zero (to avoid the singularities of the usual
Keplerian elements). From the energy and angular momentum integrals:

h =
1

2
ṙ2 − μ

r
; C = r× ṙ (2.31)

we get the semi-major axis a = −μ/(2h) and the eccentricity e =
√

1− C2/(μa) . If
it is small, the numerical errors of cancellation can be reduced by using the equivalent
form:

e =

√(
1− r

a

)2

+
(r · ṙ)2
μa

(2.32)

Since C is perpendicular to the plane of the trajectory, its direction gives directly the
longitude of ascending node Ω and the inclination I. Indeed, it writes:

C =

⎛
⎝Cx

Cy

Cz

⎞
⎠ = C

⎛
⎝ sinΩ sin I
− cosΩ sin I

cos I

⎞
⎠ (2.33)

which gives Ω = atan2(−Cy, Cx) and I = acos(Cz/C). If it is near 0 or π, the inclination
is better computed numerically by the equivalent form:

I = atan2
(√

C2
x + C2

y , Cz

)
(2.34)

On the other hand, the argument of perihelion ω can be obtained by using the “ec-
centricity vector”, which is another constant vector intrinsic to the two-body problem,
pointing towards the pericentre of the trajectory. It writes:

e =
1

μ
ṙ×C− r

r
(2.35)

and its norm is equal to the eccentricity e. Expressed in Keplerian elements, its com-
ponents are thus:

e =

⎛
⎝ex
ey
ez

⎞
⎠ = e

⎛
⎝cosω cosΩ− sinω sinΩ cos I
cosω sinΩ + sinω cosΩ cos I

sinω sin I

⎞
⎠ (2.36)

which gives ω = atan2(Cez , Cxey −Cyex). To complete the set of Keplerian elements,
it only remains to compute the mean anomaly M . It is given via the eccentric anomaly:⎧⎪⎨

⎪⎩
e cosE = 1− r

a

e sinE =
r · ṙ√
μa

=⇒ E = atan2

(
r · ṙ√
μa

, 1− r

a

)
(2.37)
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and through Kepler’s equation: M = E − e sinE. At the time t considered, we have
thus finally the orbital elements (a, e, I, ω,Ω,M) which are equivalent to the Cartesian
vectors (r, ṙ).

Naturally, these elements are only valid in the strict two-body problem, which could
appear of little interest in celestial mechanics. However, a large variety of gravitational
systems are hierarchical, either in terms of the masses or of the distances involved. The
more obvious example is the case of the Solar System, in which the Sun gathers about
99.9% of the total mass. The trajectories of the other bodies, as planets and asteroids,
are thus largely dominated by a “two-body component” with the Sun. In that case,
we can still use the previous equations (that is, putting aside the contribution of other
bodies), but considering the Keplerian elements as instantaneous quantities instead of
integration constants. Indeed, the vectors r and ṙ define unequivocally the six Keplerian
elements of a two-body problem, even if there are actually more bodies in the system.
Such elements are called “osculating” because, strictly speaking, they represent the true
motion of the particle only in a vanishingly small interval of time around the instant t
considered. Nevertheless, if the system is indeed a weakly-perturbed two-body problem,
the osculating Keplerian elements still give a plain approximation of the trajectory in
a close past or future. They are thus much more meaningful than a set of Cartesian
coordinates (r, ṙ). The time evolution of the vector of orbital elements (a, e, I, ω,Ω,M)
can be obtained directly from the dynamical equations, using the planetary equations
of Lagrange (for a force deriving from a potential) or Gauss (directly in terms of the
force). Another approach, using the Hamiltonian formalism, is described in Sect. 2.2.6.

Osculating Keplerian elements can also be used in a very perturbed problem, in
which the trajectories have nothing in common with ellipses. In that case, though,
they loose their principal virtue and they may even be very misleading. Consider for
instance a trajectory for which the mean anomaly M oscillate around 0 instead of being
linear with time: this means that the two bodies stay always at pericentre!

2.2 Notions of Hamiltonian formalism

2.2.1 Hamilton’s equations

A Hamiltonian system with n degrees of freedom is a dynamical system entirely de-
scribed by a function:

H : Q,q, t ∈ Rn× Rn× R 
−→ R (2.38)
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at least of class C2, called the Hamiltonian6. In that expression, Q and q are said to
be “canonical coordinates” if their evolution is governed by Hamilton’s equations:⎧⎪⎪⎨

⎪⎪⎩
dQ

dt
= −∂H

∂q
(Q,q, t)

dq

dt
=

∂H
∂Q

(Q,q, t)

(2.39)

where ∂H/∂q stands for the column vector ( ∂H/∂q1 , ∂H/∂q2 ... ∂H/∂qn )
T. At a time

t, the state of the system is completely determined by q(t) ∈ Rn (the position) and
Q(t) ∈ Rn (the vector of conjugate momenta). The power of the Hamiltonian formalism
is that q and Q can be very distant from conventional coordinates (say the Cartesian
position and velocity), but allow a description of the dynamics in a much simpler
form. In simple words, the resolution of a Hamiltonian system consists in finding the
coordinates in which it is “trivially” solvable (or at least, in which some information on
the dynamics can be obtained).

In a Hamiltonian system, the time derivative of any function of the coordinates
f(Q,q, t) can be written in terms of Hamilton’s equations, since by using the chain
rule:

df

dt
=

∂f

∂q
· dq
dt

+
∂f

∂Q
· dQ
dt

+
∂f

∂t

=
∂f

∂q
· ∂H
∂Q

− ∂f

∂Q
· ∂H
∂q

+
∂f

∂t

= {f,H}+ ∂f

∂t

(2.40)

where we introduced the Poisson’s brackets { , }. For the Hamiltonian itself, in partic-
ular, we have {H,H} = 0, so that:

dH
dt

=
∂H
∂t

(2.41)

The Poisson’s bracket gives another definition of canonical coordinates, as verifying:

{qi, Qj} = δij ; {Qi, Qj} = 0 ; {qi, qj} = 0 for each i, j = 1, 2...n (2.42)

which is equivalent to satisfy (2.39).
A Hamiltonian system is called “autonomous” if the Hamiltonian does not depend

explicitly on the time t. Any non-autonomous Hamiltonian system with n degrees of
freedom can be written in terms of an autonomous Hamiltonian system with n + 1
degrees of freedom. Indeed, starting from a Hamiltonian H(Q,q, t), we can use the
new set of canonical coordinates:

Q′ =
(
Q
T

)
; q′ =

(
q
t

)
(2.43)

6It is often written H, following Lagrange who used that character in honour of the Dutch astro-
nomer Huygens.
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and the new Hamiltonian function:

H′(Q′,q′) = H(Q,q, t) + T (2.44)

The momentum Q′
n+1 = T is conjugate to q′n+1 = t, such that:

dQ′
n+1

dt
= −∂H

∂t
and

dq′n+1

dt
= 1 (2.45)

This results in the constancy of H′ along the trajectory (since its partial derivative with
respect to the time is zero, see Eq. 2.41). The initial condition of T is arbitrary, but,
considering an initial condition (Q0,q0, t0) of the original system, a usual choice is to
take T (t0) = H(Q0,q0, t0) which gives zero for the constant value of H′.

Depending on the problem under study, a more sophisticated expression for q′n+1

can be chosen, in order to allow a simpler expression of H′. Later in this work, for
instance, we will use a linear function of the time.

2.2.2 Time regularisation

The basic principle of time-regularisation methods is to replace the time t by a pseudo
time τ , expressed in terms of the dynamical variables, with the aim of getting simpler
equations of motion. For an initial set of canonical coordinates (Q,q) ∈ Rn × Rn with
the general Hamiltonian H(Q,q, t), the chosen definition of the new time τ has the
form:

dt

dτ
= κ(Q,q) (2.46)

in which the function κ is at least C2 in its variables (as the Hamiltonian). If κ does
not depend on the coordinates (so that it is a constant scaling factor), the Hamilto-
nian giving rise to equivalent dynamical equations as the initial system, but using the
regularised time τ , is simply:

M(Q,q) = κH(Q,q) (2.47)

Indeed, we have: ⎧⎪⎪⎨
⎪⎪⎩

dq

dτ
=

∂M
∂Q

dQ

dτ
= −∂M

∂q

with

⎧⎪⎨
⎪⎩

dq

dτ
=

dq

dt

dt

dτ
= κ

dq

dt
dQ

dτ
=

dQ

dt

dt

dτ
= κ

dQ

dt

(2.48)

so that, as expected: ⎧⎪⎪⎨
⎪⎪⎩

dq

dt
=

1

κ

∂M
∂Q

=
1

κ

∂(κH)

∂Q
=

∂H
∂Q

dQ

dt
= −1

κ

∂M
∂q

= −1

κ

∂(κH)

∂q
= −∂H

∂q

(2.49)
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Much more interesting transformations, of course, are obtained when κ depends on
the coordinates Q and/or q. In that case, the classic method, in order to obtain an
equivalent dynamical system in the regularised time τ , is to firstly add the time t as
a new canonical coordinate along with its conjugate momentum T . That method was
introduced in Sect. 2.2.1 to deal with non-autonomous systems: here it is required even
if the system is autonomous. Instead of H, we thus initially consider the Hamiltonian:

K(Q, T,q, t) = H(Q,q, t) + T (2.50)

in which, for now, the initial value of T is arbitrary. It produces the same dynamical
equations as H (see Sect. 2.2.1). As before, the dynamical system using the regularised
time τ is obtained by using the Hamiltonian:

M(Q, T,q, t) = κ(Q,q)K(Q, T,q, t) = κ(Q,q)
(
H(Q,q, t) + T

)
(2.51)

This time, though, the equivalence of this dynamical system and the initial one is not
guaranteed in the general case. Indeed, we have:

⎧⎪⎪⎨
⎪⎪⎩

dq

dt
=

1

κ

∂M
∂Q

=
1

κ

∂(κK)

∂Q
=

1

κ

(
∂κ

∂Q
K + κ

∂K
∂Q

)
=

∂K
∂Q

+
1

κ

∂κ

∂Q
K

dQ

dt
= −1

κ

∂M
∂q

= −1

κ

∂(κK)

∂q
= −1

κ

(
∂κ

∂q
K + κ

∂K
∂q

)
= −∂K

∂q
− 1

κ

∂κ

∂q
K

(2.52)

Using the expression (2.50) of K, we thus obtain:

⎧⎪⎪⎨
⎪⎪⎩

dq

dt
=

∂H
∂Q

+
1

κ

∂κ

∂Q
(H + T )

dQ

dt
= −∂H

∂q
− 1

κ

∂κ

∂q
(H + T )

(2.53)

Here, the crucial introduction of the variable T becomes obvious. Indeed, we retrieve
the original equations only if at any time t (or pseudo time τ), we have the relation:

K = H + T = 0 (2.54)

In the new coordinates, the evolution of the real time and its conjugate momentum is
governed by: ⎧⎪⎨

⎪⎩
dt

dτ
=

∂M
∂T

= κ (definition of the pseudo time)

dT

dτ
= −∂M

∂t
= −κ

∂H
∂t

(2.55)
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showing that the value of K is conserved also in the new coordinates:

dK
dτ

=
dH
dτ

+
dT

dτ

=
∂H
∂q

· dq
dτ

+
∂H
∂Q

· dQ
dτ

+
∂H
∂t

dt

dτ
+

dT

dτ

=
∂H
∂q

· ∂M
∂Q

− ∂H
∂Q

· ∂M
∂q

+
∂H
∂t

∂M
∂T

− ∂M
∂t

=
∂H
∂q

·
(
κ
∂H
∂Q

+
∂κ

∂Q
(H + T )

)
− ∂H

∂Q
·
(
κ
∂H
∂q

+
∂κ

∂q
(H + T )

)
+ κ

∂H
∂t

− κ
∂H
∂t

= 0
(2.56)

Consequently, if the value of K is zero at the initial instant τ = τ0, it remains zero all
along the solution. Moreover, one can remember that the initial value of T was so far
considered arbitrary. Writing (Q0,q0, t0) the initial conditions, the regularised system
defined by (2.51) is equivalent to the original one only if we set:

T (τ = 0) = T0 = −H(Q0,q0, t0) (2.57)

Of course, if the initial system is autonomous H and T are both constant quantities, but
their sum is still required to be zero. Actually, the regularisation method introduced in
this section is only one particular example of a more general family of transformations
(see Mikkola and Wiegert, 2002).

2.2.3 The integral flow

Since it results in simpler formulas, we will now consider an autonomous system (if
necessary, the time should have been introduced among the canonical coordinates). We
will also gather the position and conjugate momenta in a single vector z = (Q,q) ∈ R2n.
The Hamiltonian function writes thus H(z) and it is a constant of motion. With these
notations, the equations of Hamilton write:

ż = J (DH)T (2.58)

where (DH)T is the gradient of H as a column vector and J is the fundamental sym-
plectic matrix. It writes:

J =

(
O −�
� O

)
(2.59)

where 0 and � are the n × n zero and identity matrices. The equation (2.58) is thus
strictly equivalent to (2.39). Finally, the Poisson’s brackets of two functions f(z) and
g(z) rewrite:

{f, g} = Df J (Dg)T (2.60)

This formalism is much more convenient when speaking of integral flows and canonical
changes of coordinates.
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The “integral flow” Φt
H(z0) of the Hamiltonian system is the unique solution of the

system of differential equations (2.58) starting from z0 at t = 0. It is a function of both
the time and the initial conditions:

ΦH : t, z0 ∈ R× R2n 
−→ Φt
H(z0) ∈ R2n (2.61)

and verifies by definition Φ0
H(z0) = z0. By the regularity theorem for solutions of

ordinary differential equations, Φt
H is at least as smooth as H. Moreover, it has the

semigroup property:
Φt2

H ◦ Φt1
H = Φt1+t2

H (2.62)

In particular, the mapping Φt
H : R2n 
→ R2n is a bijection with inverse Φ−t

H (which is
also equivalent to Φt

−H).

2.2.4 Canonical changes of coordinates

A diffeomorphism φ : z ∈ R2n 
→ z̃ ∈ R2n of class at least C2 is said to be a “canonical
change of coordinates with valence α” if for any Hamiltonian H(z), the function:

H̃ = αH ◦ φ−1 , α ∈ R (2.63)

can be used as a Hamiltonian in the z̃ space. In other words, the structure of the
equations remains unchanged, that is:

ż = J (DH)T ⇐⇒ ˙̃z = J (DH̃)T (2.64)

It implies also that the integral flows Φt
H and Φt

H̃ commute by φ:

φ ◦ Φt
H = Φt

H̃ ◦ φ (2.65)

The condition for φ to be a canonical transformation can be derived by the chain rule:

˙̃z =
dφ(z)

dt
= Dφ(z) ż = Dφ(z) J (DH)T(z) (2.66)

and from (2.63) we have:

αH = H̃ ◦ φ =⇒ (DH)T =

(
1

α
DH̃Dφ

)T

=
1

α
(Dφ)T (DH̃)T (2.67)

so, finally:

˙̃z =

[
1

α
Dφ(z) J (Dφ)T(z)

]
(DH̃)T (2.68)

By identification with (2.64), the diffeomorphism φ is a canonical change of coordinates
if and only if:

DφJ (Dφ)T = αJ (2.69)
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If that relation holds, we will say that the matrix Dφ is symplectic. For one-degree-
of-freedom systems, this is equivalent to the simple condition det(Dφ) = α. One can
note that a coefficient α different from 1 corresponds to a change of unit and/or di-
mension. A different way to present a canonical change of coordinates is to write every
component of z̃ = (Q̃, q̃) as a function of z. Then, the transformation is canonical if
and only if the components of z̃ verify (2.42). Various other definitions of canonical
transformations exist, for instance using generating functions, or such as conserving the
symplectic 2-form. A more exhaustive presentation, though, would be out of the scope
of this introduction. Throughout this work, some usual canonical transformations are
frequently used, so it is worth to present them here:

• A typical case is when a transformation q̃ = f(q) is made to the positions and
we look for an expression Q̃ = F (Q,q) making canonical the overall change of
coordinates. The matrix Dφ can be written in four blocks of n× n matrices:

Dφ =

(
DQF DqF

0 Df

)
(2.70)

and choosing α = 1, the condition (2.69) writes:{
Df (DQF )T = �

DqF (DQF )T = DQF (DqF )T
(2.71)

Obviously, the simplest choice is to define F linear with respect to the momenta.
In that case, the change of coordinates is made canonical by putting (from the
first equation):

Q̃ = F (Q,q) = (Df(q)−1)T Q (2.72)

This function verifies also automatically the second equation (see appendix B.1.1).
In particular, when f is a linear transformation with matrix A, the change of
coordinates can be made canonical simply by applying its inverse transposed to
the momenta.

• Another useful example is the construction of polar coordinates in the phase space
spanned by one couple of conjugate coordinates (Q, q). The coordinates Q and q
can be one component of Q and q or the overall coordinates for a one-degree-of-
freedom system. We call canonical polar coordinates a couple (R, θ) such that:{

Q = f(R) cos θ

q = f(R) sin θ
(2.73)

where R > 0 is the momentum conjugate to θ. The determinant of the Jacobian
of φ : (R, φ) 
→ (Q, q) writes f ′(R)f(R), so the transformation is canonical with
valence 1 if and only if:

f ′(R)f(R) = 1 ⇐⇒ df(R)2

dR
= 2 (2.74)
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Hence, the simplest choice is f(R) =
√
2R . If R < 0, the transformation (2.73)

with f(R) =
√−2R would result in a canonical change of coordinates with

valence α = −1. In order to avoid the change of sign of the Hamiltonian, there
are two analogous canonical transformations with valence 1, namely:{

Q =
√−2R cos(−θ)

q =
√−2R sin(−θ)

or

{
Q =

√−2R sin θ

q =
√−2R cos θ

(2.75)

• Now, let us consider a Hamiltonian system with conjugate coordinates r,p ∈
R3×R3. The position r can be also described by generalised spherical coordinates,
that is a set of two rotations plus a function of r and/or p. We can show that
the momentum conjugate to any rotation angle in the position space is equal to
the projection of r × p on the axis around which it rotates. In the same way,
the momentum conjugate to any position along one axis is the projection of p on
this axis. This is easily verified for the classic spherical coordinates, in which the
position is described by the angles (θ, ϕ) ∈ ]0, π[×[0, 2π] and the radial distance
r through:

r =

⎛
⎝x
y
z

⎞
⎠ = r

⎛
⎝cosϕ sin θ
sinϕ sin θ

cos θ

⎞
⎠ that is

⎛
⎝r
θ
ϕ

⎞
⎠ =

⎛
⎝
√
x2 + y2 + z2

acos(z/r)
atan2(y, x)

⎞
⎠ (2.76)

This transformation implies only the position, so the first example of canonical
transformation given above can be applied to deduce the expression of the new
momenta. Calling f(r) the transformation applied to the position, we get:

Df(r) =

⎛
⎜⎜⎝

x/r y/r z/r

xz

r2
√

x2+y2
yz

r2
√

x2+y2
−
√

x2+y2

r2

− y
x2+y2

x
x2+y2

0

⎞
⎟⎟⎠ (2.77)

which has the determinant 1/(r2 sin θ). Provided that r 	= 0 and sin θ 	= 0,
its inverse transposed gives the transformation to be applied to p to obtain the
momenta (Pr, Pθ, Pϕ) in terms of r and p = (px, py, pz)

T:

⎛
⎝Pr

Pθ

Pϕ

⎞
⎠ =

⎛
⎜⎝

x/r y/r z/r
xz√
x2+y2

yz√
x2+y2

−√x2 + y2

−y x 0

⎞
⎟⎠
⎛
⎝px
py
pz

⎞
⎠

=

⎛
⎜⎝

p · r/r
−y√
x2+y2

(y pz − z px) +
x√

x2+y2
(z px − x pz)

x py − y px

⎞
⎟⎠

(2.78)

We see that Pϕ is indeed the projection of r× p on the z-axis, whereas Pθ is the
projection of r× p on the axis generated by (−y, x, 0), around which rotates the
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angle θ. In the same way, Pr is the projection of p on the axis generated by r itself.
In the particular case in which (px, py, pz) = (ẋ, ẏ, ż), the vector r×p is the angular
momentum and we retrieve the classic result (Pr, Pθ, Pϕ) = (ṙ , r2θ̇ , r2 sin2 θ ϕ̇).

In a more general spherical coordinate system (as the one presented in Sect. 2.2.6),
the rotation axes can be functions of both r and p.

• The last case is a bit more subtle. Actually, what could be a better example of
canonical transformation than the integral flow of a Hamiltonian system itself?
Let us consider an auxiliary Hamiltonian function X (z). The associated integral
flow (solving the equations of Hamilton) writes Φτ

X (z0), where the independent
variable τ should not be necessary interpreted as “time”. Then, for a given τ ,
the transformation Φτ

X : z 
→ z̃ can be interpreted as a canonical change of
coordinates. The fact that the matrix DΦτ

X is symplectic whatever the value of τ
considered is given by Liouville’s theorem. Indeed, by definition of the flow, we
have:

dΦτ
X (z)
dτ

= J(DX )T(Φτ
X (z)) (2.79)

By taking the derivative with respect to z we get:

dDΦτ
X (z)

dτ
= J D2X (Φτ

X (z))DΦτ
X (z) (2.80)

where D2X is the Hessian matrix of X . The fact that DΦτ
X verifies (2.69) is

finally obtained by studying the τ -evolution of the matrix Cτ = DΦτ
X J (DΦτ

X )
T.

By definition of the flow, Φ0
X (z) = z, which gives DΦ0

X = � and thus C0 = J .
Then, its τ -derivative writes:

dCτ

dτ
=

dDΦτ
X

dτ
J (DΦτ

X )
T +DΦτ

X J

(
dDΦτ

X
dτ

)T

= (J D2X DΦτ
X ) J (DΦτ

X )
T +DΦτ

X J (J D2X DΦτ
X )

T

= J D2X Cτ − Cτ D2X J

(2.81)

using the identity JT = −J and the fact that the Hessian is symmetric. The
unique solution of (2.81) starting from C0 = J is the constant function Cτ = J ,
which proves that Φτ

X is indeed a canonical change of coordinates.

2.2.5 The action-angle coordinates

Let us consider an integrable Hamiltonian system with n degrees of freedom, represented
by the Hamiltonian function H. If the system evolves on a compact and connected
manifold, then the theorem of Arnold-Liouville7 implies the existence of action-angle

7The scope of Arnold-Liouville’s theorem is actually much larger, since it encompasses also the
notion of integrability of the system, namely if there exist n functions (including the Hamiltonian) with
zero mutual Poisson brackets. See Arnold (1989) for a complete formulation and the demonstration.
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coordinates (I, θ) ∈ Rn × Tn in which the dynamics writes in a very simple way:

H(I, θ) = H0(I) =⇒

⎧⎪⎪⎨
⎪⎪⎩

dIi
dt

= −∂H
∂θi

= 0

dθi
dt

=
∂H
∂Ii

= ωi(J) = const.

(2.82)

In other words, the motion takes place on an n-dimensional torus with radii {Ji}i=1,2...n

and at the constant angular velocities {ωi}i=1,2...n. Such coordinates are very convenient
to study the slightly perturbed case, in which this torus is deformed (the problem is
still integrable) or even destroyed (the problem becomes non-integrable).

These variables are not uniquely defined: any canonical change of coordinates leav-
ing the structure of n constant momenta and n angles with linear time-evolution would
result in suitable action-angle coordinates. Consider for instance the transformation
(Ji, Jj) 
→ (Ji + Jj, Jj) along with (θi, θj) 
→ (θi, θj − θi).

2.2.6 Application to the two-body problem

A conservative system always admits a Hamiltonian formulation with the conserved
total energy taken as Hamiltonian function. Indeed, with the force written as the
negative gradient of a potential V (r), it is immediate to verify that the Hamiltonian
system defined by:

H(p, r) =
1

2m
p2 + V (r) (2.83)

is equivalent to Newton’s equations of the dynamics, taking the linear momentum
p = m ṙ as vector of momenta conjugate to the position r. Of course, a more rigorous
approach consists in using the Lagrangian formalism as an auxiliary between Newton’s
and Hamilton’s equations. Similarly, in the case of the two-body problem written in
relative (or barycentric) coordinates, the total energy by unit of mass can be used as
Hamiltonian function:

H(p, r) =
1

2
p2 − μ

|r| (2.84)

taking p = ṙ. In terms of the Keplerian elements, the constant value of H writes
thus −μ/(2a). The two-body problem being integrable and fulfilling the conditions
of Arnold-Liouville’s theorem, it admits action-angle coordinates. We will look for
a set of coordinates (L,G,H, �, g, h) as close as possible to the easy-to-use Keplerian
elements. Our task is greatly facilitated since we already know the analytical solution
from Sect. 2.1.1. In particular, the angle M is an obvious choice for the first angular
coordinate �. Indeed, it has already a linear evolution so it can be used as it is. Its
conjugate momentum can be deduced from the expression ofH in terms of the Keplerian
elements, which includes only the semi-major axis a. The constant frequency of M is
n =

√
μ/a3 which gives:√

μ

a3
= �̇ =

∂H
∂L

=
∂H
∂a

∂a

∂L
=

μ

2a2
∂a

∂L
⇐⇒ ∂L

∂a
=

1

2

√
μ

a
(2.85)
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which has the simplest solution L =
√
μa , setting the integration constant (function of

e, I, ω,Ω) to zero. This gives the Hamiltonian system:

H(L,G,H, �, g, h) = − μ2

2L2
(2.86)

which is in accordance with the resolution from Sect. 2.1.1: even if the initial problem
has three degrees of freedom, the solution is characterised by only one varying angle
(namely �). The corresponding action-angle variables should thus contain two angles
with a zero frequency (g and h). The set of angles must be completed by two angles
giving the orientation of the ellipse in the three-dimensional reference frame. This can
be seen as the switch from (r,p) to generalised spherical coordinates. From Sect. 2.2.4,
we know that their respective conjugate momenta are the projections of the angular
momentum C on the axes around which they rotate. As such, the inclination I cannot
be used, since by definition it rotates around an axis perpendicular to C (this would
result in a momentum identically equal to zero, leading to no further information about
the system). Hence, the classic choice is to set g = ω and h = Ω. Using the expression
of C in terms of the Keplerian elements (Sect. 2.1.3), we obtain finally:

G = ‖C‖ =
√
μa(1− e2) and H = Cz =

√
μa(1− e2) cos I (2.87)

This complete set of action-angles coordinates:⎧⎪⎨
⎪⎩

� = M

g = ω

h = Ω

and

⎧⎪⎨
⎪⎩

L =
√
μa

G =
√
μa (1− e2)

H =
√
μa (1− e2) cos I

(2.88)

is usually called the “Delaunay coordinates”. Written in function of the initial variables
(r,p) with the expressions given in Sect. 2.1.3, we can show that they respect indeed all
the conditions (2.42) of canonical coordinates. A more rigorous introduction of these
variables can be found in Brouwer and Clemence (1961), or see Floŕıa (1995) for a
review.

Naturally, the Delaunay coordinates are singular where the Keplerian elements are,
that is for e = 0 and sin I = 0. In order to get coordinates which are smooth also in
these cases, we need a canonical analogous to the equinoctial elements (see Sect. 2.1.2).
The first step consists in replacing � and g, which are undefined for e = 0, by λ and �.
This is realised by a linear transformation on the Delaunay angles:⎛

⎝λ
u
v

⎞
⎠ =

⎛
⎝1 1 1
0 1 1
0 0 1

⎞
⎠
⎛
⎝�
g
h

⎞
⎠ =

⎛
⎝�+ g + h

g + h
h

⎞
⎠ (2.89)

which is extended to the momenta by applying its inverse transposed (see Sect. 2.2.4),
leading to: ⎛

⎝Λ
U
V

⎞
⎠ =

⎛
⎝ 1 0 0
−1 1 0
0 −1 1

⎞
⎠
⎛
⎝L
G
H

⎞
⎠ =

⎛
⎝ L
G− L
H −G

⎞
⎠ (2.90)
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The singularities when e = 0 and I = 0 are analogous to the singularity at the origin for
polar coordinates. This leads to define Cartesian-like coordinates (which thus includes
also the origin) by a polar canonical change of coordinates with “negative radius” (see
Sect. 2.2.4): {

A =
√−2U sin u

α =
√−2U cosu

;

{
B =

√−2V sin v

β =
√−2V cos v

(2.91)

The complete set of coordinates is still action-angle for the two-body problem, and the
corresponding Hamiltonian writes:

H(Λ, A,B, λ, α, β) = − μ2

2Λ2
(2.92)

They are called the “Poincaré coordinates” and are smooth functions of the Cartesian
position and velocity (except for e = 1 and/or I = π). Their link to the Keplerian
elements, though, is more tortuous than for Delaunay coordinates.

Naturally, these coordinates can be used for dynamical systems with a Hamiltonian
function different than (2.84), in particular if it contains additional perturbing terms
in r and/or p. In that case, the coordinates of Delaunay (or Poincaré) will not be
action-angle, but the canonical analogue to the osculating coordinates (Sect. 2.1.3).
The corresponding equations of Hamiltonian, will thus be equivalent to the planetary
equations of Lagrange or Gauss.

2.2.7 Naive picture of the long-term evolution

Actually, the two-body problem is not only integrable, but also degenerate, in the sense
that there is only one varying angle among the three ones used to describe the dynamics
in action-angle coordinates. In Delaunay coordinates, this writes:

Ṁ =

√
μ

a3
; ω̇ = 0 ; Ω̇ = 0 (2.93)

In practice, this means that any quantity representative of the system (as the Cartesian
position and velocity) is constituted of one single frequency. In other words, its Fourier
spectrum is only composed of multiple of this “proper” frequency. If we now perturb
slightly this periodic orbit, it is pretty intuitive that it will give rise to two very separated
timescales, since we will have this time:

Ṁ =

√
μ

a3
+O(ε) ; ω̇ = O(ε) ; Ω̇ = O(ε) (2.94)

If the problem is still integrable (which is often questionable), the perturbed system will
thus admit in general three non-zero proper frequencies, related more or less closely to
the evolution of M , ω and Ω. Any dynamical quantity will thus contain a fast varying
component (associated to the orbital period) and a slow secular one (associated to
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the precession of the orbit). Fig. 2.2 gives an example of such dynamics for a trans-
Neptunian object orbiting around the Sun and perturbed by the planets. On a short
timescale (here some hundreds of years), the motion of the particle essentially amounts
to a Keplerian orbit. On a long timescale, on the contrary, the Keplerian elements
undergo wide modulations. In a study of the long-term evolution of the Solar System,
that is on a Giga-year timescale, only the low-frequency part is dynamically interesting.
This leads use to define the concept of “secular theory”, which deals only with the slow
component of the dynamics (blue curve on Fig. 2.2), significantly simpler than the
overall one. In other words, the goal of a secular theory is not to describe the motion of
the particle on its orbit, but to describe the deformation and the rotation of the orbit
itself. Naturally, that kind of description is only possible if the particle follows indeed a
slowly deforming Keplerian orbit, that is without catastrophic close encounters or other
chaotic phenomena.
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Figure 2.2 – Typical evolution of a dynamical quantity (here the perihelion distance) in a quasi-
integrable perturbed two-body problem. The red curve represents the osculating trajectory obtained
by numerical integration. Its “thickness” is made of fast small-amplitude oscillations. The blue curve
is the corresponding secular trajectory.

2.3 Toward action-angle coordinates

2.3.1 Near-identity transformations

Let us consider a generic Hamiltonian function H(z) with z = (Q,q) ∈ Rn × Rn or
Rn × Tn, and a small parameter ε � 1. According to the last example of Sect. 2.2.4,
a near-identity canonical change of coordinates can be seen as the flow at time τ = 1
associated to a “small” Hamiltonian function εX (z) (or equivalently, the flow at time
τ = ε associated to the Hamiltonian X ). The new coordinates write then:

z̃ = Φ1
εX (z) (2.95)

Let f(z) be a real function of the initial coordinates, at least of class C2. Its evolution
along the flow Φτ

εX is governed by:

d

dτ
f = {f, εX} = −LεXf (2.96)
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where we write LεX the linear operator associated to the Poisson brackets:

LεX = ε {X , . } = ε
n∑

i=1

(
∂X
∂qi

∂.

∂Qi

− ∂X
∂Qi

∂.

∂qi

)
(2.97)

Evaluated in the new coordinates, the function f can be written using the so-called
Lie-series formalism (by integration of 2.96 and putting τ = 1):

f(z̃) = exp(−LεX )f(z)

=

( ∞∑
n=0

1

n!
(−LεX )n

)
f(z)

=

(
1− LεX +

1

2
L2
εX − 1

6
L3
εX + . . .

)
f(z)

=

(
f − ε{X , f}+ ε2

2
{X , {X , f}} − ε3

6
{X , {X , {X , f}}}+ . . .

)
(z)

(2.98)

By definition of the flow, the inverse transformation is simply given by:

z̃ = Φ1
εX (z) ⇐⇒ z = Φ−1

εX (z̃) (2.99)

and thus, for a generic function f we have also:

f(z) = exp(LεX )f(z̃)

=

(
f + ε{X , f}+ ε2

2
{X , {X , f}}+ ε3

6
{X , {X , {X , f}}}+ . . .

)
(z̃)

(2.100)

Now, by choosing f = H and imposing H(z) = H̃(z̃), we deduce directly the expression
of the Hamilonian function in the new coordinates:

H̃ = H + ε {X ,H}+ ε2

2
{X , {X ,H}}+ ε3

6
{X , {X , {X ,H}}}+ . . . (2.101)

In the same way, considering this time f = Πj (function jth component), we get an
explicit expression of the component zj in terms of the new coordinates z̃.

2.3.2 Suppressing the angles dependency

Let us consider a Hamiltonian function H(I, θ) with (I, θ) ∈ Rn × Tn (we now splits z
in momenta/positions and we drop the bold notations). According to Arnold-Liouville
theorem, if the dynamical system associated to H is integrable, there exists a set of
coordinates in which the Hamiltonian function is independent of the angles θ (see
Sect. 2.2.5). In these action-angle coordinates, the system evolves on an n-dimensional
torus and the resolution is trivial. Supposing that the dynamics is integrable or quasi-
integrable (that is tightly trapped between KAM tori), an idea of resolution is to look
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for such coordinates. In the particular case where H is already “almost” expressed in
actions-angles variables, it can write generically:

H(I, θ) = H0(I) + εH1(I, θ) + ε2 H2(I, θ) + . . . (2.102)

and the actions-angles coordinates, if they indeed exist, can be obtained by a near-
identity canonical change of coordinates. All the problem consists in finding a suitable
auxiliary Hamiltonian function εX . Replacing H by its expression (2.102) in the equa-
tion (2.101), we get:

H̃ = H0 + ε
(
H1 + {X ,H0}

)
+ ε2

(
H2 + {X ,H1}+ 1

2
{X , {X ,H0}}

)
+ . . . (2.103)

We can also rewrite the auxiliary Hamiltonian εX in a series of ε:

X (I, θ) = X1(I, θ) + εX2(I, θ) + · · · (2.104)

which gives finally:

H̃ = H0

+ ε
(
H1 + {X1,H0}

)
+ ε2

(
H2 + {X2,H0}+ {X1,H1}+ 1

2
{X1, {X1,H0}}

)
+ . . .

= H̃0 + ε H̃1 + ε2 H̃2 + . . .

(2.105)

From now on, the problem is to determine every function Xj such as H̃ is independent
of the angles at every order. In order to suppress the angular dependency at order 1,
let us write the X1 in terms of an n-dimensional Fourier series of the angles θ:

X1(I, θ) =
∑
k∈Zn

X1k(I) exp(ik · θ) (2.106)

with:

X1k(I) =

(
1

2π

)n ∫ 2π

0

∫ 2π

0

. . . X1(I, θ) exp(−ik · θ) dnθ (2.107)

Its Poisson brackets with H0 write then:

{X1,H0} =
n∑

j=1

∂H0

∂Ij
(I)

∂X1

∂θj
(I, θ) =

n∑
j=1

ωj(I)
∑
k∈Zn

X1k(I) i kj exp(ik · θ)

=
∑
k∈Zn

ik · ω(I)X1k(I) exp(ik · θ)
(2.108)

where ω(I) represents the vector of unperturbed frequencies ω ≡ ∂H/∂I. Now if we
develop also the functions H1 and H̃1 in Fourier series:⎧⎪⎪⎨

⎪⎪⎩
H1(I, θ) =

∑
k∈Zn

H1k(I) exp(ik · θ)

H̃1(I, θ) =
∑
k∈Zn

H̃1k(I) exp(ik · θ)
(2.109)
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the equation (2.105) gives the equality term by term:

H̃1k(I) = H1k(I) + ik · ω(I)X1k(I) (2.110)

We finally deduce the equations which must be verified to suppress the angular depend-
ency of the Hamiltonian at order 1:

X1k(I) =
−H1k(I)

ik · ω(I) , for k 	= 0 (2.111)

The function X1k(I) can be anything for k = 0, so we will choose the null function
X10(I) ≡ 0. There are now different cases:

• If the vector ω(I) is non-resonant, that is if:

k · ω(I) = 0 ⇐⇒ k = 0 (2.112)

then Eq. (2.111) has a unique solution for all k ∈ Zn and the angular dependency
can by entirely suppressed. The Hamiltonian X1 being fixed, we can look for X2

from Eq. (2.105) using the same method, and so on for every relevant order. In
particular, at first order the new Hamiltonian turns out to be simply the term
k = 0 of the Fourier series of H1 (since the choice of X1 cancelled every other
term):

H̃1 = H̃1,0(I) =

(
1

2π

)n ∫ 2π

0

∫ 2π

0

. . . H1(I, θ) d
nθ (2.113)

that is its average upon the angles θ.

• On the other hand, if ω(I) presents one or several resonance relations (even ap-
proximate), the auxiliary Hamiltonian X will not be defined for all k, which
denotes the impossibility to totally suppress the angular dependency by a per-
turbative method. Nevertheless, if the vector ω(I) presents only a single resonance
relation (or a few isolated ones):

kres · ω ≈ 0 , kres 	= 0 (2.114)

the suppression of every other term in the Fourier series will still greatly sim-
plify the system. In this case, the new Hamiltonian H̃ will just contain some
supplementary oscillating terms, with the resonant angle:

σ = kres · θ (2.115)

as argument. If such a resonant combination is known a priori, an effective
method to study the dynamics is to take the resonant angle as a new independent
coordinate (by a linear canonical transformation, see Sect. 2.2.4), and then remove
all the other angles by the perturbation method. By doing so, the coordinates
obtained are not action-angle, because it remains a single angular dependency,
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but the Hamiltonian can become sufficiently “simple” to be solved (for instance,
it can be of type pendulum). If the dynamics is integrable, though, action-angle
coordinates do exist, but the required canonical transformation is not close to
identity.

In that work, actually, we will never try to obtain action-angles coordinates, but just
secular ones (see Sect. 2.2.7). Indeed, they can be seen as a first step towards the
action-angles coordinates (if they actually exist). In the context of a secular theory
in celestial mechanics, the only angles to be suppressed are the so-called fast angles
(the mean anomalies or the mean longitudes) given that the non-perturbed part of
the Hamiltonian function, written in action-angle coordinates, depends only on their
conjugate momenta (see the equations 2.86 or 2.92). For such a change of coordinates,
the non-resonant condition (2.112) implies only the so-called mean-motion resonances
between the bodies involved, that is commensurable ratios between the orbital periods.
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Chapter 3

Secular models beyond Neptune

Most of the results detailed in this chapter are more succinctly presented
in Saillenfest et al. (2016).

This chapter is devoted to the development of secular theories, in order to describe the
long-term orbital dynamics of trans-Neptunian objects. Section 3.1 presents the planet-
ary model used and the resulting osculating Hamiltonian function, starting point for any
secular representation. In Sect. 3.2, we revisit Kozai’s non-resonant secular model in
the trans-Neptunian region. Its general form is detailed and an analysis of the lowest-
order terms is conducted to get general information about the dynamics. Moreover,
semi-analytical methods are used to explore systematically the space of parameters.
Then, Sect. 3.3 presents the construction of a “resonant secular model”. The adiabatic
invariant theory is used to get a one-degree-of-freedom system: all the possible orbits
are described by the level curves of the Hamiltonian. Finally, Sect. 3.4 presents some
illustrations of the resonant model, along with detailed explanations about its use for
the various types of dynamics we can be confronted with. As the variety of trajectories
is found to be very rich, the exhaustive exploration of the parameter space is left for
Chp. 4.

We are interested in the long-term orbital evolution of trans-Neptunian objects, that
is, asteroidal-sized bodies that have a negligible mass compared to the planets. Along
this work, we focus only on planetary perturbations: the galactic tides, effective for very
high semi-major axes (see for instance Fouchard et al., 2006), can be introduced in a
second step. We will further restrict the study to perihelion distances greater than the
orbit of Neptune, that is, to trajectories completely out of the planetary region. This is
the less known dynamical region of the Solar System, since, because of the distance to
Earth, its population is very difficult to observe. Such orbits can be divided into two
broad classes:

• The first class, called generically the Scattered Disc, contains the objects undergo-
ing a diffusion of semi-major axis. It denotes a chaotic short-timescale dynamics,
so these orbits are unstable by essence. It has been shown that a diffusive process
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is unable to produce a substantial variation in perihelion distance (see Gallardo
et al., 2012, for a thorough review).

• The second class contains the objects with integrable (or quasi-integrable) short-
timescale dynamics. As such, their orbits can be described by secular models.
Such models can exhibit stable equilibrium points and libration zones for the
secular argument of perihelion ω and perihelion distance q. If a particle follows
such a kind of orbit, we say that it experiences “Lidov-Kozai mechanism” in
reference to the pioneer papers of Kozai (1962, 1985) and to the independent study
by Lidov (1962) about the motion of artificial satellites. That class can be further
divided into two kinds of objects: the non-resonant ones (fixed secular semi-major
axis) and those trapped in a mean-motion resonance with a planet (oscillating
secular semi-major axis). To prevent any scattering, the non-resonant objects
need a sufficiently high perihelion distance, the limit being estimated by Gallardo
et al. (2012) as roughly qmin = a/27.3+33.3 AU (where a stands for the semi-major
axis expressed in AU). The resonant orbits are much more permissive because
the forced link with one of the planets can act as a protective mechanism against
diffusion. However, the resonance overlapping and, of course, the close encounters
with Neptune, are still well-known sources of chaos for perihelion distances very
close to the planetary region. A secular model is thus never relevant in all the
parameter space.

This classification is based on the dynamics of the objects rather than on their observed
orbits, so it is slightly different from the one introduced in Sect. 1.2.2. These two broad
classes are somehow permeable: a diffusion of semi-major axis can stop abruptly because
of a resonance capture, or on the contrary, a quasi-integrable secular motion can lead
the perihelion distance to decrease toward a diffusive region. We will come back to that
point later.

3.1 A simple planetary model

We write μ the product of the gravitational constant and the mass of the Sun, and μi

the product of the gravitational constant and the mass of the ith planet. According to
Newton’s law of motion, the acceleration of a massless body affected by the gravitational
attraction of the Sun and N planets writes:

ẍ = −μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3 (3.1)

where x, x� and xi are the positions of the particle, of the Sun and of the ith planet
in an inertial reference frame. In order to present the system as a perturbed two-body
problem with the Sun, we must switch to the relative reference frame1 (see Sect. 2.1).

1A reference frame centred on the mutual barycentre would be equivalent since the small body is
considered massless.
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Using the notations r ≡ x− x� and ri ≡ xi − x�, the equation (3.1) becomes:

r̈+ ẍ� = −μ
r

|r|3 −
N∑
i=1

μi
r− ri
|r− ri|3 (3.2)

Since the Sun is affected only by the massive planets, its acceleration in the inertial
reference frame writes:

ẍ� = −
N∑
i=1

μi
x� − xi

|x� − xi|3 =
N∑
i=1

μi
ri
|ri|3 (3.3)

which gives finally the equations of motion of the small body in the heliocentric reference
frame:

r̈ = −μ
r

|r|3 −
N∑
i=1

μi

(
r− ri
|r− ri|3 +

ri
|ri|3

)
(3.4)

This acceleration is the negative gradient of the potential:

V (r) = − μ

|r| −
N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

)
(3.5)

As explained in Sect. 2.2.6, the total energy per unit of mass can be taken as Hamilto-
nian, the vector p = ṙ being the momentum conjugate to the position r. It writes
thus:

H(p, r, t) =
1

2
p2 − μ

|r| −
N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

)
(3.6)

Written in that form, H is time-dependent through the planetary positions, supposed
known functions of the time: ri ≡ ri(t). Let us now switch to Delaunay heliocentric
elements (Eq. 2.88). The new Hamiltonian, equal to (3.6) by value, will still be noted
H. It writes:

H(L,G,H, �, g, h, t) = − μ2

2L2
−

N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

)
(3.7)

As before, we write {a, e, I, ω,Ω,M} the heliocentric Keplerian elements, appearing in
r though (2.28). In order to apply a perturbative method, we split H into its Keplerian
part H0 and the planetary perturbations εH1, where the size ε of the perturbation is
proportional to max {μi/μ}:

H(L,G,H, �, g, h, t) = H0(L) + εH1(L,G,H, �, g, h, t) (3.8)

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H0 = − μ2

2L2

εH1 = −
N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

) (3.9)
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That Hamiltonian is written in osculating coordinates, defining the instantaneous mo-
tion of the small body. This is the starting point of every secular model presented in
this work, for both different types of dynamics (resonant or non-resonant) and different
forms of the planetary orbits (the known functions ri(t)). All the problem is to define
rigorously, in the form of a canonical change of coordinates, the transformation leading
from the osculating coordinates (red curve of Fig. 2.2) to the secular ones (blue curve).

In order to study the specific role of each planet, we must choose a planetary model,
that is an explicit formulation of the {ri(t)} functions to be put in (3.7). This can be
done either by a synthetic representation (see appendix A), or by analytical expansions
as in Lemâıtre and Morbidelli (1994) or Moons et al. (1998). We will opt for the very
simple planetary model used by Kozai (1962), in which the N planets evolve on circular
and coplanar orbits. As recalled by Thomas and Morbidelli (1996), such a model can
be seen as the dominant term of an expansion in powers of the planetary eccentricities
and inclinations. Anyway, that approximation seems quite viable, given that the only
relevant planetary perturbations in the region under study come from the four giant
planets (eccentricities < 0.1 and inclinations < 3◦), on relatively stable orbits from the
end of the planetary migration (see for instance Laskar, 1988, 1990; Tsiganis et al.,
2005). This approximation is even more accurate when choosing the invariant plane
of the planetary system as reference plane (instead of the ecliptic). Thanks to that
planetary model, it is straightforward to disentangle the effect of each planet, since:

ri(t) = ai

⎛
⎝cosλi(t)
sinλi(t)

0

⎞
⎠ ; λi(t) = ni t+ λi0 (3.10)

where the heliocentric semi-major axis ai is constant and n2
i a

3
i = μ + μi. Then, we

get rid of the explicit time dependency by defining the angles {λi} as new canonical
coordinates, along with their conjugate momenta {Λi} artificially added to the non-
perturbed part H0:

H0 = − μ2

2L2
+

N∑
i=1

ni Λi (3.11)

The general form of the Hamiltonian function is finally:

H
(
{Λi}, L,G,H, {λi}, �, g, h

)
= H0

(
{Λi}, L

)
+ εH1

(
L,G,H, {λi}, �, g, h

)
(3.12)

3.2 Non-resonant case

Let us now switch to secular coordinates. In order to do so, we will use the Lie-series
formalism (see Sect. 2.3) applied to the perturbed Hamiltonian system (3.12). In this
section, we assume that there is no mean-motion resonance in the system, so the fast
angles � and {λi} can be removed by a close-to-identity transformation. In the secular
coordinates, the Hamiltonian function is then:

F = F0 + εF1 +O(ε2) (3.13)
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where F0 is functionally equal to H0 and εF1 is functionally equal to the average of
εH1 with respect to the independent angles � and λ1, λ2...λN . In the region considered
here, we judge enough to carry on the transformation up to the first order in ε.

The average of the indirect part of εH1 is quite simple, since even for a planet i
with non-zero eccentricity and inclination, we have from (2.26):

1

2π

∫ 2π

0

ri
r3i

dλi =
1

2π

∫ 2π

0

ri
r3i

r2i dνi

a2i
√

1− e2i
=

1

a2i
√
1− e2i

1

2π

∫ 2π

0

ri
ri
dνi = 0 (3.14)

This is true a fortiori for ei = Ii = 0, so the indirect part of the perturbation cancels
out. In order to calculate the average of the direct part, however, a choice has to be
made. With H as described above, it is indeed impossible to compute the required
integrals analytically without the use of infinite series. Section 3.2 is thus organised
as follows: in Sect. 3.2.1, the analytical model of Kozai (1962) is adapted to the outer
Solar System. The dominant terms are then studied in Sect. 3.2.2. Naturally, this
will give only a rough picture of the secular dynamics, but some general results will be
obtained and guide the construction of an “exact” semi-analytical model in Sect. 3.2.3.

3.2.1 Analytical solution

The possible very large eccentricities and inclinations of the trans-Neptunian objects
make inefficient the use of classical expansions around a circular orbit in the planetary
plane as in Murray and Dermott (1999). A development centred on some specific values
(see for instance Roig et al., 1998) would also be inappropriate because of possible large
variations of orbital elements, and because it would imply a loss of generality. Instead,
supposing that the heliocentric distance of the small body is always larger than the one
of the farthest planet considered (here, Neptune), the idea is to use a development in
Legendre Polynomials of the inverse mutual distances, that is in powers of the {ri/r}
ratios:

1

|r− ri| =
1

r

∞∑
n=0

(ri
r

)n

Pn(cosψi) (3.15)

In that expression, the angle ψi is defined by:

cosψi = (̂r, ri) =
r · ri
r ri

(3.16)

and the functions {Pn} are the Legendre polynomials:

P0(x) = 1 P5(x) = (63 x5 − 70 x3 + 15 x)/8
P1(x) = x P6(x) = (231 x6 − 315 x4 + 105 x2 − 5)/16
P2(x) = (3x2 − 1)/2 P7(x) = (429 x7 − 693 x5 + 315 x3 − 35 x)/16
P3(x) = (5x3 − 3 x)/2 . . .
P4(x) = (35 x4 − 30 x2 + 3)/8

(3.17)
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which can be obtained from Bonnet’s recursion formula:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) , n > 1 (3.18)

One can note that any Legendre polynomial of even order involves only even powers of
x, and any polynomial of odd order involves only odd powers of x. This can be shown
using the recursion formula. Thanks to the planetary model used (3.10), the angle ψi

writes simply:

cosψi =
(
cos(ω + v) cosΩ− sin(ω + v) sinΩ cos I

)
cosλi

+
(
cos(ω + v) sinΩ + sin(ω + v) cosΩ cos I

)
sinλi

(3.19)

or schematically cosψi = α cosλi + β sinλi. Computing first the average of (3.15) with
respect to λi, we get a sum of integrals of the different powers of cosψi. The odd-order
polynomials all vanish, since they involve only integrals of the form:

χ2k+1 =
1

2π

∫ 2π

0

(α cosλi + β sinλi)
2k+1 dλi , k ∈ N (3.20)

which are all zero (see the proof in B.2.1). The even-order polynomials, on the contrary,
result in terms of the form:

χ2k =
1

2π

∫ 2π

0

(α cosλi + β sinλi)
2k dλi , k ∈ N (3.21)

which can be computed explicitly:⎧⎨
⎩

χ0 = 1

χ2k =
1× 3× ...× (2k − 1)

2× 4× ...× 2n
(α2 + β2)k , k = 1, 2, 3...

(3.22)

(see the proof in B.2.2). Consequently, we get:

1

(2π)N

∫ 2π

0

∫ 2π

0

...

∫ 2π

0

εH1 dλ1dλ2...dλN = −1

r

+∞∑
n=0

(
N∑
i=1

μi

(ai
r

)2n
)
P2n(χ) (3.23)

which remains to be averaged over � to get the secular Hamiltonian. The integral is
more conveniently realised over the real anomaly ν (from Eq. 2.26), appearing in r via
(2.29) and in χ through:

α2 + β2 = cos2(ω + ν) + sin2(ω + ν) cos2 I (3.24)

Each polynomial 2n in (3.23) leads to the computation of n+ 1 integrals of the form:

1

2π

∫ 2π

0

(α2 + β2)k

r2n+1
d� =

1

a2
√
1− e2

1

2π

∫ 2π

0

(α2 + β2)k

r2n−1
dν , k = 0, 1, 2...n (3.25)
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These integrals have a well-defined analytical formulation, but their expression becomes
quickly very long when n grows. The final result can be concisely written as:

εF1 = −
N∑
i=1

1

4π2

∫ 2π

0

∫ 2π

0

μi

|r− ri| dλi d� = −1

a

+∞∑
n=0

(
N∑
i=1

μi

(ai
a

)2n
)
Bn(e, I, ω) (3.26)

where B0 = 1, and for n > 0 the Bn functions are of the form:

Bn(e, I, ω) =
αn

(1− e2)
4n−1

2

n−1∑
k=0

P k
n (e)×Qk

n(cos I)× e2k sin2k(I) cos(2k ω) (3.27)

In that expression, αn is a rational coefficient and P k
n et Qk

n are even polynomials
of order 2(n − k − 1) and 2(n − k) respectively. The appendix B.2.3 shows the first 8
terms. The variables (a, e, I, ω) should then be replaced by their expressions in Delaunay
elements (2.88) to get the Hamiltonian in canonical coordinates. Its general expression
is thus (at first order of the planetary masses):

F
(
{Λi}, L,G,H, g

)
= F0

(
{Λi}, L

)
+ εF1

(
L,G,H, g

)
(3.28)

where F0 is given by (3.11) and εF1 by (3.26). Please note that even if we write the co-
ordinates with the same symbols as before, we now manipulate the secular coordinates,
related to the osculating ones by a complex canonical transformation (see Sect. 2.3).

One can see that the angle h = Ω has disappeared during the average over λi (see
Eq. 3.24). This happened because of the symmetry of rotation implied by the circular
and coplanar planetary orbits. Furthermore, the secular Hamiltonian depends only on
the magnitude ofH/G = cos I (not its sign), and it is π-periodic in g = ω and symmetric
with respect to π/2. The non-resonant secular dynamics is rather simple because we
are left with only one degree of freedom: the secular momenta L and Λ1,Λ2...ΛN are
conserved, as well as H thanks to the extra disappearance of h. Hence, all the possible
orbits can be described by plotting the level curves of F in the (G, g) plane, with L
and H as free parameters. For a more direct interpretation of the results, we can also
use the plane (q, ω), equivalent to (G, g), and the two parameters can be rewritten as:{

a = L2/μ

CK = (H/L)2 = (1− e2) cos2 I
(3.29)

The “Kozai constant” CK links the secular eccentricity and inclination of the particle.
We chose to square the H/L ratio to stress the independence of F over its sign. The
variations allowed by the value of CK are then:

e ∈
[
0 ,
√

1− CK

]
and cos2 I ∈

[
CK , 1

]
(3.30)

In order to explore the phase space with respect to the two parameters, let us remark
at first that for a circular orbit, the secular Hamiltonian becomes also independent of
g = ω. The elements (a, e, I) are thus constant, and the angles Ω and ω (ill-defined in
that case) circulate.
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3.2.2 Analysis of the lowest-order terms

In the study of a dynamical system, the first step is to look for possible equilibrium
points. An insight of the non-resonant secular dynamics can be obtained by truncating
the development (3.26). The general form of Eqs. (3.26,3.27) makes obvious that the
truncated model will be accurate only for high semi-major axes and small eccentricities
(that is, for trajectories always far from Neptune). Dropping the constant parts and
carrying the expansion up to the very first term containing the angle ω = g, we get (see
appendix B.2.3):

F = δ2
1

8

1− 3 cos2 I

(1− e2)3/2

+ δ4
9

1024

(−3 + 30 cos2 I − 35 cos4 I)(2 + 3 e2) + 10 (1− 7 cos2 I) e2 sin2 I cos(2ω)

(1− e2)7/2

+ O(δ6)
(3.31)

where we wrote symbolically:

δ2n ≡ 1

a

N∑
i=1

μi

(ai
a

)2n

(3.32)

In order to write down the dynamical equations, the Hamiltonian (3.31) needs to be ex-
pressed in canonical coordinates. Replacing the Keplerian elements by their expression
in terms of the Delaunay coordinates, we get:

F = δ2
1

8

(
L

G

)3
(
1− 3

(
H

G

)2
)

+ δ4
9

1024

(
L

G

)7
[(

− 3 + 30

(
H

G

)2

− 35

(
H

G

)4 )(
5− 3

(
G

L

)2 )

+10
(
1− 7

(
H

G

)2 )(
1−

(
H

G

)2 )(
1−

(
G

L

)2 )
cos(2g)

]

+ O(δ6)

(3.33)

Up to the lowest order, the equations of motion are thus:⎧⎪⎪⎨
⎪⎪⎩

ġ =
∂F
∂G

= δ2
3

8

L3

G6

(
5H2 −G2

)
+O(δ4)

Ġ = −∂F
∂g

= δ4
45

256

(
L

G

)7(
1− 7

(H
G

)2)(
1−

(H
G

)2)(
1−

(G
L

)2)
sin(2 g) +O(δ6)

(3.34)

The condition of stationarity writes:{
ġ = 0 +O(δ4)

Ġ = 0 +O(δ6)
⇐⇒

{
G2 = 5H2

sin(2g) = 0
that is

{
cos2 I = 1/5

sin(2ω) = 0
(3.35)
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The equilibrium points correspond thus to two very specific values of the inclination
(about 63.4◦ or 116.6◦) and of the argument of perihelion (0 or π/2 mod π). In order
to check the stability of the equilibrium points, let us note z the position (g,G)T and f
the vector field defined in (3.34) by ż = f(z). If we consider a small displacement Δz
around a solution z0(t), we have at first order:

dΔz

dt
= Df(z0)Δz (3.36)

This system is autonomous if z0 is a fixed point, and by using the fixed point expressed
in (3.35) we get:

Df(z0) =

( O(δ4) −3L3

100
√
5 |H|5 δ

2 +O(δ4)

η 9L5(5H2−L2)

10000
√
5 |H|7 δ

4 +O(δ6) O(δ6)

)
(3.37)

where the coefficient η is defined as:

η =

{
+1 for the equilibrium point at g = 0 mod π

−1 for the equilibrium point at g = π/2 mod π
(3.38)

Since Df is a constant matrix, the general solution of the variational equations expressed
in (3.36) can be written as:

Δz(t) = a exp(ν+t)v+ + b exp(ν−t)v− (3.39)

where a and b are constants given by the initial conditions, v± are the eigenvectors of
Df and ν± are the associated eigenvalues. The expression of the eigenvalues can be
directly computed from (3.37):

ν± = ± 3

1000

√
3

5

L4

H6

√
η δ2 δ4 (L2 − 5H2) +O(δ5) (3.40)

with (L2 − 5H2) � 0 because of (3.35). The equilibrium at g = 0 mod π is a saddle
point, since the corresponding eigenvalues ν± are real (the solution 3.39 has one com-
ponent exponentially rejoining the equilibrium, and one leaving it). On the other hand,
the equilibrium at g = π/2 mod π is central, since the corresponding eigenvalues ν±
are pure imaginary (the solution 3.39 has only components oscillating around the equi-
librium with frequencies iν±).

Figure 3.1 gives an example of level curves obtained from the truncated secular
Hamiltonian (3.33), taking into account Jupiter, Saturn, Uranus and Neptune (N = 4),
the mass of the inner planets being added to the Sun. The equilibrium is not located
exactly at I = 63.4◦ because we neglected the term of order δ4 for ġ in Eq. (3.35).
Taking that term into account (or considering the infinite series as in Sect. 3.2.3),
the inclination at equilibrium is actually a function of a and CK . Figure 3.2 shows
the period of oscillation (3.40) around the stable equilibrium as a function of the two
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parameters. On the red line, the perihelion at equilibrium is equal to the semi-major
axis of Neptune (below which the analytical development is not defined). Then, it goes
up with CK , until it reaches a for CK = 1/5. We remark that the secular timescale in
that region is almost always larger than a billion years, which prevents probably any
occurrence of a secular resonance with the planets. This is a new argument in support
of a very simple planetary model (with fixed orbital elements) and is consistent with
the results of Knezevic et al. (1991).

Figure 3.1 – Level curves of
the truncated version of F
with terms up to δ4 (paramet-
ers: a = 400 AU, CK =
0.19). The inclinations on the
right are deduced from q by
a and CK and are equivalent
to (116.9◦, 116.8◦...116.4◦), from
bottom to top. 63.1 ◦

63.2 ◦

63.3 ◦

63.4 ◦

63.5 ◦

63.6 ◦
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Figure 3.2 – Oscillation period for small oscillations around the stable equilibrium. The red line
defines the limit of convergence of the Legendre development (that is q = aN).
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3.2.3 Semi-analytical solution

In the previous section, we saw that it is possible to construct an analytical development
of the non-resonant secular Hamiltonian in powers of the (ri/r) ratios. The analysis of
the first terms, then, led to qualitative results about the geometry of the phase space.
Naturally, these results are asymptotic, accurate only for high semi-major axes and
small eccentricities, and are not valid for orbits near or inside the planetary region.
In particular, Gallardo et al. (2012) reported that the oscillation island at ω = π/2
disappears below some value of the semi-major axis and that the equilibrium at ω = 0
can become stable.

In order to get quantitative and accurate results, one can turn to numerical meth-
ods to compute the double average of εH1: we thus get its exact value, that is, the
value obtained for an infinite number of terms in the Legendre development. In that
section and the rest of this work, we will use the integration package of Piessens et al.
(1983), already successfully applied to such problems by Thomas and Morbidelli (1996)
and Gronchi and Milani (1999). Each evaluation of F on a point (ω, q) requires the
numerical evaluation of the double integral (3.26). The integrand is singular if the orbit
of the particle crosses the orbit of one planet, but the integral itself is well-defined and
it can be computed numerically by splitting it at the singularities2 (see appendix B.5.1).
Of course, the general properties of the secular Hamiltonian still hold (Eq. 3.28 and
comments thereafter) and help us to apprehend the geometry of the phase space. We
recall in particular that it is π-periodic with respect to ω. The non-resonant secular
regime beyond Neptune is qualitatively known from the work of Gallardo et al. (2012).
There are four different cases according to the values of the parameters:

a) no equilibrium point

b) one stable equilibrium point at ω = 0 mod π

c) one stable equilibrium point at ω = π/2 mod π

d) stable equilibrium points at both ω = 0 and π/2 mod π

To fix ideas, Fig. 3.3 gives an example of phase portrait for each case, obtained from
the semi-analytical model. When the semi-major axis is out of any mean-motion reson-
ance and not much affected by chaotic diffusion, this semi-analytical model is quite well
representative of the true dynamics of the particles. As an example, Fig. 3.4 shows the
evolution of a fictitious body obtained by a non-averaged numerical integration. The
variations of the semi-major axis are only of second order with respect to the perturb-
ation. The additional oscillations present in q and I are due to the small eccentricities
and inclinations of the planets and their variations. They turn the predicted periodic

2Even if the semi-analytical model is also valid for a perihelion inside the planetary region, we
still limit the study to q > aN as this is the region of interest in the scope of this work. For details
about the non-resonant secular dynamics with a perihelion inside the planetary region, see Thomas
and Morbidelli (1996) or Gallardo et al. (2012).
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Figure 3.3 – The four possible types
of geometry of the phase space for a
non-resonant secular dynamics beyond
Neptune. The chosen parameters are:
a) a = 36 AU, CK = 0.15; b) a =
46.1 AU, CK = 0.222; c) a = 80 AU,
CK = 0.16; d) a = 60 AU, CK = 0.184.

30

31

32

33

34

35

36

q
(A

U
)

a)

0 π/4 π/2 3π/4 π

ω (rad)

30

32

34

36

38

40

42

q
(A

U
)

b)

d)

0 π/4 π/2 3π/4 π

ω (rad)

c)

orbit into a quasi-periodic trajectory, which oscillates around the level curve given by
the semi-analytical model. Finally, Fig. 3.5 shows that when the semi-major axis dif-
fuses slowly, the trajectory still follows roughly the non-resonant secular dynamics, even
if the particle is temporarily locked into some mean-motion resonances. Of course, this
is only true if the resonant parts of the trajectory are transient enough. It should also
be noted that this particle has a very high inclination, which minimises the effects of
the resonances (see Chp. 4).

General results about the non-resonant dynamics can be obtained by a systematic
exploration of the parameter space. Figure 3.6 shows that the analysis of the lowest-
order terms remains qualitatively relevant for a semi-major axis greater than about 80
AU: the equilibrium point at ω = π/2 is the only one to remain stable. In other words,
the phase space is filled with circulation zones of ω, where the perihelion oscillates with
a very small amplitude. The only substantial variations of q are located around the
stable equilibrium at ω = π/2, where ω can oscillate (see Sect. 3.2.2).

In order to define “how substantial” it is, we used the semi-analytical approach to
determine the exact width of the island with respect to the two parameters. The result
is shown in Fig. 3.7: for each value of the parameters (a, CK), we searched numerically
for the position of the saddle point, and then followed the two separatrices until they
reached their maximum deployment. In the grey areas, there is no equilibrium point
possible for a perihelion beyond the semi-major axis of Neptune: in particular, we
note that the upper limit of CK = 1/5 obtained analytically is rather well respected
in general, and almost exact for a > 300 AU. The important point of Fig. 3.7 is the
existence of an asymptotic maximum width of the oscillation island of about 16.4 AU.
Since this result is only numerical, there is actually no way to determine if it is a true
asymptote or if the rate of increase tends to a very small value (but we note that an
analytical search for the two separatrices at ω = π/2 using an expansion of Eq. 3.33
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Figure 3.4 – Numerical integration of the non-averaged equations of motions, given by the Hamilto-
nian (3.9) without any transformation. It includes the four giant planets with the secular variation of
their orbital elements (synthetic representation by Laskar, 1990, supposed valid all along the integra-
tion span). The mass of the inner planets are added to the Sun. On the left, the Keplerian elements are
computed with respect to the barycentre of the Solar System. On the right, the trajectory is projected
on the plane (ω, q) in front of the level curves given by the semi-analytical model (a = 101.18 AU and
CK = 0.143). In that case, we used heliocentric coordinates (for comparison to the secular model),
which were filtered to remove the short-period oscillations due to Jupiter.
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Figure 3.5 – Same as Fig. 3.4 for a particle in the diffusive region (Scattered Disc). Strictly speak-
ing, each new value of the semi-major axis defines another secular model. On the right graph, the
parameters chosen for drawing the level curves are a = 325 AU and CK = 0.00025.
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Figure 3.6 – General geometry of the phase space with respect to the two parameters. The grey region
denotes the absence of any equilibrium point for a perihelion distance larger than the semi-major axis
of Neptune. The blue region stands for the presence of a stable equilibrium point at ω = 0, the red
one for a stable equilibrium point at ω = π/2, and the green region for the simultaneous existence
of both. See Fig. 3.3 for an example of each regime. For higher semi-major axes, the red region fills
progressively the graph from CK = 0 to CK = 0.2 (see Fig. 3.7 for a wider scale).

at order 2 of G around the equilibrium does show an asymptotic flat width at about
16.4065975 AU). However, this is not of great concern because a semi-major axis larger
than some tens of thousands AU looses obviously its physical meaning (please notice
the log-scale in Fig. 3.7). Thus, if a particle begins with an initial perihelion near
Neptune (say 35 AU), the very maximum value it could reach in the future with that
mechanism would be of about 50 AU. The excursion is consequent but still well below
the perihelion distances of Sedna and 2012VP113. Furthermore, we saw in Sect. 3.2.2
that the oscillation island is very narrow in terms of inclination (a few degrees near 63◦

and 117◦) which restricts severely the probability for a given object to undergo that
kind of process.

For completeness, Fig. 3.8 shows the position of this stable equilibrium point, both
in eccentricity and inclination. The inclination at equilibrium is never farther than
3◦ from the rough analytical value obtained in Sect. 3.2.2 (I ≈ 63.4◦ or 116.6◦). As
expected, it is more precise for large semi-major axes and small eccentricities. Its
position in eccentricity was also well predicted: the perihelion at equilibrium is near
the semi-major axis of Neptune for small values of CK , and near the circular orbit when
CK tends to 1/5.
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Figure 3.7 – Width of the oscillation island around the stable equilibrium point at ω = π/2. On the
top graph, only the maximum value for all CK is retained. The grey region denotes the absence of
such equilibrium point for a perihelion distance larger than the semi-major axis of Neptune (or regions
where the equilibrium point is so close to it that the lower separatrix ends below). The black lines are
iso-width curves, plotted for every integer value (the upper one corresponds to 16 AU). There is an
asymptotic value of q ≈ 16.4 AU, filling progressively all the graph when a increases (the colour shade
stops on red). The bump around a = 70 AU marks the disappearance of the ω = 0 equilibrium point
(see Fig. 3.6).
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Figure 3.8 – Position of the stable equilibrium point at ω = π/2 as given by the semi-analytical
model. The grey regions stand for the absence of equilibrium point for a perihelion larger than the
semi-major axis of Neptune. Please remember that the eccentricity and the inclination are linked
through CK =

√
1− e2 cos I. The inclinations shown are equivalent to 180◦ − I (retrograde case).
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3.3 Case of a single resonance

If the particle presents a mean-motion resonance with one of the planets, the coordinate
change used in Sect. 3.2 in order to get the secular coordinates is not defined any more
(some terms explode in the neglected part of the Lie series). A particular treatment
for the resonant terms is thus required. Let us consider a single resonance of type kp :k
with a resonant angle of the form:

σ = k λ− kp λp − (k − kp)� , k, kp ∈ N , k > kp (3.41)

In this expression, the angles λ and λp are the mean longitudes of the particle and of
the planet p involved, and � = ω + Ω. The integer k − kp is traditionally called the
resonance order. In our case, it is directly linked to the magnitude of the semi-major
axis a of the particle. Since the planets are supposed on circular and coplanar orbits, no
other planetary angle can appear. Resonances of that form are of “eccentricity type”.
They are by far the most frequent for the observed trans-Neptunian objects, which have
eccentricities ranging to very high values (more than 0.9). This could be explained by a
very simplified scenario of formation: considering a small body starting with an almost
circular and zero-inclination orbit slightly beyond Neptune, the chaotic diffusion due
to the planetary perturbations would greatly enlarge its semi-major axis with virtually
no variation of its perihelion distance nor its inclination. This objects gets thus a very
high eccentricity but an inclination still very small, so it is only affected by eccentricity
resonances (which can eventually raise its perihelion distance and/or its inclination, as
we will see in Chp. 4). The other possible angles associated with the kp : k resonance
involve both � and Ω (mixed type) or Ω alone (inclination type). They can be studied
just as we will show for the angle σ: the method is quite general and can be applied
to a large variety of dynamical systems. The only feature we need in order to define a
suitable secular Hamiltonian is a clear hierarchy between the timescales. In our case,
we have now three of them:

• the short periods (M and λ1, λ2...λN)

• the semi-secular periods (oscillation of the resonant angle σ)

• the secular periods (precession of ω and Ω)

Contrary to the non-resonant case, the development of a secular model requires thus
a two-step procedure. In Sect. 3.3.1 and 3.3.2, we describe the new canonical co-
ordinates used and the geometrical properties of the Hamiltonian function. Then,
Sect. 3.3.3 shows the transformation to an intermediary set of coordinates, referred
here as “semi-secular”, in which the Hamiltonian is left with two degrees of freedom.
The second change of coordinates (equivalent to a second averaging step) is described
in Sect. 3.3.4: we finally obtain a one-degree-of-freedom secular system very similar to
the non-resonant one. As previously, the phase portraits are preferentially drawn in
some kind of secular elliptical elements (defined in Sect. 3.3.5), which are more directly
interpretable than their canonical counterparts.
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3.3.1 Coordinate change

In order to study the dynamics inside and around the kp :k resonance, we must at first
isolate the resonant angle from the short-period terms, as shown for instance by Milani
and Baccili (1998). Basically, this consists in defining the angle σ as a new canonical
coordinate. From the Delaunay coordinates used so far (Eq. 2.88), this is done by a
linear transformation applied to the angles:⎛

⎜⎜⎝
σ
γ
u
v

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

�
λp

g
h

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
k −kp kp kp
c −cp cp cp
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

�
λp

g
h

⎞
⎟⎟⎠ (3.42)

where c and cp are integer coefficients, chosen such that:

detA = c kp − cp k = 1 (3.43)

This condition makes the transformation unimodular, so that any 2π-periodic function
with respect to the previous angles (as the Hamiltonian), is also 2π-periodic with respect
to the new ones. If we assume that σ is a slow angle, this makes γ be the fastest
circulating angle possible when λ and λp are related through (3.41). In others words,
γ makes one revolution during a complete cycle of λ and λp (kp turns of λ and k turns
of λp). Finally, we kept ω = g = u and Ω = h = v as independent coordinates since we
are interested in their individual secular evolutions. The transformation is then made
canonical by applying (AT )−1 on the conjugate momenta (see Sect. 2.2.4):⎛

⎜⎜⎝
Σ
Γ
U
V

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−cp −c 0 0
kp k 0 0
0 1 1 0
0 1 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

L
Λp

G
H

⎞
⎟⎟⎠ (3.44)

and the coordinates {λi �=p} and {Λi �=p} remain unchanged. In these new variables, the
Hamiltonian function H (Eq. 3.12) rewrites:

H
(
{Λi �=p},Σ,Γ, U, V, {λi �=p}, σ, γ, u, v

)
= H0

(
{Λi �=p},Σ,Γ

)
+ εH1

(
Σ,Γ, U, V, {λi �=p}, σ, γ, u, v

) (3.45)

where the unperturbed part is:

H0 = − μ2

2 (kΣ + cΓ)2
− np (kp Σ + cp Γ) +

N∑
i=1
i �=p

ni Λi (3.46)

and the perturbation writes formally as in (3.7):

εH1 = −
N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

)
(3.47)
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However, the resonant part now behaves differently, because rp ≡ rp(σ, γ, u, v) whereas
for i 	= p we have simply ri ≡ ri(λi). In these coordinates, γ is a fast angle, and σ
evolves with an intermediate (or “semi-secular”) timescale.

3.3.2 Analytical development: details about the Hamiltonian
function

Before switching to the semi-secular coordinates, some general information can be
grabbed about the resonant part of εH1. Indeed, if we write the inverse of the mutual
distances in terms of the Legendre polynomials (3.15), the angles u = ω and v = Ω
appear in the perturbations only via the scalar product r · ri. With the planets on
circular and coplanar orbits, it comes then:

r · ri
r ri

= cos(ω + ν) cos(λi − Ω) + sin(ω + ν) sin(λi − Ω) cos I (3.48)

For the resonant planet p, that quantity writes in the new coordinates:

r · rp
r rp

= cos(u+ ν) cos(kγ − c σ + u) + sin(u+ ν) sin(kγ − c σ + u) cos I (3.49)

where cos I should be replaced by:

cos I =
kpΣ + cpΓ + V

kpΣ + cpΓ + U
(3.50)

and where the true anomaly ν is only function of e and M :

e =

√
1−

(
kpΣ + cpΓ + U

kΣ

)2

and M = kp γ − cp σ (3.51)

We note here an important point: in the new coordinates, the resonant part of εH1

is independent of the angle v = Ω. Once again, this comes from our simple planetary
model: in that case, the system “particle + planet p” is invariant by rotation around
the vertical axis.

We can go further with some trigonometric identities:

{
2 cos(u+ ν) cos(kγ − c σ + u) = cos(ν + cσ − kγ) + cos(ν − cσ + kγ + 2u)

2 sin(u+ ν) sin(kγ − c σ + u) = cos(ν + cσ − kγ)− cos(ν − cσ + kγ + 2u)
(3.52)

which show that the resonant part of εH1 is also π-periodic in u = ω and symmetric
with respect to π/2.
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3.3.3 Semi-secular Hamiltonian

Thanks to our new definition of the angles (3.42), we can now safely switch to the “semi-
secular coordinates”, for which the Hamiltonian is independent of the fast angles. This
is done by the same close-to-identity transformation as we used in the non-resonant
case. Thus, the semi-secular Hamiltonian writes:

K = K0 + εK1 +O(ε2) (3.53)

where K0 is functionally equal to H0 and εK1 is functionally equal to the average of
εH1 with respect to the independent angles γ and {λi �=p}. At this point, it is interesting
to note that, by mixing the old and new coordinates we have:

γ =
1

kp
λ+

1

kp
(cp σ − u− v) =

1

k
λp +

1

k
(c σ − u− v) (3.54)

Hence, the average with respect to γ is equivalent to an integral over kp turns of λ
(resp. k turns of λp), expressing λp (resp. λ) via the resonant angle (3.41). Actually,
this is the integral usually given for that kind of resonant problems (see for instance
Gallardo, 2006b), in which the coordinate change is just made implicit. Whatever the
notation used, the semi-secular Hamiltonian (at first order of the planetary masses)
writes formally:

K
(
{Λi �=p},Σ,Γ, U, V, σ, u

)
= K0

(
{Λi �=p},Σ,Γ

)
+ εK1

(
Σ,Γ, U, V, σ, u

)
(3.55)

This time, we will not even try to obtain an analytical expression of K, but the indica-
tions obtained from Sect. 3.3.2 are useful to understand its general form. In particular,
the angle v = Ω has disappeared: indeed, the i 	= p parts of εH1 behave as in the
non-resonant case (see Sect. 3.2) and the i = p part was already independent of v. For
the same reasons, K is also π-periodic in u = ω and symmetric with respect to π/2.

The semi-secular constants of motion are then V , Γ and the various {Λi �=p}, and these
lasts will now be omitted since they appear only as a constant term in K. Concerning
the Γ momentum, one can notice that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Σ =
1

k

√
μa − c

k
Γ

U =
√
μa

(√
1− e2 − kp

k

)
+

1

k
Γ

V =
√
μa

(√
1− e2 cos I − kp

k

)
+

1

k
Γ

(3.56)

Considering that Γ is now a constant, it can by seen as a free parameter of the trans-
formation (3.56) from the semi-secular (a, e, I) elements to the semi-secular (Σ, U, V )
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momenta. The choice of Γ being now only a matter of definition3, we will conveni-
ently choose it equal to 0. Finally, the semi-secular Hamiltonian function used in the
following writes:

K(Σ, U, V, σ, u) = K0

(
Σ
)
+ εK1

(
Σ, U, V, σ, u

)
(3.57)

where:

K0

(
Σ
)
= − μ2

2 (kΣ)2
− npkpΣ (3.58)

and where εK1 is obtained by computing numerically the required integrals, just as
we did in Sect. 3.2.3. We are left with a two-degree-of-freedom system (the two angles
being σ and u = ω) and several strategies can now be used to study its dynamics. The
most general method would be to compute Poincaré maps of the complete semi-secular
system, but we did not find any example of this for trans-Neptunian objects in the
literature (although it would allow to detect a potential chaotic interaction between the
two degrees of freedom). In our particular case, we will see that the intrinsic properties
of the system allow to construct a more direct, secular representation.

3.3.4 Secular Hamiltonian

The methods usually used in the literature to construct resonant secular models beyond
Neptune are based on the crude model of Kozai (1985). Indeed, in order to get direct
estimates of the long-term resonant dynamics, Kozai chose to get rid of the extra degree
of freedom by fixing Σ and σ at a supposed libration centre. Some authors, for better
estimates, opted later for an assumed sinusoidal evolution of σ with constant centre,
frequency and amplitude (Gomes et al., 2005b; Gallardo et al., 2012). Unfortunately,
that kind of models is not adapted for the two following reasons: on the one hand, the
parameters (centre, frequency, amplitude) have to be known a priori. The libration
centre cannot be chosen arbitrarily: it must be an equilibrium point of the semi-secular
Hamiltonian, otherwise the model is simply wrong... Since it is essential, then, to use
a previous numerical integration, the secular model looses its utility as a tool to ex-
plore the variety of possible motions. On the other hand, these models just cannot
be considered as secular at all, because the oscillation parameters of σ can actually
vary a lot during the long-term evolution (this is further discussed and explained in
Sect. 3.3.6). Therefore, the level curves obtained with such constant parameters are a
very poor representation of the real trajectories, since they are valid only in a restricted
neighbourhood of each point. That problem was recently mentioned by Brasil et al.
(2014): they picked up the oscillation parameters of σ at different times from a numer-
ical integration and plotted a collection of secular level curves, each graph being valid
only at a time t and in the very neighbourhood of the considered point. This is quite

3We recall that the {Λi} momenta were added artificially to the Hamiltonian to absorb its temporal
dependence. Given that Γ = kpL + kΛp, it is not surprising to get an entire liberty concerning its
value.
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misleading because different classes of dynamics seem to appear (as their “hibernating
mode”), whereas they are actually just snapshots of one single secular motion.

On the contrary, we can take advantage of the wide separation between the two
timescales associated with the two degrees of freedom in order to reduce the system to
an integrable approximation. This technique is called the “adiabatic approximation”.
Indeed, the oscillation period of σ in that region ranges from a few tens of thousands
to some million years (semi-secular timescale), whereas the Lidov-Kozai cycles of ω,
as seen in the non-resonant case, are usually completed in more than a billion years
(secular timescale)4. The method itself is not new: it was traditionally used to compute
analytical proper elements for resonant or inclined asteroids, as in Morbidelli (1993),
Lemâıtre and Morbidelli (1994) or Beaugé and Roig (2001). We find it also in a series
a paper devoted to the dynamics of asteroids in mean-motion resonance with Jupiter:
see for instance Wisdom (1985), Moons and Morbidelli (1995) and Moons et al. (1998).
In the following, the procedure is recalled and applied to the semi-secular Hamiltonian.
It allows to follow the variations of σ instead of assuming a given evolution.

Our technique is based on two reference works: Henrard (1993) which is a detailed
course about the adiabatic invariant theory, and Henrard (1990) which details further
the useful transformation to action-angle coordinates. For now, let us suppose that
the dynamical system described by the semi-secular Hamiltonian (3.57) is integrable.
Let us also forget that it has two degrees of freedom but consider it as two independent
integrable systems, one for each pair of conjugate coordinates (Σ, σ) and (U, u). We will
call νσ and νu the proper frequencies associated and assume that the resulting evolution
of u runs on a timescale much larger than the one of σ, that is:

ξ =
νu
νσ

� 1 (3.59)

If this relation holds, the action-angle coordinates (J, θ) related to the evolution of
(Σ, σ) for a fixed value of (U, u) are a good approximation of the related ones in the
complete two-degree-of-freedom system. More precisely, J and θ are obtained up to
order ξ. In particular, the momentum J is not exactly conserved, but for a sufficiently
small value of ξ we can neglect its variations: in that case we say that J is an “adiabatic
invariant” of the system. In the new coordinates, that we call secular, the Hamiltonian
rewrites:

F(J, U, V, θ, u) = F0(J, U, V, u) +O(ξ) (3.60)

where the new splitting is implicit and has nothing to do with the previous one (Eq. 3.57).
Actually, such a change of coordinates could be applied to any two-degree-of-freedom
system, but it is of particular interest in the adiabatic regime, that is if (3.59) is verified.
Supposing it is, following Wisdom (1985) we will call F0 a “quasi-integral” of motion.
Neglecting the O(ξ) term, the dynamics can be described by the level curves of F in the
(U, u) plane: each point defines a one-degree-of-freedom subsystem with Hamiltonian K
for (U, u) fixed, and J is the conserved action from the action-angle coordinates of that

4That separation prevents probably any occurrence of secondary resonance in our model.
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subsystem. In other words, the constant J is related to a specific level curve of K in the
(Σ, σ) plane for (U, u) fixed, called the “guiding trajectory” by Henrard (1993). If we
note (Σ0, σ0) an arbitrary point of that level curve, the secular Hamiltonian neglecting
the O(ξ) term is simply defined by:

F(J, U, V, u) = K(Σ0, U, V, σ0, u) (3.61)

One can note that no further averaging is required since the value of K is by definition
the same all along the cycle. Wisdom (1985) used a similar representation to study the
resonance 3 :1 with Jupiter in the planar problem5. In addition, the method of “fixing
the slow variables by steps” was employed by Milani and Baccili (1998) to describe the
dynamics of Toro-type asteroids, but they did not use it to construct a secular model.

Once the adiabatic invariance is postulated, the tricky part is to determine the
action-angle coordinates of the one-degree-of-freedom subsystem. This can be realised
by using the semi-analytical method of Henrard (1990), as applied in the following
(see also Lemâıtre, 2010, for an introduction). Except from separatrices or equilibrium
points, we can show that all the trajectories (Σ(t), σ(t)) for (U, u) fixed are periodic,
with a period Tσ related to the level curve considered. Consequently, 2π/Tσ is the
obvious proper frequency of the system, hence the choice of the new angle:

θ = νσ t+ θ0 with νσ =
2π

Tσ

(3.62)

Now, let us search for a complete canonical transformation of the form:⎛
⎜⎜⎝
Σ
V
σ
v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

F (J, V ′, θ)
V ′

f(J, V ′, θ)
v′ + ρ(J, V ′, θ)

⎞
⎟⎟⎠ (3.63)

where F , f and ρ are 2π-periodic functions of θ. We do not apply any change to U and
u because they are considered here as parameters. In order to make (3.63) a canonical
change of coordinates, three equations have now to be verified by the unknown functions
F , f and ρ (see Sect. 2.2.4). The first one involves only f and F :

1 =
∂f

∂θ

∂F

∂J
− ∂f

∂J

∂F

∂θ
(3.64)

By adding and subtracting terms, we find out that:

∂f

∂θ

∂F

∂J
− ∂f

∂J

∂F

∂θ
=

1

2

[
∂

∂J

(
∂f

∂θ
F − ∂F

∂θ
f

)
− ∂

∂θ

(
∂f

∂J
F − ∂F

∂J
f

)]
(3.65)

When integrating (3.64) with respect to θ, we get then:

2π =
1

2

∂

∂J

∫ 2π

0

(
∂f

∂θ
F − ∂F

∂θ
f

)
dθ − 1

2

[
∂f

∂J
F − ∂F

∂J
f

]2π
0

(3.66)

5In Wisdom (1985), please take care that contrary to Henrard (1993) or Milani and Baccili (1998),
the “guiding trajectory” refers to the secular timescale, that is the level curves of F in the (U, u) plane.
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and the final brackets are zero, since f and F are 2π-periodic with respect to θ. Using
the definition (3.62) of θ, we get (apart from an arbitrary constant):

4πJ =

∫ 2π

0

(
∂f

∂θ
F − ∂F

∂θ
f

)
dθ =

∫ Tσ

0

(
σ̇Σ− Σ̇σ

)
dt (3.67)

or equivalently:

2πJ =
1

2

∮
(Σ dσ − σ dΣ) =

∮
Σdσ = −

∮
σ dΣ (3.68)

Except for the 2π factor, the new action J is thus equal to a signed area, positive
or negative according to the direction of motion along the level curve. In the case of
oscillations around a central equilibrium, 2πJ is the surface enclosed by the trajectory.
On the contrary, it represents the area stretched under the curve if σ circulates (see
Lemâıtre, 2010, for a simple example). The two next equations enable to define the
function ρ(J, V ′, θ):

∂ρ

∂θ
=

∂f

∂V ′
∂F

∂θ
− ∂f

∂θ

∂F

∂V ′ ;
∂ρ

∂J
=

∂f

∂V ′
∂F

∂J
− ∂f

∂J

∂F

∂V ′ (3.69)

By direct integration, we obtain the following expression:

ρ(J, V ′, θ) =
∫ θ

0

∂ρ

∂θ
dθ +

∫ J

J0

∂ρ

∂J

∣∣∣
θ=0

dJ + g(V ′)

=

∫ θ

0

(
∂f

∂V ′
∂F

∂θ
− ∂f

∂θ

∂F

∂V ′

)
dθ +

∫ J

J0

(
∂f

∂V ′
∂F

∂J
− ∂f

∂J

∂F

∂V ′

) ∣∣∣
θ=0

dJ + g(V ′)

(3.70)
where g is some function of V ′ only. Since the angle θ is always defined apart from an
arbitrary constant, we can choose its origin along a curve in the space (Σ, σ) perpen-
dicular to the level curves of K. In that case, the vectors:(

∂F

∂J
,
∂f

∂J

)
and

(
∂F

∂V ′ ,
∂f

∂V ′

)
(3.71)

are collinear when θ = 0. Choosing g(V ′) ≡ 0, we finally get the simplified expression:

ρ(J, V ′, θ) =
∫ θ

0

(
∂f

∂V ′
∂F

∂θ
− ∂f

∂θ

∂F

∂V ′

)
dθ (3.72)

Concerning the constant frequency of v′, it is straightforward to get it from the change
of coordinates (3.63):

νv =
dv′

dt
=

dv

dt
− dρ

dt
(3.73)

and by integration between 0 and Tσ we have simply:

νv =
v(Tσ)− v(0)

Tσ

(3.74)
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In practice, since the dynamics of v = Ω is well decoupled from σ (just as for u),
the function ρ is only a little correction, that is, v′ ≈ v. Anyway, its calculation is
required only if we are interested in the temporal evolution of Ω as a function of the
new coordinates.

Naturally, the coordinate change (3.63) is only implicit, since neither F nor f
has an explicit definition. Nevertheless, the correspondence between (Σ, V, σ, v) and
(J, V ′, θ, v′) can be realised numerically by integrating the equations of motion defined
by the semi-secular Hamiltonian K for (U, u) fixed. Indeed, once we know the period Tσ

and the functions Σ(t), σ(t) and v(t) for a chosen value of J , the link toward θ(t) and
v′(t) is straightforward for all t: the coordinate change is simply defined by identifica-
tion. In our case, since we are only interested in the value of the secular Hamiltonian
F(J, U, V, u), the procedure is the following:

1. Choose a behaviour for σ: oscillation or circulation (because the definition of J
differs from one case to the other).

2. Choose the parameters J and V .

3. For each point (u, U) where we want to compute the value of F , do:

(a) On the (Σ, σ) plane, look for the equilibrium point(s) of K with (U, u) fixed.
This is done numerically with minimisation/maximisation routines.

(b) Look also for the position of the separatrix, in order to define the boundaries
of the search.

(c) In the domain of interest (inside or outside the separatrix, see point 1),
search for the level curve enclosing (or stretching) the area A = 2πJ . This
is done by integrating numerically the semi-secular equations of motion for
(U, u) fixed, and applying a Newton algorithm with respect to the initial
conditions. Indeed, the surface over time can be added among the dynamical
equations:

Ȧ =
1

2

(
σ̇Σ− Σ̇σ

)
(3.75)

with another Newton algorithm or the method of Hénon (1982) to stop the
integration exactly after a complete cycle.

(d) If there is no trajectory enclosing/stretching the required area in the do-
main (for instance if the separatrices are too narrow to contain it), stop with
a warning: that combination of parameters is impossible. Conversely if a
correct initial condition (Σ0, σ0) has been found, pick up the period Tσ asso-
ciated to verify that it is well below the secular timescale. Some additional
output can also be printed (position of the equilibrium point(s), width of the
separatrices...).

(e) The value of the secular Hamiltonian F(J, U, V, u) is finally given by (3.61).
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Practically, the computation of the semi-secular Hamiltonian K and its partial deriv-
atives (for the iterative numerical integrations) is rather CPU-time consuming because
it always implies the numerical averaging over the short periods (see Sect. 3.3.3). Fol-
lowing the idea of Lemâıtre and Morbidelli (1994), we thus perform a 2D cubic-spline
interpolation of K in the (Σ, σ) plane around the equilibrium point(s), between steps 3b
and 3c. The partial derivatives are then calculated by direct derivation of the splines
and the numerical integration is performed with virtually no cost (see appendix C.3 for
technical details). Besides, the computation of a complete map is easily parallelized
since each point is independent of the other ones.

3.3.5 Reference coordinates

We are now able to draw the level curves of the secular Hamiltonian F in the (U, u) plane
with respect to the two fixed parameters V and J . However, it would be convenient
to express it with coordinates more directly meaningful, as we did in the non-resonant
case. First of all, let us define a reference semi-major axis a0 (its choice, somewhat
arbitrary, is discussed later). Since the momentum V is a secular constant of motion,
we have:

V =
√
μa (η − kp/k) = const. (3.76)

where η =
√
1− e2 cos I. The constant V can then be replaced by the parameter:

η0 =
V√
μa0

+
kp
k

(3.77)

In the same way, the variable U can be replaced by a reference perihelion distance
q̃ = a0(1− ẽ), where the reference eccentricity is defined by:

ẽ 2 = 1−
(

U√
μa0

+
kp
k

)2

(3.78)

At this point, one can remark that a0 should be chosen large enough to allow a constant
η0 ∈ [−1, 1] and a positive value for (3.78). Finally, we can also define a reference
inclination by setting: √

1− ẽ 2 cos Ĩ = η0 (3.79)

The plane (ω, q̃) is entirely equivalent to the plane (u, U), and the parameter η0 is
entirely equivalent to the V constant. The point is now to determine if these new
quantities have a physical meaning, and to what extend they represent the real secular
orbit of the particle. Actually, we can verify (see Sect. 3.4) that the secular variations
of the semi-major axis are always rather small, such that it is never far from a central
approximate value. If such a value is chosen for a0, the function η(t) will always remain
close to the constant η0, and we will also have ẽ(t) ≈ e(t) and q̃(t) ≈ q(t). The parameter
η0 acts then as the Kozai constant of the non-resonant case, linking the inclination and
the eccentricity (even if this time, it is only in an approximative way). Consequently, in



3.3. CASE OF A SINGLE RESONANCE 85

all what follows, the level curves of the secular Hamiltonian F are plotted in the (ω, q̃)
plane with η0 as parameter. Naturally, the chosen value of a0 is always given to let us
recover the original canonical coordinates U and V .

Concerning the parameter J , its link with the Keplerian elements is so abstract that
we will not try to redefine it. Let us just keep in mind that its value is always negative
if σ librates (as in our case, the equilibriums are maxima), and that its magnitude is
related to the enclosed area in the (σ,Σ) plane, that is to the oscillation amplitudes of
a and σ.

3.3.6 Expected geometries of the semi-secular phase space

The above procedure allows to define a secular Hamiltonian in the resonant case. As
detailed in Sect. 3.3.4, its value can be computed by searching numerically the required
level curve of the averaged Hamiltonian in the plane (σ,Σ). In this section, we present
a brief analysis of the geometry of the trajectories in that plane. We will see that it
can depart quite substantially from the classic pendulum-like picture.

Even if expansions in inclination and eccentricities were judged inappropriate in
our case (see Sect. 3.2.1), they can give a rough idea of the semi-secular dynamics
beyond Neptune. In particular, the representation introduced by Ellis and Murray
(2000) allows to obtain directly the finite number of terms associated to a given angle,
at the chosen order of e and s = sin(I/2). This is particularly suitable for the study
of averaged resonant systems, since the numerous short-period terms are cancelled out
under the average, leaving only the resonant terms (containing the angle σ), along with
the purely secular ones (containing ω and/or Ω). Using such a type of development,
the semi-secular Hamiltonian (3.57) writes analytically as:

K = − μ

2a
− np

kp
k

√
μa − μp

(
1

a
RD +

1

ap α
RI

)
− 1

a
N (3.80)

in terms of the Keplerian elements, with α = ap/a. In that expression, the resonant
parts due to the interaction with the planet p are written RD and RI (direct and
indirect perturbations). As shown in Sect. 3.3.2, they are functions of (a, e, i, σ, ω) but
not Ω. On the other hand, the non-resonant part N contains the perturbations by
all the planets i 	= p. It is function of (a, e, i, ω) only (see Sect. 3.2). From Ellis and
Murray (2000), it is straightforward to get the expression of the lowest-order terms
containing the angle σ (defined at Eq. 3.41). They are of order k− kp that is the order
the resonance. The direct part writes6:

RD =

k−kp∑
n=0

(−1)n

n!
αn dn

dαn
b
(kp)

1/2 (α)
n∑

m=0

(
n
m

)
(−1)m X

−m−1,kp
k (e) cosσ (3.81)

6The given expansion contains the contribution from both the terms in σ and −σ, thus the lack of
coefficient 1/2 with respect to the general expansion by Ellis and Murray (2000).
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where the functions b
(j)
1/2(α) and Xa,b

c (e) are Laplace and Hansen coefficients, respect-

ively. Naturally, the development should also contain the secular terms (with angles
σ + 2ω, σ + 4ω etc.) and the purely secular ones (containing only multiples of 2ω, or
no angle at all). According to the level of precision requested, higher-order terms can
also be added to (3.81), along with the ones with arguments 2σ, 3σ etc. The indirect
part behaves differently according to the resonance considered: it is equal to zero at all
orders for kp > 1, and for kp = 1, it contains the unique term:

RI = −(1− s2)X1,1
k (e) cosσ (3.82)

with no secular contribution. Naturally, (3.82) should be truncated to the desired order
in e and s. Finally, the analytical expression of the non-resonant part N can also be
taken from Ellis and Murray (2000), or directly from Sect. 3.2.1 (dropping the planet
i = p) for a development in terms of Legendre polynomials.

Now, let us use these expressions to get an idea of the geometry of the semi-secular
phase space. First of all, one can argue that if the particle is close or inside the
resonance, the semi-major axis a will not vary much around its nominal value a0. In
such a case, it is usual to take as constants the coefficient α and the various ai/a
appearing in N , such that the only dependence in a is the one expressed explicitly
in (3.80). In the same way, we can consider that the variables e and I are equal to
their secular reference values ẽ and Ĩ (Sect. 3.3.5), which is equivalent to neglect their
dependence in Σ. That method was used also in Milani and Baccili (1998), allowing
to get a one-degree-of-freedom semi-secular Hamiltonian in (σ, a), in which (e, I, ω) are
“varying parameters”, changing on a much longer timescale than a and σ. In our case,
we have besides the relation η0 =

√
1− e2 cos I.

Resonances with kp 	= 1: Let us begin with the simplest case, that is the reson-
ances with kp 	= 1 (no indirect perturbation). Reorganising the terms, the semi-secular
Hamiltonian as a function of (σ, a) writes:

K(σ, a) = −A1

√
a − 1

a

(
A2 + ε1 cosσ + ε2 cos(σ + 2ω) + ε3 cos(σ + 4ω) + ...

)
(3.83)

in which A1, A2 > 0. The constant A2 gathers the Keplerian part and the secular terms,
so we have in particular A2 � |εi|. According to the rules of D’Alembert, ε1 is of order
ek−kp , and {ε2, ε3...} are proportional to multiples of e and s (of total order higher or
equal to k− kp). From the partial derivatives of K, the conditions of equilibrium write:⎧⎨

⎩
ε1 sin σ + ε2 sin(σ + 2ω) + ε3 sin(σ + 4ω) + ... = 0

a3/2 =
2

A1

(
A2 + ε1 cos σ + ε2 cos(σ + 2ω) + ε3 cos(σ + 4ω) + ...

) (3.84)

Since A2 � |εi|, the maximum of K along a is almost independent of σ. Neglecting
also the secular terms contained in A2, we get the usual theoretical value:

a ≈
(
2
A2

A1

)2/3

≈ ap

(
k

kp

)2/3

(3.85)
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On the contrary, the σ-value of the resonance centre strongly depends on the slow
parameters (e, I, ω). Let us consider an orbit starting with a near-zero inclination but
a high eccentricity. In that configuration, the term ε1 is much larger than the following
ones (proportional to powers of s), so the condition of equilibrium (3.84) leads to
σ = 0 or π. This is the classic pendulum-like picture of the resonant motion, with
the saddle point at σ = 0 and the centre of the resonance at σ = π. If the secular
evolution of (e, I, ω) inside the mean-motion resonance leads the orbit towards high
perihelion distances, however, the balance is modified. Indeed, since η0 =

√
1− e2 cos I

is conserved, a decrease of eccentricity implies an increase of inclination, so the term in
ε2 will progressively dominate. The pendulum-like picture is not broken, but its centre
depends now on ω: it passes from σ = π to σ = 0 for a variation of ω from ω = 0 to π/2.
Still decreasing the eccentricity (and increasing the inclination through η0), the term in
ε3 will then take over, making the location of the resonance centre even more sensitive
to the value of ω: it now passes from σ = π to σ = 0 for a variation of ω from ω = 0
to π/4 only. Going on this way, this period-doubling effect can stop only when a term
proportional to the inclination only is reached (possible only for even-order resonances,
in which case this term is proportional to sk−kp).

This is summed up in Fig. 3.9, presenting the location of the resonance centre for
(kp, k) = (3, 7) in function of ẽ (or Ĩ) and ω. The explicit expansion of the disturbing
function for that resonance writes:

K(σ, a) =− A1

√
a − 1

a
A2

− μp

a

(
e4f94 cos σ + e2s2f97 cos(σ + 2ω) + s4f98 cos(σ + 4ω) + ...

) (3.86)

where the fi are combinations of Laplace coefficients (see Ellis and Murray, 2000). In
the top part of the graphs, at high eccentricities, the term in e4 dominates. When
the eccentricity decreases, on the contrary, the term in e2s2, and then s4 take over
successively, producing the period-doubling effect. In order to locate the correct level
curve of K, the algorithm developed in Sect. 3.3.4 should thus be able to accurately
determine the position of the resonance centre (with minimisation and maximisation
routines), whatever the configuration. For completeness, a careful analysis shows that
two maxima are present at the transition between two regimes (at the tips of the four
black zones in the right graph), leading to two distinct resonance islands. However,
this happens only in an extremely narrow interval of ẽ and Ĩ, which can be dismissed.
Figure 3.9 shows also the width of the resonance island between the two separatrices:
Δσ is always equal to 2π since there is only one resonance island, and Δa decreases
rapidly with the eccentricity.

Resonances with kp = 1: Let us now turn to the particular case in which kp = 1, that
is when the indirect part of the resonant perturbation does not vanish. The geometry
of the phase space is more complicated, since the direct part (3.81) and the indirect
part (3.82) are of the same order in eccentricity and inclination, but have opposite signs.
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Figure 3.9 – Position and width of the resonance 3 : 7 with Neptune in function of the secular
eccentricity and argument of perihelion. These graphs are plotted from the full numerically-averaged
Hamiltonian (3.57). The constant η0 is chosen to 0.9 (for a reference semi-major axis a0 = 53.066 AU).
On the right, the inclination is obtained from ẽ through the constant η0. The particular dependence
in ω, qualitatively described in the text, is clearly visible. The small variations of the position in
semi-major axis, judged negligible in the text, are also noticeable (top-right graph).
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This can be shown be truncating the Hansen coefficients to the lowest order (that is
ek−1), which leads to the following results: i) all the coefficients considered here are
positive; ii) the alternate signs of the terms in (3.81) are such that each negative
term is compensated by a positive term with larger absolute value. Since the Laplace
coefficients are also positive, the lowest-order resonant terms of the Hamiltonian have
the general form:

1

a
RD = f(α)ek−1 cos σ and

1

ap α
RI = g(α)ek−1 cos σ (3.87)

with f(α) > 0 and g(α) < 0. Moreover, we observe that f(α) and g(α) have the same
order of magnitude, and thus partially cancel out7. Consequently, the term (3.87) is
not the leading term of the expansion! More precisely, if we consider as before an orbit
starting with a relatively small inclination but a high eccentricity, the dominant term
is the next one in eccentricity, that is the term in cos(2σ) proportional to e2(k−1). Since
that term has no contribution in the indirect part, it cannot be cancelled. Reorganising
the terms in the same way as before, the semi-secular Hamiltonian as a function of
(σ, a) writes thus generically:

K(σ, a) = −A1

√
a − 1

a

(
A2 + ε′1 cos(2σ) + ε1 cosσ + ε2 cos(σ + 2ω) + ...

)
(3.88)

In that expression, ε′1 is proportional to e2(k−1), ε1 is proportional to ek−1 (but with a
near-zero coefficient), and {ε2, ε3...} are proportional to multiples of e and s (of total
order higher or equal to k − 1). The equilibrium condition for σ writes thus:

2 ε′1 sin(2σ) + ε1 sin(σ) + ε2 sin(σ + 2ω) + ... = 0 (3.89)

Since it has been partially cancelled by the indirect part, the term in ε1 is much smaller
than the term in ε′1 despite the higher power in e. Moreover, if e is sufficiently high
with respect to s, the term ε′1 is much larger than the following ones (proportional to
powers of s), so the condition of equilibrium (3.89) simplifies to:

ε′1 sin(2σ) ≈ 0 (3.90)

This leads to σ = {0, π/2, π, 3π/2}, that is two equilibrium points (at π/2 and 3π/2),
and two saddle points (at 0 and π). As before, however, if the secular evolution of
(e, I, ω) inside the mean-motion resonance leads the orbit toward smaller eccentricities,
the balance is modified: the term in ε1 will progressively dominate, producing a change
of topology from a double island to a single one. For a small-enough eccentricity, we
thus retrieve the classic pendulum. Still decreasing the eccentricity (and increasing
the inclination through η0), the term in ε2 will then take over, and so on, similarly
to resonances with kp 	= 1. In order to locate the correct level curve of K, the al-
gorithm developed in Sect. 3.3.4 should thus be able to determine the position of the

7This can probably be proven rigorously, but the complicated expression of the Laplace and Hansen
coefficients makes it difficult.
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chosen resonance centre even when there are two of them, and locate the corresponding
separatrix.

As an example, the explicit four-order expansion for the resonance (kp, k) = (1, 3)
writes:

K(σ, a) =− A1

√
a − 1

a
A2

− μp

a

[
(e2f53 + e4f55 + e2s2f56) cosσ

+ (s2f57 + e2s2f59 + s4f60) cos(σ + 2ω)

+ e4f94 cos(2σ)

+ e2s2f97 cos(2σ + 2ω)

+ s4f98 cos(2σ + 4ω)
]

− μp

apα

3

8
(−e2 + e4 + e2s2) cosσ

(3.91)

Using the mean semi-major axis of Neptune and the typical semi-major axis of the
resonance α ≈ (kp/k)

2/3, we get the following values of the coefficients (divided by a
for the direct part and by apα for the indirect part):

term direct part× 102 indirect part× 102 total× 102

(AU−1) (AU−1) (AU−1)
e2 cos σ 3.196 −2.582 0.614
e4 cos σ −1.947 2.582 0.635
e2s2 cos σ −6.503 2.582 −3.921
s2 cos(σ + 2ω) 0.538 / 0.538
e2s2 cos(σ + 2ω) −1.671 / −1.671
s4 cos(σ + 2ω) −3.147 / −3.147
e4 cos(2σ) 11.934 / 11.934
e2s2 cos(2σ + 2ω) 8.850 / 8.850
s4 cos(2σ + 4ω) 0.327 / 0.327

In this example, the term in e4 cos(2σ) is the leading term even for eccentricities as
small as 0.23 (considering a small-enough inclination). Decreasing the eccentricity (and
increasing the inclination through η0), the next term to dominate can be either e2 cos σ
or s2 cos(σ + 2ω), according to the value of η0.

That effect is illustrated in Fig. 3.10, presenting the location of the resonance centre
for (kp, k) = (1, 6) in function of ẽ and ω. At high eccentricities, the term in cos(2σ)
dominates, producing two resonance islands (with a width Δσ < 2π). When the eccent-
ricity decreases, the term in cos(σ + 2ω), and then cos(σ + 4ω) take over successively,
producing the transition to a single resonance island, followed by the period-doubling
effect. As we will see, such a complicated change of geometry can have very important
consequences on the dynamics.
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Figure 3.10 – Position and width of the resonance 1 : 6 with Neptune in function of the secular
eccentricity and argument of perihelion. These graphs are plotted from the full numerically-averaged
Hamiltonian (3.57). The constant η0 is chosen to 0.7 (for a reference semi-major axis a0 = 99.598 AU).
On the right, the inclination is obtained from ẽ through the constant η0. At high eccentricities, there
are two resonances islands: we chose to follow the left one. The transition to a single resonance
island at ẽ ≈ [0.35, 0.45] produces a discontinuity (change of topology). At small eccentricities, the
dependence in ω, similar to what was observed for resonances with kp 	= 1, is clearly visible.
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3.4 Illustrations of the resonant dynamics

This section presents some examples of use of the resonant secular model. A variety of
typical cases are provided to emphasis the main vantages and limitations of the method.
As a quick check, the secular model will also be confronted to numerical integrations
of the osculating and semi-secular systems. In order to integrate numerically the semi-
secular system, the required partial derivatives of K are obtained by inverting the
derivative and integration symbols in the expression of εK1. Some nested derivatives
are a bit complex, so the equations of motion are detailed in appendix B.3.3.

Section 3.4.1 presents the ideal case, that is when the adiabatic invariant J is well
defined all over the surface (ω, q̃) considered. In Sect. 3.4.2, we show that a secular
description is still possible for higher values of |2πJ | even if σ switches from oscillation
to circulation. Finally, Sect. 3.4.3 illustrates the most complex case in that region, where
the existence of two deforming resonance islands leads necessarily to a discontinuity in
the secular phase portraits.

3.4.1 Single resonance island and small values of J

Let us begin with the simplest case, that is when the semi-secular plane (Σ, σ) contains
a single island of resonance. For resonances with kp 	= 1 and perihelion distances
beyond Neptune, this is the case in almost all the phase space (see the discussion in
Sect. 3.3.6). Of course, that single island will possibly deform and shift a lot during
the secular evolution of (U, u), but the secular dynamics is well defined as long as the
surface enclosed by the separatrix remains greater than 2πJ . Figure 3.11 shows an
example of level curves obtained for such a case (black lines). Some extra information
is provided to recall the different timescales and appreciate the efficiency of the method:

1. The tiny red dots come from a complete numerical integration (osculating ele-
ments): the equations are given by the initial Hamiltonian H (3.12) without any
particular transformation. The fast angles make the plot somewhat messy, mainly
because of the shift of the Solar System barycentre.

2. The dashed green line is the result of a numerical integration of the semi-secular
system: the equations are given by the two-degree-of-freedom semi-secular Hamilto-
nian K (3.57), that is after removing the short-period terms from H. The curve
follows very well the average pattern of the red dots and the oscillations due to
the second degree of freedom are smaller than the curve width. See Fig. 3.12 for
a detailed output of that numerical integration (in particular we can see that the
cycle is completed in about 1.12 Gyrs).

3. Finally, the colour shades show the value of the one-degree-of-freedom secular
Hamiltonian F (3.61). Each point is obtained from the action-angle coordinates
of K assuming the adiabatic invariance. The secular dynamics is then given by
the level curves of F (black contours).
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Figure 3.11 – Level curves of the secular Hamiltonian F for the resonance 2 :37 with Neptune. The
parameters are η0 = 0.44 and 2πJ = −2.6 × 10−4 AU2rad2/yr. In order to define η0 and construct
the vertical axes, the reference semi-major axis chosen is a0 = 210.9944 AU (see Fig. 3.14 where that
value is obvious). The various symbols are detailed in the text.

In order to illustrate the passage from the semi-secular to the secular coordinates,
Fig. 3.13 shows the level curves of the semi-secular Hamiltonian K corresponding to
ten points of Fig. 3.11 (letters). The level curve that encloses the required area defines
the value of the secular Hamiltonian F . For that set of parameters, the surface |2πJ |
is sufficiently small to fit easily inside the separatrix but its contours can be rather
distorted. In particular, the narrowing of the Σ-width of the island, when the perihelion
distance increases, forces σ to oscillate with a larger amplitude. The general properties
of K in ω are easily recognizable: π-periodicity and symmetry with respect to π/2 (see
Sect. 3.3.3).

Figure 3.14 presents the same level curves as Fig. 3.11, but with the position of the
centre of the resonance island on background shades, as well as the period of oscillation.
The amplitudes are not shown here, but Fig. 3.13 gives an idea of their variations.
Following a particular level curve, we can see the important changes of the oscillation
parameters undergone by the particle (the red line and Fig. 3.12 give a specific example
of it). This invalidates any secular model for which the resonance angle is supposed
fixed or sinusoidal. Nevertheless, the central value of the semi-major axis is indeed
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Figure 3.12 – Numerical integration of the two-degree-of-freedom semi-secular system. That traject-
ory corresponds to the green dashed line of Fig. 3.11 and the red line of Fig. 3.14. The semi-major axis
is given instead of Σ and the perihelion distance instead of U (see Eq. 3.56 for the correspondence).
On the right, an enlargement underlines the two-timescale dynamics (the small oscillations of q and ω
are hidden in the curve width).

rather stable: it is actually imposed by Neptune’s semi-major axis. This justifies the
use of “reference coordinates” as a short-cut from the secular variable U to the secular
orbital elements e and I (see Sect. 3.3.5).

Finally, Fig. 3.15 gives another example of secular dynamics with a small value of
|2πJ |. The resonance is the same as Fig. 3.11 but another set of parameters is chosen:
one can notice the extreme richness of possible behaviours, with many different ways
to raise the perihelion distance. However, it is a general result that the Σ-width of the
resonance island becomes much wider when the perihelion gets closer to the orbit of
Neptune. Since this is also the case for all neighbouring resonances, we must keep in
mind that for small perihelion distances, the overlap of resonances introduces a short-
timescale chaos which can push the particle out of the resonance considered. Numerical
integrations of the unaveraged system show that this happens at the bottom part of the
largest trajectories in Fig. 3.15, but their major portion, though, is perfectly regular.
To fix ideas, the biggest cycle represented is completed in about 40 Gyrs, where more
than 32 Gyrs are spent with q̃ > 70 AU.



3.4. ILLUSTRATIONS OF THE RESONANT DYNAMICS 95

2
1
0
.2
0

2
1
0
.5
4

2
1
0
.8
9

2
1
1
.2
3

2
1
1
.5
7

a(AU)

2
1
0
.2
0

2
1
0
.5
4

2
1
0
.8
9

2
1
1
.2
3

2
1
1
.5
7

a(AU)

2.
46

2

2.
46

4

2.
46

6

2.
46

8

2.
47

0

Σ(AU2rad/yr)

E
F

G
H

E

0
π
/
2

π
3
π
/
2

σ
(r

ad
)

2.
46

2

2.
46

4

2.
46

6

2.
46

8

2.
47

0

Σ(AU2rad/yr)

A

0
π
/
2

π
3
π
/
2

σ
(r

ad
)

B

0
π
/
2

π
3
π
/
2

σ
(r

ad
)

C

0
π
/
2

π
3
π
/
2

σ
(r

ad
)

D

0
π
/
2

π
3
π
/
2

2
π

σ
(r

ad
)

A

F
ig
u
re

3
.1
3
–
L
ev
el
cu
rv
es

o
f
th
e
se
m
i-
se
cu
la
r
H
a
m
il
to
n
ia
n
K,

fo
r
(U

,u
)
fi
x
ed

ac
co
rd
in
g
to

th
e
p
o
in
ts

A
-H

o
f
F
ig
.
3.
1
1
.
T
h
e
tr
a
je
ct
o
ry

en
cl
o
si
n
g

th
e
su
rf
a
ce

2
π
J

is
sh
ow

n
in

re
d
a
n
d
th
e
se
m
i-
m
a
jo
r
ax

is
co
rr
es
p
o
n
d
in
g
to

Σ
is

gi
ve
n
o
n
th
e
ri
g
h
t.

T
h
e
ce
n
tr
e
is

p
er
fe
ct
ly

a
t
σ
=

π
fo
r
th
e

p
oi
n
ts

(A
,C
,E
,G

)
b
u
t
sl
ig
h
tl
y
sh
if
te
d
fo
r
(B

,F
)
a
n
d
(D

,G
)
sy
m
m
et
ri
ca
ll
y
o
n
th
e
le
ft

an
d
o
n
th
e
ri
g
h
t.

F
o
r
th
e
p
o
in
ts

E
-H

,
th
e
Σ
-w

id
th

of
th
e

re
so
n
a
n
ce

is
la
n
d
is

ve
ry

n
a
rr
ow

b
ec
a
u
se

of
th
e
h
ig
h
p
er
ih
el
io
n
d
is
ta
n
ce

(s
ee

F
ig
.
3.
1
1
),

w
h
ic
h
m
a
ke
s
th
e
re
d
su
rf
a
ce

to
fl
a
tt
en
.



96 CHAPTER 3. SECULAR MODELS BEYOND NEPTUNE

30.1 ◦

40.6 ◦

46.6 ◦

50.5 ◦

53.3 ◦

55.5 ◦

Ĩ
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Figure 3.14 – The level curves of Fig. 3.11 are plotted in front of some characteristics of the resonance
island in the plane (Σ, σ) used to get the action-angle coordinates of K. On the left graph, the semi-
major axis is used instead of Σ for a more direct interpretation. The middle plot shows that in that
particular case, the oscillation centre of σ oscillates itself around π (at high perihelion distances, the
terms in σ + 2ω, described in Sect. 3.3.6, start to be influential). On the right graph, the oscillation
period refers to the trajectory enclosing the required area 2πJ : even if it varies a lot (note the log-
scale), it remains much smaller than the Giga-year secular periods. The red line represents the result
of a numerical integration of the semi-secular system (the same as the green dashed line of Fig. 3.11).

Figure 3.15 – Level curves of the sec-
ular Hamiltonian F for the resonance
2 : 37 with Neptune (reference semi-
major axis chosen: a0 = 210.9944 AU).
The parameters are η0 = −0.35 and
2πJ = −1.7×10−5 AU2rad2/yr. Please
note that these orbits are retrograde.
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3.4.2 Separatrix crossings

For high values of the perihelion distance, we saw that the Σ-width of the resonance
island becomes very small (Fig. 3.13). This has a stabilizing effect because the various
resonances become very isolated from each other (no overlapping), but what if the
island becomes so narrow that the area |2πJ | cannot fit inside anymore? From a
technical point of view, the values of the parameters are simply incompatible, so what
if a secular level curve leads the particle to such a region? The resulting trajectory
can be described as follows: the semi-secular separatrices in the (Σ, σ) plane come
closer and closer to the trajectory, making raise the amplitude of oscillation of σ, along
with a drastic enlargement of its period. Then, the particle can spend some time near
the unstable equilibrium point, breaking the adiabatic invariance. Fortunately, this
“freeze” is usually quite short because U and u are still evolving. Hence, the particle is
simply pushed outside of the resonance island and σ begins to circulate. The method
applied in Sect. 3.3.4 is also valid for circulation8, but the geometrical definition of J
has to be changed. Consequently, the only way to handle the crossing in a secular
way is to change model: the secular trajectory is then defined by parts, each of them
being quasi-integrable. For a given trajectory, the problem is now to link the segments.
There is actually no way to deduce the exact value of the new J constant adopted by the
system, because it depends of the precise position of the particle when the separatrix
crossing occurs. On a secular timescale, this can be seen as a random transition (see
Henrard, 1993, and references therein). In particular, since in our case the island is
rather symmetric on the Σ-axis, there is roughly 50% of probability to begin circulate
toward the left (above the island) or toward the right (under the island). However, if
the new secular level curve is periodic the particle is bound to re-enter the resonance in
a configuration similar to when it left it. After the new separatrix crossing, the value
of J will thus be approximatively restored (apart from some chaotic diffusion).

That mechanism was described thoroughly by Wisdom (1985) in the case of the
resonance 3 :1 with Jupiter and the associated Kirkwood gap. Near the discontinuities
of the secular Hamiltonian (that is when the crossings occur in the semi-secular sys-
tem), he named “zone of uncertainty” the region in which the adiabatic hypothesis is
invalidated. In his model, any passage through this zone produced a jump at possibly
planet-crossing eccentricities. Moreover, even if the particle re-entered the resonance
afterwards, the value of the adiabatic invariant was not recovered, which produced a
large-scale chaotic behaviour. He pointed out that that kind of chaos is not due to
a mean-motion resonance overlap (that is a short-timescale effect), contrary to many
chaotic orbits of asteroids observed in the Solar System. It could be explained, though,
by an overlap of secondary resonances between σ and ω which happen to have com-
parable frequencies of oscillation/circulation in these regions. Subsequently, Neishtadt
(1987) developed rather general methods to trace the evolution of the adiabatic in-
variant near and during such discontinuities. In particular, their application to the
problem of Wisdom (1985) results in a probabilistic model governing the new value of

8The proximity of the resonance still invalidates a fully non-resonant secular model.
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the invariant when the particle re-enters the resonance.
Fortunately, the orbits described here are much more regular and predictable than

in the work of Wisdom (1985) because the separation between the two timescales is
much larger. This is quite obvious in Fig. 3.12, since it is impossible to resolve the
two timescales with a single time unit. This implies that the “zone of uncertainty” is
extremely narrow: on a secular timescale, it is crossed quasi-instantaneously. Hence,
since there is almost never any interaction between the two degrees of freedom, the new
value of J is very predictable for each possible transition.

Figures 3.16 and 3.17 show two examples of such segmented trajectories. Since
the diffusion of J is extremely small, we considered only two secular models (one for
oscillation, one for circulation), but we must keep in mind that J is actually not exactly
retrieved after each circulation phase. It would be erroneous to superimpose the left
and right graphs, because the transition from the oscillation value of J to the circulation
one is specific to the red trajectory shown. In Fig. 3.16, the circulation phase is rather
short and we can easily guess by symmetry the approximative trajectory followed by
the particle between the white and black points. This is much less obvious in Fig. 3.17,
in which the circulation phase plays an important role in the dynamics. Details of these
two semi-secular integrations are given In Fig. 3.18 and 3.19. In particular, one can
note the random occurrence of left and right circulation phases with the corresponding
central values for the semi-major axis. The secular dynamics is however very similar in
both cases: it depends mostly on the amplitude of J and little on its sign. Hence, the
right graphs of Fig. 3.16 and 3.17, which are plotted for a right circulation, correspond
also roughly to the ones obtained for a left circulation. Since J is almost exactly
recovered after each circulation phase, these trajectories are pretty periodic on a secular
timescale. The separation of the two timescales can be appreciate in Fig. 3.18 and 3.19:
the period of σ and Σ is always much shorter than a secular cycle of q and ω (by more
than a factor 1000), even in the neighbourhood of the separatrix crossings.
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Figure 3.16 – Level curves of the secular Hamiltonian F for the resonance 2 : 11 with Neptune
(reference semi-major axis chosen: a0 = 93.9872 AU). The parameter η0 is equal to 0.6 and J is given
above the graphs in AU2rad2/yr. In the grey region, the area |2πJ | cannot fit inside the resonance
island (left graph), or outside it (right graph). The saw teeth of the background colour are due to the
limited resolution. The red trajectory passes from one secular model to the other according to the
colour spots (white to white from left to right, black to black from right to left).
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Figure 3.17 – Same as Fig. 3.16 for the resonance 2 : 37 with Neptune (reference semi-major axis
chosen: a0 = 210.9944 AU). The parameter η0 is equal to 0.2 and J is given above the graphs in
AU2rad2/yr.
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3.4.3 Double islands and 1:k resonances

In that section, we illustrate the most complex case, that is when there are two reson-
ance islands in the (Σ, σ) plane. According to Gallardo (2006b), this always happens
for resonances of type 1 : k provided that the eccentricity is high enough (see also the
discussion in Sect. 3.3.6). Moreover, that specific kind of resonance can also admit
horseshoe-type orbits enclosing the two oscillation islands. At this point, we can anti-
cipate a bit and look at Fig. 3.21 for typical examples. The computation of a secular
Hamiltonian as defined previously requires thus an additional choice: σ can oscillate
around the left centre, around the right one, or around both of them. The method de-
scribed in Sect. 3.3.4 is valid for each type of trajectories, even if the numerical search
for the correct level curve enclosing the required area can become a bit more tricky.

As before, the geometry of the semi-secular level curves evolves during the secular
evolution of ω and q̃, and that further complicates the process: the position of the two
islands can indeed vary a lot, as well as their sizes. To prevent any erroneous jump
from one island to the other during the numerical computation of the secular levels, we
adopt the following strategy:

1. Choose the parameters η0 and J (as before) and an oscillation type for σ (left,
right or horseshoe).

2. Start the plot from a particular point (ω, q̃), typically the lower left corner of the
graph. This gives a first value of F .

3. Compute the value for the adjacent points following the chosen island in the
(Σ, σ) plane. Indeed, since the deformations are continuous, the islands cannot
exchange their places between two neighbouring points (assuming a sufficiently
fine grid).

4. Go on with the same procedure for the new points.

Naturally, that method is relevant as long as the chosen type of oscillation is allowed by
the value of ω and q̃. Indeed, the position of the separatrices can be very different from
one point (ω, q̃) to another, and one of the two inner islands can even vanish (Gallardo,
2006b, defined a critical eccentricity ea for that). If that phenomenon happens along
a secular trajectory, there is necessarily a discontinuity on the plot of F , on which the
particle is bound to change its type of trajectory. As in Sect. 3.4.2, the corresponding
secular model is defined only by parts.

Figure 3.20 gives an example of level curves for a resonance of type 1 : k. As
previously, ten points are marked with letters and refer to semi-secular phase portraits
(Fig. 3.21). The semi-secular Hamiltonian K is still symmetric in ω with respect to
π/2, but this time, the presence of two islands introduces an asymmetry of the secular
Hamiltonian F . Indeed, the particle follows one specific island, as shown on Fig. 3.21:
the graphs B and D are symmetric but the position of the red trajectory is not. The
geometry of the horseshoe-type orbit is even more complicated: from the points B to
C, the outer separatrix merges with the inner one, and re-opens shifted by π.
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Ĩ
(d

eg
)

0 π/4 π/2 3π/4 π

ω (rad)

30

40

50

60

70

80

q̃
(A

U
)

A B C D A

E F G H E

Figure 3.20 – Level curves of the secular Hamiltonian F for the resonance 1 : 11 with Neptune
(reference semi-major axis chosen: a0 = 149.1955 AU). The parameters are η0 = 0.6 and 2πJ =
−3 × 10−4 AU2rad2/yr. Here, we chose σ to oscillate inside the “right” island (defined from the
lower left point of the graph and followed thereafter). Above the green line, only one resonance island
remains: for ω ∈ [0, π/2] it is the remnant of the left island (thick line, discontinuity), but the remnant
of the right one for ω ∈ [π/2, π] (thin dashed line, no discontinuity).

As before, Fig. 3.22 presents the same level curves as Fig. 3.20, but with the position
of the centre of the resonance island on background shades, as well as the period of
oscillation. Following a particular level curve, we can see the changes of the oscillation
parameters undergone by the particle, and we can pick up the “typical” value of the
semi-major axis corresponding to that resonance.

The disappearance of one island when the perihelion distance increases deserves
further comments. For ω = 0 and ω = π/2, it is obvious that the two islands merge
into a single one (compare graphs A-E and C-G). On the contrary, for other values
of ω, the σ-width of the vanishing island decreases until it merges with the saddle
point between the two islands. Hence, the inner separatrix becomes a common periodic
trajectory inside the remaining island. The other island remains rather unchanged and
passes smoothly from a two-island configuration to a single one. This is detailed in
Fig. 3.23, which shows the σ-position of the two resonance centres with respect to the
perihelion distance. This explains the structure of the discontinuity line of Fig. 3.20:
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Figure 3.22 – The level curves of Fig. 3.20 are plotted in front of some characteristics of the resonance
island in the plane (Σ, σ) used to get the action-angle coordinates of K. The left and middle graphs
give the position of the centre around which the particle oscillates: below the discontinuity line, it
corresponds to the “right” resonance island; above the discontinuity line, it corresponds to the only
resonance island left. When crossing the green line, the continuous or discontinuous transitions are
clearly visible in the middle graph.

depending on the oscillation island occupied by the particle, there can be either a
smooth transition or a brutal jump to another type of trajectory. In the latter case,
the secular model used so far is not relevant anymore for that particle, because the
definition of J has to be changed. Notice that Fig. 3.20 is drawn for a very small value
of the area |2πJ |. For larger values, the transition happens earlier (before the complete
disappearance of the island). After the separatrix crossing (see Sect. 3.4.2), the particle
can either oscillate around the other centre, follow a horseshoe-type orbit or circulate.
As before, the new trajectory is hard to predict and it can be modelled as a random
process.

As an example, Fig. 3.24 presents a numerical integration of the semi-secular system
for a specific broken level curve of Fig 3.20. The trajectory begins with the green point,
where σ oscillates inside the right island with a small area. On the white point, the
right island vanishes, forcing the particle to follow another type of trajectory. For
that particular example, it begins to oscillate in the remaining island with a large
area (middle graph). The particle crosses the discontinuity at ω = π/2 on a safe
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Figure 3.23 – Position of the two resonance centres with respect to the perihelion distance (same
resonance and parameters as Fig. 3.20). The left centre is plotted in red, the right one in green, and
blue is used when only one resonance centre remains. The fixed value of ω is equal to 0 (left column),
π/4 (middle column) and π/2 (right column). On the top, the overall phase portrait is shown for a
value of q̃ just below the transition (q̃ = 69 AU on the left, 63 AU on the middle and 59 on the right).
For ω between 0 and π/2 (middle column), the left resonance island is not affected by the vanishing
right island: it becomes smoothly the single remaining resonance island. The roles are exchanged for
ω between π/2 and π (not shown).

horseshoe-type orbit, but hits the growing left island at the black point9. For reasons
of symmetry, the adopted area inside the left island is very close to the previous one in
the right island. After the red point, the particle goes on switching type of trajectory:
see Fig. 3.25 for the evolution on a wider timescale. Actually, that kind of behaviour
can persist for billion years, as long as the particle does not reach a Neptune-crossing
secular trajectory.

We invite the reader to look at Gallardo (2006a) for other examples: his Fig. 12
presents a very similar case (same resonance and nearby values of the parameters). His

9Such a symmetrical trajectory was improbable since at the black point the right island is much
larger than the left one. A careful analysis of that orbit shows that σ is temporarily trapped around
the saddle point and then swallowed by the growing left island. However, other integrations of the
osculating and semi-secular systems show various possible behaviours, including further stays in the
right island with a large area, or temporary maintenance of a grazing horseshoe-type orbit (see for
instance Fig. 3.25 just after 1 Gyr: the double peaks in the period are separatrix approaches without
crossing).
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Figure 3.24 – Numerical integration of the two-degree-of-freedom semi-secular system for the res-
onance 1 : 11 with Neptune. The trajectory is plotted by parts in front of the secular level curves:
the parameter η0 is equal to 0.6 and J is given in AU2rad2/yr above the pictures. The trajectory
begins with the green spot (left graph), ends with the red (right graph), and follows the colour code
in between (whit to white and black to black). The middle graph is plotted for oscillations inside the
right island, but there is anyway only a single island above the green line. As before, the grey colour
denotes regions where the chosen island is too small to contain the area |2πJ |. Since the area is very
small for the left and right graphs, the grey region is very thin and hidden under the thick green line.

Fig. 13, on the contrary, shows a steadier evolution without separatrix crossing (the
particle is locked indefinitely inside the “right” island). This illustrates how complicated
the long-term dynamics inside a 1:k resonance can be. A secular model may seem rather
cumbersome and ineffective for such “integrable by parts” trajectories, which are chaotic
by essence. Indeed, in that case a secular model is more designed for general studies
about the dynamics than for following a particular realisation of it. Please note that
the chaos invoked here is due to the complex geometries of the 1 : k resonances, and
not to a diffusion of the adiabatic invariant as in the case of Wisdom (1985) discussed
above. As seen in Sect. 3.4.2, the two timescales are so well separated that the transition
phase at separatrix crossings, during which the adiabatic hypothesis is broken, can be
considered as instantaneous. Hence, the uncertainty concerns almost solely the new
type of trajectory adopted, rather than the new value of J .
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Figure 3.25 – Numerical integration of the two-degree-of-freedom semi-secular system. The semi-
major axis is given instead of Σ and the perihelion instead of U (see Eq. 3.56 for the correspondence).
The period of σ (central or horseshoe oscillations) is given on the middle graph, where the separatrix
crossings are obvious (the period tends to infinity). The first three dynamical regimes (from t = 0 to
≈ 0.38 Gyrs) correspond to the trajectory shown on Fig. 3.24.
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Chapter 4

The resonant dynamics

Most of the results detailed in this chapter are more succinctly presented
in Saillenfest et al. (2017a) and Saillenfest and Lari (2017).

In the previous chapter, we presented the development of secular theories designed to
describe the long-term orbital evolution of trans-Neptunian objects. If there is a mean-
motion resonance between the particle and one of the planets, a one-degree-of-freedom
approximation can be obtained by using the adiabatic approximation. It reveals very
rich and complex long-term trajectories, allowing much larger variations of the orbital
elements than non-resonant dynamics.

This chapter is devoted to the application of the resonant secular model. In Sect. 4.1,
it is used to explore the variety of possible trajectories driven by a mean-motion res-
onance with Neptune. We show that there is a topological difference between the
resonances of type 1 : k and other resonances, but no major change of geometry is
observed when varying the resonance order. In Sect. 4.2 the model is applied to the
trans-Neptunian objects known to be resonant, whereas in Sect. 4.3 we determine to
what extent it can apply to the most distant ones, which have generally large orbital
uncertainties. The current data is scarce and the resonance captures are hard to de-
tect; however, some general arguments can be used to select the potentially interesting
bodies. Of course, it is crucial to establish if these results could imply some selection in
the distribution of the trans-Neptunian objects. The confrontation with future obser-
vations is indeed the only way to test our knowledge about the distant Solar System.
Section 4.4 shows that the long-term resonant dynamics naturally provides a mech-
anism that can lock bodies at high perihelion distances and maintain them there for
billion years. It predicts an accumulation zone in the space of orbital elements. Finally,
in Sect. 4.5 we point out that the Oort Cloud is an effective source of Scattered Disc
objects and thus contributes to feed this accumulation zone.
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4.1 Exploration of the parameter space

To prevent any confusion between the three timescales involved, in the following the
terms “resonance island” always refer to the semi-secular Hamiltonian K for (U, u)
fixed, that is to the usual oscillations of the semi-major axis and of the resonance angle
σ. Regarding the equilibrium points of the secular Hamiltonian F , that is in the plane
(ω, q̃), we will speak generically of “libration islands” (because strictly speaking they
are not resonant even if some authors call them “Kozai resonances”).

In order to determine the influence of the chosen resonance kp : k and of the para-
meters (η0, J) on the phase space, we plotted a vast collection of level curves for various
resonances with semi-major axes between 80 and 600 AU. In this section, we describe
our results and develop a general picture of the resonant secular dynamics beyond Nep-
tune (q > aN). We will see that the geometry of the phase portraits depends mostly on
what we call the “resonance type”, that is the coefficient kp involved (1, 2, 3...). Please
note that even very high-order resonances can present interesting geometries with wide
libration zones. The corresponding probability of capture and stability are of course
lower, but these considerations are not studied in this section: here we just suppose
that the particle is trapped in the chosen resonance and we describe the secular effects
that it would produce.

Whatever the resonance considered, we found that for η0 ≈ ±1 or η0 ≈ 0, that is
for orbits nearly circular-coplanar or perpendicular to the planetary plane1, the level
curves of the secular Hamiltonian are very “flat”. In these cases, the resonant dynamics
is thus very similar to the generic non-resonant one: circulation of ω with very small
oscillations of q̃. In particular, the upper features on Fig. 11e by Gallardo et al. (2012)
are irrelevant2. On the other hand, there is always a range of η0 both for retrograde
(η0 < 0) or prograde (η0 > 0) orbits, for which the secular Hamiltonian shows equilib-
rium points for ω and q̃. In the following, we will refer to that interval of η0 by the
“range of interest” because it can allow wide perihelion variations and/or confinement
regions for ω.

Additionally, the classic non-resonant Kozai islands show up where the resonant
part of the Hamiltonian function weakens3. This happens if the corresponding inclin-
ation (about 63◦ or 117◦) corresponds to a sufficiently small eccentricity, that is for a
parameter η0 far enough from 0. In the intermediate regime where the non-resonant
and resonant parts have comparable strength, the interaction of these islands with the
purely resonant features produces complex geometries.

1A parameter η0 = 0 is also attainable for e = 1 (whatever the inclination), but since we are
interested in perihelion distances always beyond Neptune, we will not consider this case.

2A fixed libration centre is very unsuitable in this region because it varies actually between 0 and
2π. That comment holds also for their Figs. 11f-h beyond about 50 AU. In the lower part, on the
contrary, a resonance island centred around 60◦ does exist (even if it actually shifts and deforms a bit).

3Strictly speaking, the non-resonant Hamiltonian is defined with the semi-major axis as a constant
parameter. However, the resonant interaction does not cause a to vary enough for the non-resonant
Kozai islands to be notably distorted.
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4.1.1 Single resonance island for near-zero values of J

Figures 4.1 and 4.2 show the typical evolution of the phase portraits for kp 	= 1 with
respect to the parameter η0. As explained before, such resonances present a single
resonance island in all the plane (ω, q̃), so the corresponding secular phase space is
devoid of discontinuity line. Figures 4.3 and 4.4 show further details and comparisons
between different resonances of type kp 	= 1 for η0 in the range of interest. We can make
the following general observations:

• Either for prograde or retrograde orbits, some range of η0 allows a libration island
at ω = 0. When η0 tends to 0 (orbit perpendicular to the planetary plane), that
island gets closer to the orbit of Neptune and disappears below it.

• For prograde orbits, a range of η0 allows an additional island at ω = π/2.

• Two resonances of the same “type” (that is with the same coefficient kp) present
very similar geometries, but located in a different range of η0 (compare Figs. 4.1
and 4.2). Since the features are located both at the same q̃ and Ĩ, the parameters
η0 giving the same geometries for two different resonances are the ones implying
approximatively the same interval of Ĩ inside the same interval of q̃ (see the graphs
A and B of Fig. 4.3).

• For resonances of type 2 : k, the two respective ranges of η0 for the existence of
the equilibrium points at ω = 0 and π/2 are rather the same, so the islands can
coexist on the same phase portrait (graphs A and B of Fig. 4.3). For kp = 3 and
beyond, the ω = π/2 island appears at higher inclinations, for which the ω = 0
island is much lower (graph C) or even inside the orbit of Neptune (graph D).

• On some graphs of Figs. 4.3 and 4.4, the classic non-resonant Kozai island is
clearly visible. It can either remain isolated (graphs C, D) or interact with the
resonant features, to create new islands (graphs E, H at ω = 0 and E, F on both
sides of ω = π/2) or enlarge the existing ones (graph F, G, H).

• Contrary to the geometry of the phase portraits, the timescale highly depends on
the coefficient k, that is on the semi-major axis of the particle (at kp constant). As
an example, numerical integrations of the averaged system show that the biggest
loop of the graph A is completed in about 8 Gyrs, whereas the analogous loop
takes 16 Gyrs in the graph B.
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Figure 4.1 – Typical dependence on the parameter η0 for orbits in resonances of type kp 	= 1
with Neptune. The resonance taken in example here is 2 : 37 (reference semi-major axis chosen
a0 = 210.9911 AU). All of these graphs are plotted for J = 0 and η0 is indicated in the up-
per right corners. On the Y-axis of each graph, the reference inclinations can be obtained by

cos Ĩ = η0/
√

1− (1− q̃/a0)2 . The white regions in the first and last graphs are unreachable with
these values of η0 (they would require a cosine of inclination lower than −1 or higher than 1, respect-
ively).
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Figure 4.2 – Same as Fig. 4.1 for the resonance 2 : 115 (reference semi-major axis chosen a0 =
449.3602 AU). The parameter η0 has been tuned to give approximatively the same phase portraits as
in Fig. 4.1.
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Figure 4.3 – Typical geometries for prograde orbits in resonances of type kp 	= 1 with Neptune, with
a parameter J = 0. The resonances and corresponding a0 are indicated above the graphs, as well as
the parameter η0 used. A large variety of semi-major axes are presented to stress that the secular
phase space depends little on the resonance order. The graphs A and B are very similar since they
have both kp = 2, but correspond to different values of η0. On the graph C (3 :k resonance), the two
islands still coexist but a slight increase of η0, shifting up the ω = 0 island at a perihelion similar to the
graphs A and B, would make disappear the island at ω = π/2. On the graph D (4 :k resonance), the
coexistence is even impossible: an increase of η0 would make disappear the ω = π/2 island before the
rise of the ω = 0 one. On the graphs C and D, the classic Kozai island is visible at high inclinations.
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Figure 4.4 – Same as Fig. 4.3 for retrograde orbits. The graphs E and F present the same resonance
for a slightly different parameter η0. Passing in the neighbourhood of the ω = 0 island, the classic
Kozai island (at about 117◦) deforms and merges to form high-amplitude oscillation zones for the
perihelion distance. That enlargement is also clearly visible on the graphs G and H, which present two
resonances with neighbour semi-major axes but different types (2 :k and 3:k). As for prograde orbits,
kp modifies the respective ranges of η0 for the appearance of the different features, which gives rise to
different geometries.
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4.1.2 Resonances of type 1:k for near-zero values of J

Figure 4.5 presents the typical evolution of the phase portraits for kp = 1 with respect
to the parameter η0. Since this kind of resonance presents two resonance islands in
definite regions of the plane (ω, q̃), we chose to describe the case of σ oscillating inside
the “right” island4. As before, the green line divides the zones associated with two
resonance islands from the zones associated with a single one. If it is crossed, there can
be either a discontinuity (if the vanishing island is the very one occupied by the particle),
or a soft transition. For particles following a level curve leading to the discontinuity,
another secular model is necessary after the crossing, with a different parameter J .
Naturally, the discontinuity is only one-way: if the particle comes from the one-island
side (for prograde orbits, this means from the high-perihelion region), the appearance of
the second island does not imply any particular transition (J is continuously conserved).
The appropriate secular representation should though be used (σ oscillating in the left
or right resonance island). Figure 4.6 shows further details and comparisons between
different resonances of type 1:k for η0 in the range of interest. Our general conclusions
are listed below:

• For retrograde orbits, there is only one resonance island almost everywhere in
the plane (ω, q̃), which produces symmetric level curves with respect to π/2 (see
Fig. 4.5, upper graphs). The small regions with two resonance islands are located
in a small range of perihelion distances at ω = π/2 and near the collision points
with Neptune (ω = 0 or π and q = aN). When η0 tends to 0, these three regions
merge and eventually occupy all the bottom part of the graphs (as for prograde
orbits).

• For prograde orbits, the geometries are actually very similar to the ones obtained
for kp = 2, apart from the asymmetry and the discontinuity line induced by the
two resonance islands. In other words, a range of η0 allows the same libration
islands at ω = 0 and π/2, which are however shifted and more or less distorted.
The ω = π/2 island can be besides truncated by the discontinuity line. As before,
an increase of η0 simultaneously shifts up the ω = 0 equilibrium point and down
the π/2 one until they both disappear. The π/2 island is the last to vanish.

• For retrograde orbits, a range of η0 allows an equilibrium point at ω = 0. When
η0 tends to zero, that equilibrium shifts toward the orbit of Neptune, but contrary
to resonances of type kp 	= 1, it splits in two (see Fig. 4.5 for η0 = −0.38). This
allows to partially avoid the discontinuity curve (Fig. 4.6, graph A). During this
process, a small range of η0 allows an additional equilibrium point at ω = π/2,
but the associated libration island is truncated by the discontinuity curve (see
Fig. 4.5 for η0 = −0.36 and Fig. 4.6, graph A).

4Since the semi-secular Hamiltonian K is symmetric in ω with respect to π/2, the secular level
curves for oscillations inside the left island are obtained by the transformation ω → π − ω.



118 CHAPTER 4. THE RESONANT DYNAMICS

• As for other kinds of resonances, the interaction with the classic non-resonant
Kozai island can enlarge the resonant features to create spectacular excursions
of the perihelion distance. In the graph C of Fig. 4.6, for instance, the classic
Kozai island is located at q̃ = 140 AU (out of the plot), and produces a possible
evolution from q̃ ≈ 41 AU to 107 AU. A similar kind of enlargement is also visible
on Fig. 4.5 for η0 = 0.45.

• For small semi-major axes (say < 130 AU), the geometries at high perihelion
distances can be more complex because of the proximity of the circular orbit.
This can create various new equilibrium points, as on the graph B of Fig. 4.6
(four additional islands). A different behaviour for small semi-major axes was
also reported in the non-resonant case (see Sect. 3.2.3, in particular Figs. 3.3 and
3.6).

30

40

50

60

70

80

90

100

q̃
(A

U
)

−0.60 −0.41 −0.38 −0.36 −0.30

0 π/2 π

ω (rad)

30

40

50

60

70

80

90

100

q̃
(A

U
)

0.00

0 π/2 π

ω (rad)

0.40

0 π/2 π

ω (rad)

0.45

0 π/2 π

ω (rad)

0.50

0 π/2 π

ω (rad)

0.60

Figure 4.5 – Typical dependence on the parameter η0 for orbits in resonances of type 1 : k with
Neptune. The resonance taken in example here is 1 : 19 (reference semi-major axis chosen a0 =
214.7763 AU). When there is a change of topology in the semi-secular phase space (from a two-
resonance-island to a one-resonance-island configuration), the secular phase portrait can either present
a discontinuity (thick green line) or a soft transition (thin dashed green line). In the regions where
there are two resonance islands (below the green line or inside it when it is closed), we chose σ
to oscillate inside the right one. All of these graphs are plotted for J = 0 and η0 is indicated in
the upper right corners. On the Y-axis of each graph, the reference inclinations can be obtained

by cos Ĩ = η0/
√

1− (1− q̃/a0)2 . The white regions in the first and last graphs are unreachable
with these values of η0 (they would require a cosine of inclination lower than −1 or higher than 1,
respectively).
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Figure 4.6 – Typical geometries for resonances of type 1:k with Neptune, with a parameter J = 0 and
oscillations of σ inside the right island. The resonances and corresponding a0 are indicated above the
graphs, as well as the parameter η0 used. These graphs have to be compared and located in Fig. 4.5:
note the similar geometries when changing k but for a different scale of the parameter η0. The graph
B shows that for small semi-major axes, the geometry at high perihelion distance is modified by the
proximity of the circular orbit. The graph D shows that the interesting trajectories are not restricted
to high-inclination regimes and that they can occasion very wide variations of inclination.



120 CHAPTER 4. THE RESONANT DYNAMICS



4.1. EXPLORATION OF THE PARAMETER SPACE 121

4.1.3 Playing with the secular discontinuity line

From Sect. 4.1.2, we know that any secular representation for prograde resonances
of type 1 : k presents a one-way discontinuity line in the plane (ω, q̃) from low to high
perihelion distances. Since that line is only half-width5, this gives the striking possibility
for a particle to pass softly from the left resonance island to the right one, simply by
getting around the discontinuity line and crossing it in its smooth direction. These
trajectories are recognizable in the secular phase portraits as the level curves connected
only to the upper side of the thick green line. Some of them are visible on the graph
C of Fig. 4.6 (including the trajectory featuring the largest variations of q̃): when
crossing the line from the upper part, the single island in which oscillates σ becomes
the left one (the corresponding secular representation is obtained by ω → π−ω). Since
the evolution is not constrained by the discontinuity line, that very particular kind of
trajectory allows the largest perihelion variations possible for resonances of type 1:k.

Figure 4.7 presents an example of such a trajectory obtained by a numerical integ-
ration of the unaveraged system (the equations of motion are given by the Hamiltonian
from Eq. 3.12 without any transformation). The initial conditions are chosen to match
the parameters of Fig. 4.5 for η0 = 0.45, where that trajectory is noticeable. Naturally,
Fig. 4.5 is plotted for σ oscillating inside the right resonance island, so only the green
and red parts of Fig. 4.7 can be represented. Indeed, for these particular trajectories,
a secular representation like the one used in this work is necessarily piecewise even
if the dynamics is perfectly regular. When the secular discontinuity line is crossed,
the particle always occupies the non-vanishing island, which prevents any separatrix
crossing. That mechanism is detailed in Fig. 4.8, where the semi-secular geometry is
presented.

5The discontinuity line spans in ω ∈ [0;π/2] or [π/2;π] if the particle occupies the right or the left
resonance islands, respectively.
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Figure 4.8 – Level curves of the semi-secular Hamiltonian K for (U, u) fixed according to 15 points
of Fig. 4.7. For clarity, only the separatrices are shown. We recall that Σ =

√
μa /k is the momentum

conjugate to σ. When a separatrix disappears (as between the graphs 2 and 3), it means that the
smallest resonance island has vanished, so all the level curves inside the resonance enclose the remaining
equilibrium point. The semi-secular trajectory corresponding to the numerical integration of Fig. 4.7 is
shown with the same colour code: blue for σ oscillating in the left island, green for the right one, and red
when there is only one resonance island in the phase space. Since the secular parameter J is very close
to 0, the semi-secular trajectory encircles tightly the resonance centre. The tiny area |2πJ | conserved
is shown in mid-tones. One can note that between the graphs 1-7 and 8-14, the particle returns exactly
to the same (ω, q) point (thus the same semi-secular geometry) but has changed resonance centre. On
a secular timescale, the corresponding trajectory is a circulation of the resonance centre itself (see the
evolution of σ in Fig. 4.7).
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4.1.4 High-amplitude oscillations of the resonant angle σ

For a larger area |2πJ |, that is, a higher amplitude of the semi-secular oscillations of σ,
the inevitable separatrix crossing beyond some value of the perihelion distance produces
important changes in the resonant secular dynamics (see Sect. 3.4.2). In other words,
σ is constrained to circulate if the perihelion distance grows too much.

As shown in Fig. 4.9, this has the general effect of squeezing the secular trajectories
towards Neptune, and even smooth out the equilibrium points if |2πJ | is large enough.
Indeed, a high-amplitude oscillation of σ weakens the resonant part of the Hamiltonian
function. This lets the non-resonant part dominate, and the latter has no equilibrium
point for a > 80 AU other than the classic Kozai ones around I = 63◦ and 117◦. In
the upper grey regions of the graphs A and B, a secular model for circulating σ can be
applied. However, for such a model the equilibrium points are rare and concentrated
at small values of q̃, where the resonance is still close and effective (see Sect. 3.4.2 for
examples). Moreover, the circulation of the resonant angle often triggers a diffusion of
semi-major axis and the secular representation ceases to be relevant (the locking inside
the resonance acts as a barrier against diffusion). In the lower grey region of the graph
B, the particle is pushed out of the right resonance island, but since the left one has
still a wide extent, a second capture can happen immediately and produce complex
regular-by-parts trajectories. That transition can occur also in the J = 0 case, but
only when the thick green line is crossed, that is at a much higher q̃. A large area |2πJ |
restricts thus severely the possibility for a particle to reach high perihelion distances.

These considerations can be summed up by: deeper the resonance capture, larger
the possible secular variations of the perihelion distance. However, the structures at
low value of q̃, and in particular the usual equilibrium point at ω = 0, can persist even
for a large area |2πJ | (see the graph A of Fig. 4.9) since the resonance islands are pretty
big.
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Figure 4.9 – Effect of a large area |2πJ |. The resonances and corresponding a0 are indicated above
the graphs, as well as the parameters chosen. The grey colour denotes the regions where the semi-
secular separatrices are too narrow to contain the area |2πJ |, that is, where this secular model is not
relevant. In the graph B (1:k resonance), the particle is chosen to oscillate inside the right resonance
island, and only one island remains beyond the green line. These phase portraits have to be compared
to their counterpart with J = 0 in Fig. 4.3 and 4.6 (graphs A and D, respectively).
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4.2 Application to observed resonant objects

Up to now, the application of the resonant secular model was made exclusively on
distant resonances, for which the adiabatic approximation is more relevant. However,
only a few trans-Neptunian objects are known with semi-major axes that large, and
their orbital uncertainties are necessarily rather high since only a fraction of their
orbits has been observed (orbital period > 1000 years). In this section, we present
the long-term evolution of the trans-Neptunian objects known to be in resonance, that
is those for which the uncertainties of orbital elements are predominantly compatible
with a resonant trapping. As presented for instance by Lykawka and Mukai (2007),
they are quite numerous and most of them have small semi-major axes (because of the
observational constraints). Fortunately, we will show that the adiabatic approximation
is also viable for semi-major axes as small as 50 AU, even if the two timescales are not
as strikingly separated as for a > 100 AU. For even closer objects, individual analyses
would be required, not only to check the validity of the adiabatic approximation, but
also the possible occurrence of secular resonances with the giant planets (Knezevic
et al., 1991), which would also invalidate this model. Consequently, we focus here on
the ∼40 currently known resonant trans-Neptunian objects with a > 50 AU.

We selected these objects from three reference classifications (Lykawka and Mukai,
2007; Gladman et al., 2008, 2012), retaining only the “securely classified” ones with a
semi-major axis larger than 50 AU. Two recent observation reports were also added:
Bannister et al. (2016) presents the discovery of 2015RR245, which has a confirmed
resonant classification; on the other hand, Sheppard et al. (2016) introduces some ob-
jects which are probably resonant or have been strongly affected by a mean-motion
resonance with Neptune. This last classification is slightly different, but we chose to
add these objects to this study to emphasise the link with recent results focussed on
high-perihelion objects. Indeed, the secular model proved to be an efficient tool to
reveal dynamical paths leading to high perihelion distances and large inclinations. The
objects studied in this section are listed in Tab. 4.1.

In Sect. 4.2.1, we explain how suitable secular parameters can be obtained from
known objects. Then, we selected the most representative phase portraits obtained.
Most of the objects considered here have a quite ordinary secular dynamics (Sect. 4.2.2),
but a subset of them evolve near or inside secular libration islands (Sect. 4.2.3) and one
object follows a regular-by-part secular trajectory (Sect. 4.2.4).

4.2.1 Determination of the secular parameters

In Chp. 3, we presented the creation of the secular models. In the resonant case, the
Hamiltonian is function of two dynamical variables (ω, q̃) and depends on two free
parameters (η0, J). The problem is to compute these quantities for a given object, for
which only the osculating coordinates are known. The standard procedure consists in
filtering digitally the output of a medium-term numerical integration, thus removing
the short-period component of the trajectory as we did in the semi-analytical theory.



4.2. APPLICATION TO OBSERVED RESONANT OBJECTS 127

Name kp :k L
Y
0
7

G
L
0
8

G
L
1
2

S
H
1
6

B
A
1
6

a0 η0 −2πJ ω q̃

2001KG76 4:9 
 × 51.718 0.939 0.02 2.668 34.017
(42301) 2001UR163 4:9 
 × 51.719 0.958 0.04 6.148 36.974
(95625) 2002GX32 3:7 
 × 52.987 0.901 0.07 3.359 33.146

2002CZ248 3:7 
 52.987 0.919 0.026 5.252 32.413
(131696) 2001XT254 3:7 
 × 
 52.988 0.946 0.04 3.294 35.910
(181867) 1999CV118 3:7 × 52.988 0.949 0.04 2.650 37.493
(79978) 1999CC158 5:12 × 53.991 0.904 0.017 1.841 39.096
(119878) 2002CY224 5:12 
 × 53.991 0.896 0.011 2.689 35.275
(84522) 2002TC302 2:5 × 55.474 0.784 0.13 1.585 39.002
(26375) 1999DE9 2:5 
 × 55.478 0.897 0.18 2.884 32.283
(60621) 2000FE8 2:5 
 × 
 55.479 0.909 0.05 2.739 33.109
(38084) 1999HB12 2:5 
 × 55.480 0.890 0.105 1.052 32.615

2004KZ18 2:5 
 55.480 0.847 0.0015 0.136 34.310
2004EG96 2:5 
 
 55.481 0.871 0.045 0.185 32.110
2002GP32 2:5 
 × 
 55.481 0.907 0.0013 0.463 32.081
2000 SR331 2:5 
 × 55.481 0.896 0.023 3.812 31.157

(143707) 2003UY117 2:5 
 × 55.481 0.899 0.064 1.895 32.510
(135571) 2002GG32 2:5 
 × 55.481 0.907 0.03 4.140 35.905
(69988) 1998WA31 2:5 
 × 55.481 0.890 0.12 5.571 31.581
(119068) 2001KC77 2:5 
 × 55.482 0.913 0.24 3.239 35.455

2004HO79 2:5 
 55.482 0.907 0.08 2.359 32.507
2001XQ254 2:5 
 × 55.484 0.894 0.19 0.189 31.089
2015GP50 2:5 ×
2012FH84 2:5 ×

(82075) 2000YW134 3:8 
 × 57.920 0.909 0.00035 5.489 41.146
2004XR190 3:8 ×
2015FJ345 1:3 × 62.649 0.809 0.065 1.391 50.905

(136120) 2003LG7 1:3 
 × 62.660 0.817 0.5 5.913 32.483
2015KH162 1:3 ×
2013FQ28 1:3 ×

(160148) 2001KV76 2:7 × 69.430 0.835 0.076 4.098 34.421
(126619) 2002CX154 3:11 ×

2014FC69 3:11 ×
2014FZ71 1:4 × 75.900 0.860 0.035 4.277 56.117
2015RR245 2:9 
 82.100 0.802 0.075 4.360 33.942

(26181) 1996GQ21 2:11 ×
2008 ST291 1:6 × 99.453 0.761 0.003 5.721 42.566

(184212) 2004PB112 5:27 × 107.575 0.713 0.0055 0.158 35.392

Table 4.1 – List of the resonant trans-Neptunian objects with a > 50 AU. The resonance ratios
kp :k are all with Neptune. The references used are abbreviated in LY07 (Lykawka and Mukai, 2007),
GL08 (Gladman et al., 2008), GL12 (Gladman et al., 2012), SH16 (Sheppard et al., 2016) and BA16
(Bannister et al., 2016). A cross indicates that the object is classified as “resonant”; a star indicates
that the article provides also the oscillation amplitude of the resonant angle with its uncertainty. In
LY07 and GL12, the object is omitted if the classification is said “insecure”. The right part of the
table gives the characteristics of the resonant secular models obtained: a0 is the reference semi-major
axis chosen (AU) whereas η0 (no unit) and −2πJ (AU2rad2/yr) are the fixed parameters. Finally, ω
(rad) and q̃ (AU) are the current secular argument of perihelion and reference perihelion distance of
the object. Blank fields mean that the object was found non-resonant in the numerical integration
starting from the nominal orbit given by AstDyS database. In the particular case of 2014FZ71, a
secular model was developed although the nominal orbit solution was not resonant (see Sect. 4.2.4).
In theory, the 1-sigma error bars would allow it also for 2015GP50, 2012FH84 and 2013FQ28.
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The detailed procedure was introduced by Carpino et al. (1987) and implemented in
the OrbFit Software Package6. For the resonant objects from Tab. 4.1, a numerical
integration of 500 000 years was found more than enough to cover the semi-secular
oscillations (related to the resonant angle). The numerical integrations were performed
using the same software package, taking the nominal orbits given by AstDyS database7

as initial conditions. The four giant planets were integrated consistently and the masses
of the inner ones were added to the Sun. The invariable plane of the Solar System was
taken as reference plane for the output. We used heliocentric coordinates, as this is the
system on which is based the semi-analytical theory8.

The secular values of (U, V, u) can be directly picked up from the filtered series,
whereas the parameter J requires the computation of the area enclosed by the trajectory
in the (Σ, σ) plane. Fig. 4.10 shows some examples of filtered output, with the graphical
representation of the corresponding areas 2πJ . In the background, the level curves
of the semi-secular Hamiltonian K with (U, u) fixed at their secular (that is filtered)
current values are also plotted in order to assess the validity of the semi-analytical
procedure. The filtered trajectories were always found to follow pretty well the level
curves, showing that our simplified and averaged model captures the essence of the
dynamics. The characteristics of the corresponding secular models are gathered in
Tab. 4.1. The oscillation amplitudes of the resonant angles were generally found in
very good agreement with the values given in Lykawka and Mukai (2007) and Gladman
et al. (2012).

Please note that this method for getting the secular parameters of the observed
bodies relies on the nominal orbit solutions. Consequently, the actual parameters could
be a bit different, especially for the recently discovered objects. The corresponding
changes concern mostly the parameter J which is sensitive to the initial conditions.
For instance, a slight increase of the area |2πJ | leads to a wider coverage of the “grey”
zones (on the sides of which separatrix crossings occur).

In our numerical integrations, some objects were found outside the expected reson-
ances (blank lines in Tab. 4.1). Apart from two exceptions, this concerns small bodies
reported by Sheppard et al. (2016) which are not classified as “resonant” from their
current orbit but from their probable dynamical history. For these objects, a secular
model near the resonance could still be developed (in which 2πJ is the area under the
curve), or the uncertainties of the nominal orbit could be taken into account to develop
a secular model for a “potential” resonant orbit. This will be realised for 2014FZ71.

6http://adams.dm.unipi.it/orbfit/
7http://hamilton.dm.unipi.it/astdys/
8Since the temporal series obtained are meant to be filtered, the short-period oscillations of the

barycentre of the Solar System, usually removed by using barycentric coordinates, are not a problem.
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Figure 4.10 – Computation of the secular con-
stant of motion J from the filtered numerical
integrations. The examples shown are (from
top to bottom): 82075, 119068, 2008 ST291

and 136120. See Tab 4.1 for the correspond-
ing resonances. The axes are σ (rad) and Σ
(AU2rad/yr). The blue crosses come from the
filtered output, whereas the red hatched area is
equal to the quantity −2πJ used to construct
the secular model. The black lines in the back-
ground are the level curves of K with (U, u)
fixed. Various cases are shown: small (a,c) or
large (b,d) area, single (a,b) or double (c,d)
resonance island, simple (a,b), asymmetric (c)
or horseshoe (d) oscillations.

4.2.2 Typical resonant secular evolutions

Most of the objects studied here are not very affected by their resonant relation with
Neptune: this results in a “flat” secular evolution, with circulating ω and almost con-
stant q̃. Such a secular behaviour is similar to what we would obtain for a non-resonant
dynamics (where the only notable features are located at high inclinations). This indic-
ates a small influence of the resonance on the long-term dynamics: indeed, the resonant
link can never bring the small body away from its capture configuration, resulting in
an unstable transient resonance9. This is confirmed for 2015RR245 by the detailed
dynamical study by Bannister et al. (2016).

Some examples of level curves of the secular Hamiltonian F are shown in Fig. 4.11.
As before, the graphs are π-periodic in ω. Every object listed in Tab. 4.1 follows such
kinds of trajectories, with the exception of the objects 135571, 2004KZ18, 2008 ST291,
82075, 2015FJ345 and 2014FZ71, which we describe in Sects. 4.2.3 and 4.2.4. In order to
check the validity of the adiabatic approximation, each graph features also a numerical
integration of the two-degree-of-freedom semi-secular system. As required, the mean
trajectory follows a level curve of the secular Hamiltonian. The extra oscillations due
to the second degree of freedom are even almost undistinguishable, hidden in the curve

9This conclusion does not hold if the object was left on a distant resonant trajectory by the late
migration of Neptune (Gomes et al., 2008). In that case, the constancy of the secular perihelion
distance is a guarantee of stability, on the contrary.
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Figure 4.11 – Typical examples of phase portraits for the objects studied in this section. The colour
shades represent the value of the secular Hamiltonian (dark/light for low/high), from which can be
deduced the direction of motion along the level curves (black lines). The white zones are forbidden
by the value of the parameter η0 (it would require a cosine of inclination larger than 1), and the grey
zones are forbidden by the value of the parameter J (the resonance island is too narrow to contain
the signed area 2πJ). The green cross represents the current position of the object, and the red curve
comes from a numerical integration of the two-degree-of-freedom semi-secular system. The names are
written above the graphs (see Tab. 4.1 for the parameters of the models). On the graph b, the secular
trajectory of 79978 forces periodically σ to circulate when the curve enters the grey zone (separatrix
crossing). The numerical integration shows that this does not affect significantly the overall dynamics
(red curve). The graph c shows that 60621 follows a “flat” trajectory even if the parameters of the
model could allow interesting variations of orbital elements. The behaviour of the object 2004EG96

(not shown) is very similar to that of 60621, but it follows a level curve much closer to the secular
separatrix (lying just above the red curve). A small diffusion of its orbital elements (or a refinement
of its orbital solution) could thus put it on a level curve leading to much higher perihelion distances.



4.2. APPLICATION TO OBSERVED RESONANT OBJECTS 131

width. Fig. 4.11a presents the most common case: the parameters of the secular
model do not allow any peculiar geometry, and the specific level curve followed by
the particle has nothing special either. In Fig. 4.11b, the particle is pushed outside of
the resonance island in some portions of its trajectory. This does not affect the overall
secular dynamics, however, since it re-enters the resonance with a similar parameter J .
Finally, Fig. 4.11c presents a “missed” interesting case: the parameters of the secular
model do allow important variations of the orbital elements but the particle is located
on a flat level curve, outside of any libration island.

4.2.3 Objects affected by secular libration islands

The object 135571, presented in Fig. 4.12a, is the only one showing a retrograde cir-
culation of ω. Indeed, it follows a level curve located above the two maxima of the
secular Hamiltonian. It is also very close to the separatrix: a small chaotic diffusion
(or a refinement of the orbital solution) could easily put it inside the secular libra-
tion island. The object 2004KZ18, on the other hand, is clearly located in the island
(Fig. 4.12b). This smooth quasi-periodic trajectory may not be “permanent”, however,
since it involves small perihelion distances. Indeed, the neighbouring resonances have
large widths and a chaotic drift out of the resonance is a serious risk. The resonance
captures of 135571 and 2004KZ18 probably occurred in the lowest part of their secu-
lar trajectories (smallest perihelion distances). Since their dynamics is quasi-periodic,
however, they will regularly return to their entrance configurations, leading to possible
expulsions.

Figure 4.12c shows the case of 2008 ST291 which is associated with a much more
distant resonance. The resonant angle σ oscillates in an asymmetric libration island
(graph c of Fig. 4.10), which results in a secular Hamiltonian with level curves also
asymmetric. 2008 ST291 is located inside a secular libration island, confining ω around
a fixed value (∼ 117◦) and producing large-amplitude oscillations of the perihelion
distance. The object is on the descending part of the trajectory, implying that it
has completed at least one cycle (period of about 115 Myrs). However, we note that
2008 ST291 has still uncertain orbital elements: Sheppard et al. (2016) reported clones
evolving from q ≈ 35 to 60 AU. These limits can be roughly measured in Fig. 4.12c,
according to the position of the separatrix with respect to the object.

Finally we can also mention the object 82075, presented in Fig. 4.12d, which does
not interact directly with a secular libration island but which is located on a level curve
producing rather large variations of orbital elements (circulation of ω and oscillations of
q̃ from about 38 to 44 AU). The minimum perihelion distance reached by 82075 seems
quite high to be considered as a capture location. This led Lykawka and Mukai (2007)
to classify it as a “detached” object.
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Figure 4.12 – Phase portraits of the objects affected by secular libration islands. On the graph a,
the object 135571 is the only one found to have a retrograde circulation of ω. On the graph b, the
secular evolution of 2004KZ18 inside the mean-motion resonance makes ω oscillate around 0. On the
graph c, there are two distinct regions according to the topology of the semi-secular phase-space, since
the resonance of 2008 ST291 is of type 1 :k. Below the green line, the resonance island is doubled (as
in Fig. 4.10c,d) resulting in asymmetric level curves. Above the green line, only one resonance island
remains (as in Fig. 4.10a,b) and the level curves are symmetric. If the line is crossed, there can be
either a discontinuity (thick green line) if the particle is located in the vanishing island, or a smooth
transition (dotted green line) if it is located in the persisting island.
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4.2.4 Regular-by-part secular dynamics

The object 2015FJ345 presents the most interesting secular dynamics. Figure 4.13a
shows that it is currently located in the single-island region of the 1 :3 resonance (that
is above the “green line”), but on a level curve coming from and leading to discontinuous
transitions. Hence, its perihelion distance was probably raised from the double-island
region (below the green line), starting much closer to Neptune, on a secular trajectory
leading to the transition. The resonant secular model can be used to reconstruct a
possible scenario: following the secular level curve of 2015FJ345 backwards (toward the
left), its intersection with the grey zone gives its location when it was ejected from
the vanishing resonance island. At this point, the total area available in this island
gives the parameter J to be used in a secular model describing the previous portion
of the secular dynamics. Proceeding this way, we suppose that on a secular timescale,
the separatrix crossings can be considered as instantaneous10. The area measured is
small (2πJ ≈ −0.0115 AU2rad2/yr) since the separatrix crossing happened near the
green line (blue spot in Fig. 4.13a). The corresponding previous secular trajectory is
shown in Fig. 4.13b. Surprisingly, we find once again a trajectory coming from and
leading to a transition, without any passage to smaller perihelion distances where the
resonance capture with Neptune could have occurred. We use the same method to get
the secular trajectory before this second transition (green spot in Fig. 4.13b). The
level curves of the corresponding secular Hamiltonian are presented in Fig. 4.13c: we
finally get a secular trajectory leading to much lower perihelion distances (at least
below q̃ = 35 AU, depending on the exact level curve followed by the particle), where
the capture in resonance with Neptune could have occurred.

Since the overall trajectory is rather complicated, Fig. 4.14 sums up the three com-
ponents by showing a numerical integration of the two-degree-of-freedom semi-secular
system. We started from a position (ω, q̃) on the level curve of Fig. 4.13c, as a potential
position of capture in resonance with Neptune (black spot). Of course, the separatrix
crossings are actually not instantaneous, so their exact outcomes depend on the phase
at the time of transition (this holds especially for 2015FJ345 which presents a substan-
tial departure from the adiabatic approximation). Since the two separatrix crossings
were found to be a bit sensitive to the initial phase chosen for σ and Σ, we tried different
values distributed all along the level curve of the semi-secular Hamiltonian. The grey
trajectories in Fig. 4.14 give an idea of the range of possible behaviours. Roughly half of
the integrated trajectories were found to follow qualitatively the scenario from Fig. 4.13
(the red curve is one example of them). As predicted, the trajectory ends up near the
observed position of 2015FJ345, showing that this scenario is dynamically possible. It
can be considered as the potential past trajectory producing the shortest path from the
capture into resonance to the observed position of the body. The numerical integration
from Fig. 4.14 gives also the timescale involved, which counts in tens of Myrs. In the

10As explained in Sects. 3.4.2 and 3.4.3, a chaotic extra change of J should be expected in the real
case, depending on the exact phase of Σ and σ at the moment of the crossing. This change is expected
to be small if the adiabatic approximation is well verified.
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Figure 4.13 – Level curves of the secular Hamiltonian for the current and past evolution of the
object 2015FJ345. Three smooth trajectories are considered, divided by separatrix crossings. The
constant parameter η0 is given in Tab. 4.1, whereas 2πJ is given above the graphs (AU2rad2/yr). The
current orbital elements of 2015FJ345 result in the leftmost phase portrait a. Contrary to previous
graphs, the secondary oscillations of the semi-secular trajectory (red curve) are noticeable. The secular
trajectory (mean curve), though, follows still pretty well the level curves given by the model. Starting
from the current position of 2015FJ345 (blue cross), the red curve is drawn until it reaches a change
of the resonance topology (from a single to a double island), on the green line. Following the level
curve toward the left (past evolution), the blue spot represents the position of the previous separatrix
crossing undergone by 2015FJ345. The middle graph b shows the secular model for the past evolution
of 2015FJ345. The blue spot represents its position at the transition to its current state (same as
graph a). Following the level curve downwards (past evolution), the green spot shows the position of
the previous separatrix crossing undergone by 2015FJ345. The rightmost graph c presents the secular
model for the earlier evolution of 2015FJ345. The green spot shows its position at the transition to the
next part of the trajectory (same as graph b). Following the level curve downwards (past evolution),
the black spot is taken as initial condition for a numerical integration (see text and Fig. 4.14).

future, 2015FJ345 is expected to go on with these types of transitions, possibly turning
back to small perihelion distances. In particular, it is possible that several loops already
occurred between its capture in resonance and its observed position. It could also stay
in a resonant high-perihelion state for Gyrs if it has triggered a “high-perihelion trap-
ping mechanism” (described in Sect. 4.4). The orbital uncertainties, though, prevent
from any definitive conclusion. They should not affect our general conclusions, though:
for instance, a slight change of orbital elements would leave 2015FJ345 in the high-
perihelion region and on a trajectory coming from a much lower perihelion distance. If
ever it turns out that 2015FJ345 is actually currently out of the resonance, the migra-
tion of Neptune could also be invoked (same type of trajectory, but in an earlier stage
of the Solar System).
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Figure 4.14 – Numerical integration of the two-degree-of-freedom semi-secular system. The initial
conditions (origin of the time and black spot on the right) are taken according to the level curves
plotted in Fig. 4.13c. On the right, the evolution of the couple (U, u) is drawn (with q instead of
U , obtained by inverting Eq. 3.56). Several initial phases for (σ,Σ) were tried, leading to secular
trajectories diverging at the first separatrix crossing (grey curves). Among them, the red trajectory is
in agreement with our backward reconstruction: its second transition occurs on the blue spot, and it
passes near the current position of 2015FJ345 (to be compared with the level curves from Fig. 4.13).
On the left, the evolution of the couple (σ,Σ) is represented for the red trajectory (with a instead
of Σ). The two separatrix crossings, leading to a change of oscillation island, are easily noticeable.
The bottom graph presents the evolution of the area 2πJ for all the trajectories plotted on the right,
showing the divergence at the first transition. Even if 2πJ is plotted as a continuous line, please
remember that its definition changes after each transition (different resonance island).

As discussed by Sheppard et al. (2016), such a mechanism is probably also re-
sponsible for the high perihelion distance of 2014FZ71 even if this object is not found
currently in resonance (according to its nominal orbit). Consequently, it could have
been left in its current position at the end of Neptune’s migration (Gomes et al., 2005b,
2008), or its resonant secular dynamics itself could have pushed it out of the resonance
separatrices. We studied this last scenario by a close-to-resonance secular model (as
used in Sect. 3.4.2), but no interaction at all with the resonance was detected (flat level
curves). The migration of Neptune set apart, 2014FZ71 is thus probably much closer to
the resonance than its current best-fit orbit seems to indicate. Actually, its uncertain-
ties are even compatible with a trapping in resonance (as already reported by Sheppard
et al., 2016). As shown in Fig. 4.15, the semi-major axis of 2014FZ71 can be slightly
modified (at the 1-sigma level) to enter the resonance. If we change only the value
of a, the minimum area 2πJ in the case of resonance is equal to −0.035 AU2rad2/yr
(red hatched region in Fig. 4.15). The corresponding resonant secular model is presen-
ted in Fig. 4.16a: we get a geometry very similar to what we obtained for 2015FJ345,
indicating that an analogous long-term resonant evolution probably occurred. Follow-
ing the level curve toward the past, the second resonance island has an total area of
−0.00205 AU2rad2/yr on the transition line, which gives the secular model represented
in Fig. 4.16b. This time, we directly obtain a trajectory leading to much smaller peri-
helion distances (∼ 38.5 AU), compatible with the numerical experiments by Sheppard
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Figure 4.15 – Semi-secular phase portrait of
2014FZ71. On the right axis, the values of a cor-
responding to Σ are shown. The blue crosses come
from the filtered output of the full non-averaged
numerical integration (same as Fig. 4.10), with the
current position of 2014FZ71 on the big spot. For
comparison, the 1-sigma error bar of the (osculat-
ing) orbital solution is added. The uncertainty is
compatible with the red hatched area inside the res-
onance, from which we get a possible value of the
parameter J .
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We did not try to obtain similar graphs for 2004XR190 since its location out-of-
resonance is securely assessed. Its current position is pretty well explained by an ana-
logous resonant evolution, but occurring during the late migration of Neptune (Gomes,
2011).

In Fig. 4.16, one can note that the parameter η0 puts a lower limit on the peri-
helion distances reachable by 2014FZ71 (independently of the separatrix crossings en-
countered). This limit is equal to about 37 AU and corresponds to Ĩ = 0. This is quite
high for a resonant capture (since a diffusion of a is necessary), but that argument
was used by Sheppard et al. (2016) to state that 2014FZ71 possibly originated in the
Scattered Disc. Of course, the fixed value of η0, or equivalently the approximate con-
stancy11 of

√
1− e2 cos I used by some authors (Gomes et al., 2008; Sheppard et al.,

2016), gives only upper bounds for the variations in perihelion distance. Indeed, an
object could very well be detached, but with a parameter η0 allowing in principle any
eccentricity and inclination. Consider for instance, a particle located on the highest
level curve drawn on Fig. 4.13c.

11Strictly speaking, the quantity
√
1− e2 cos I is constant only in the non-resonant secular case (see

Sect. 3.2). The analogous constant in the resonant case is V =
√
μa

(√
1− e2 cos I − kp/k

)
, but since

the particle is trapped in resonance, a is never far from some given value.
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Figure 4.16 – Level curves of the secular Hamiltonian for the current and past evolution of the object
2014FZ71. Two smooth trajectories are considered, divided by a separatrix crossing. The constant
parameter η0 is given in Tab. 4.1, whereas 2πJ is given above the graphs (AU2rad2/yr). The current
orbital elements of 2014FZ71 result in the left phase portrait a. Following the level curve toward the
left (past evolution), the blue spot shows the position of the previous separatrix crossing undergone
by 2014FZ71. The right graph b presents the secular model for the past evolution of 2014FZ71. The
blue spot shows its position at the transition to its current state (same as graph a).

4.3 Application to distant objects

Because of evident observational constraints, the data for high-perihelion high-semi-
major-axis trans-Neptunian objects is scarce and subject to large uncertainties. Hence,
it is quite hard to determine if a particular observed object in that region presents
a mean-motion resonance with one of the planets. Since the dynamics is chaotic in
general, even a small change of semi-major axis can lead to very different long-term
behaviours, with locking or not in a variety of mean-motion resonances. It is not rare,
for example, that an object thought to be in resonance with Neptune for a given best-
fit orbit, proved actually to be in a diffusive state when we add new observational
constraints. For that reason, we can turn to a different approach to the problem: if a
specific known object were in resonance with Neptune (now or in a close past or future),
what would be its long term dynamics? In particular, would its current orbital elements
allow some large variations of its perihelion distance q and/or confine its argument of
perihelion ω? Independently of the uncertainty of its semi-major axis, its osculating
variable η =

√
1− e2 cos I can indeed be used as parameter for a resonant secular

model. We will see that such a general study, which is almost independent of the fit
precision of the semi-major axis, can still be very informative.

Figure 4.17 presents the ranges of interest of η0 (that is the interval allowing libration
centres) for prograde orbits in resonances of types kp = 1, 2, 3, 4 with Neptune. Here,
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Figure 4.17 – Range of interest (that is the interval of η0 allowing libration centres) for various types
of mean-motion resonances with Neptune. It is calculated for J = 0 and the plot is restricted to
prograde orbits (η0 > 0). The black spots represent the position of 24 well-known small bodies with
a > 100 AU and q > 30 AU according to AstDyS database, using a for a0 and

√
1− e2 cos I for η0.

The trans-Neptunian object 2013RF98 is added from the JPL database. The names are shown for the
bodies with a > 250 AU, and the blue points refer to those taken in example in the following (from
left to right: 303775, 181902 and 2007LH38).

we restrict the study to small oscillations of σ, that is for J ≈ 0 (as shown in Sect. 4.1,
these trajectories are the most stable and present the most interesting variations of the
orbital elements). The coloured ranges represented in Fig. 4.17 have been obtained by
a systematic exploration and a fine tuning of η0. As anticipated in Sect. 4.1.1, they
follow definite laws with respect to the reference semi-major axes a0 of the resonances
(iso-curves of inclination and perihelion distance). The position of the known small
bodies with q > 30 AU and a > 100 AU are added12, showing in an evident way which
ones could have a potentially interesting resonant relation with Neptune. The trans-
Neptunian object 2013RF98 is also shown despite its very ill-determined orbit because
it has been recently used in the article by Batygin and Brown (2016a).

First of all, we see that Sedna and 2012VP113 are completely out of every range
of interest (they would require a much higher inclination or a much lower perihelion
distance to enter the coloured zones). We can thus affirm that these two bodies cannot
have had a perihelion near the planetary region and have been drifted away by the

12The orbital elements are taken from AstDyS database (http://hamilton.dm.unipi.it/astdys),
except from 2013RF98 which comes from the JPL database.
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secular interaction (resonant or non-resonant) with the known planets. Similar results
were obtained by numerical means by Gomes et al. (2005b). As an illustration, Fig. 4.18
shows the secular behaviour that Sedna would have if it were in a resonance of type 2:k
with Neptune with J = 0. Naturally, that graph corresponds to a specific resonance,
but Fig. 4.17 certifies that every other resonance of the neighbourhood would produce
such flat level curves. Moreover, numerical integrations show that for low inclinations
and perihelion distances near Neptune, the resonances with a0 > 350 AU are unstable:
if an object happens to stay in such resonances, its perihelion distance should be already
quite high to avoid any diffusion of semi-major axis13. Eventually, one can think of a
more complex scenario for Sedna and 2012VP113, including an initial resonant semi-
major axis of 150-200 AU, followed by an excursion of perihelion, and finally a diffusion
of a. However, this is also impossible because the semi-major axis cannot be affected
by diffusion once the perihelion is so high, even if the particle is pushed out of the
resonance (remember the empirical law of qmin = a/27.3 + 33.3 AU by Gallardo et al.,
2012). Such a mechanism is definitely not able to explain the current orbits of these two
trans-Neptunian objects. We should think of other scenarios (as the interaction with
an unknown external perturber) or different sources, as the Oort Cloud or a neighbour
star in the birth cluster of the Sun (see in particular J́ılková et al., 2015, and their other
related works).

Contrary to Sedna and 2012VP113, many objects are located well inside some range
of interest, and sometimes even simultaneously for several types of resonance. In the
following, we show various secular phase portraits that some of these small bodies would
have if they were in resonance with Neptune. We chose only the trans-Neptunian objects
compatible with a deep resonance, that is those for which the current value of the mean
anomaly leads to a resonant angle σ near the equilibrium. We can get an estimation
of the minimum area |2πJ | an object could have by assuming that its current secular
semi-major axis is a0 and considering the corresponding surface in the (Σ, σ) plane14.
The next graphs are computed for specific resonances, but every neighbour resonance
of the same type would produce a similar phase portrait (see Sect. 4.1). Each graph
presents also the result of a numerical integration including the four giant planets. The
secular variations of their orbital elements are given by the synthetic representation
of Laskar (1990), supposed valid in the entire duration of the integrations. The initial
conditions are taken from the best-fit orbits of AstDyS, excepted for the semi-major
axes which are adjusted to produce the resonant captures. The required modifications
are of the order of 2 AU, which is generally larger than the 3-σ uncertainty given by
AstDyS. Hence, the trajectories shown are not supposed to represent the “real” motion

13In particular, we did not manage to lock 2007TG422 in resonance in our numerical integrations
(semi-major axis ≈ 493 AU) even by putting it exactly at the resonance centre. This is different for
high inclinations, for which it is not rare to observe stable resonance captures with a0 > 500 AU even
for perihelion distances near Neptune. However, the probability to find a real body with that kind of
orbit is likely very low.

14The same method was used in Sect. 4.2.4 for 2014FZ71 (see Fig. 4.15) but it was limited to the
uncertainty range of a.
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Figure 4.18 – Level curves of the secular
Hamiltonian for the resonance 2 : 141 with
Neptune, which is located near the semi-
major axis of Sedna. The value chosen for
a0 is indicated above the figure as well as
the parameter η0 corresponding to the ele-
ments of Sedna. This graph is plotted for
J = 0 and the green cross shows the current
position of Sedna in the plane (ω, q).
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of these objects, but only to give an insight of what could be their secular dynamics in
case of resonance.

The left graph of Fig. 4.19 presents the case of 2004VN112 which is located at
the limit of the range of interest for 1 : k resonances. Indeed, no equilibrium point
remains and ω circulates. This kind of resonance would only result in oscillations of the
perihelion of 2004VN112 from about 42 to 50 AU. The right graph of Fig. 4.19 shows
the case of 303775 which is well inside the range of interest for 1 : k resonances. Its
current position would imply a reachable perihelion distance of 52 AU. We note that
303775 is also in the zone of interest for 2 :k resonances, but its current mean anomaly
would imply a large oscillation of the resonant angle leading to an unstable capture.

On Fig. 4.20, we see that resonances of types 1 :k and 2:k would both decrease the
perihelion distance of 2007LH38 towards Neptune, where the overlap with neighbour
resonances leads eventually to a chaotic diffusion of the semi-major axis (not shown
here). A very similar behaviour is observed for resonances near the nominal orbit
of 2013RF98, but its very large uncertainties make very wide the range of possible
resonances involved.

Finally, Fig. 4.21 shows that a resonance of type 2:k would result in small-amplitude
oscillations of the perihelion of 181902 along with a circulation of ω. On the contrary,
a resonance of type 1:k would raise its perihelion distance as far as 56 AU and possibly
maintain it high on a billion-year timescale, depending on the next resonant behaviours
adopted by the particle (see Sect. 3.4.3). In the next section, we will show that this
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Figure 4.19 – Level curves of the secular Hamiltonian for two mean-motion resonances with Neptune
located near the semi-major axes of the trans-Neptunian objects 2004VN112 (left) and 303775 (right).
The chosen values for a0 are indicated above the figures as well as the parameters corresponding to
the elements of these bodies. The green crosses show their current positions in the plane (ω, q) and
the red dots are the results of numerical integrations: the presented time-spans are 350 Myrs on the
left and 200 Myrs on the right. The secular evolutions on a larger timescale are found to be rather
periodic.

is a common mechanism that can produce long-lived small bodies with high perihelion
distances. Even if 181902 is not considered to follow that kind of dynamics, Fig. 4.21
shows that it is located in the required range of orbital elements, demonstrating that
such a behaviour is not only a mathematical curiosity of the resonant secular model.
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Figure 4.20 – Level curves of the secular Hamiltonian for two mean-motion resonances with Neptune
located near the semi-major axis of the trans-Neptunian object 2007LH38. The chosen values for a0
are indicated above the figures as well as the parameters corresponding to the elements of 2007LH38.
The green crosses show its current position in the plane (ω, q) and the blue dots are the results of
numerical integrations: the presented time-spans are 14 Myrs on the left and 28 Myrs on the right,
after which 2007LH38 is pushed outside of the resonances considered.
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Figure 4.21 – Level curves of the secular Hamiltonian for two mean-motion resonances with Neptune
located near the semi-major axis of the trans-Neptunian object 181902. The chosen values for a0 are
indicated above the figures as well as the parameters corresponding to the elements of 181902. The
green crosses show its current position in the plane (ω, q) and the blue dots are the results of numerical
integrations: the presented time-spans are 100 Myrs on the left and 30 Myrs on the right. On the left
graph, the secular evolution leads the particle to the discontinuity line, where the occupied resonance
island disappears. After the transition, the particle goes on switching secular behaviour (not shown
here). On the right graph on the contrary, the secular evolution on a larger time-span is found to be
rather periodic.
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4.4 High-perihelion trapping mechanisms

The possibility of transferring Scattered Disc objects to high perihelion distances by
resonant interactions with Neptune is well known from the work of Gomes et al. (2005b).
Our resonant secular model is a suitable tool to further precise their results. In par-
ticular, they mention a possible trapping caused by the drop-off of the resonant terms
in the disturbing function when the perihelion distance increases. Indeed, the particle
becomes vulnerable to any other kind of perturbation, which destabilizes the resonant
dynamics. We give an example of such mechanism in Fig. 4.22, where we chose on pur-
pose a trajectory avoiding the discontinuity line (see Sect. 4.1.3). The secular dynamics
is perfectly regular during the first loop, because the perihelion excursion is relatively
modest. Then, when the resonant link with Neptune gets weaker, the perturbations
induced by the varying small inclinations and eccentricities of the planets are strong
enough to break the smooth resonant trajectory (at t ≈ 1 Gyr): the secular parameter
J makes unpredictable jumps and the particle is eventually pushed out of the resonance.
Since the perihelion distance is very high, the semi-major axis is not subject to diffusion
and so the particle remains trapped. The resonance is still very close, however, and the
resonant angle switches chaotically from high-amplitude oscillations to circulation, but
this has no notable effect on the orbital elements. Indeed, the probability to recover
a secular trajectory leading to small values of q is extremely low (it would require a
parameter J ≈ 0).

Actually, that scenario was found to be relatively rare in our numerical experiments.
However, we found another trapping mechanism coming directly from the conclusions
drawn from Sect. 4.1. In that second scenario, the capture is not due to a drop-off of
the resonant terms but simply to the crossing of the secular discontinuity line common
to all resonances of type 1 :k. After the discontinuity, the particle can possibly remain
in resonance but on a periodic trajectory avoiding any further crossing of the line in its
discontinuous direction (see Sect. 4.1.3). In other words, the initial transition triggers
an “irreversible” smooth behaviour, for which the return to the entrance configuration
does not imply a new separatrix crossing. It will still be separatrix-grazing, but the
natural evolution of the semi-secular phase space will immediately lead the particle
away again. The trajectory adopted has a very wide area |2πJ |, because the particle
has been pushed outside of the vanishing island while the other one had a wide extent.
Then, it simply becomes a horseshoe orbit when the second island reappears, avoiding
any further separatrix crossing (the growing island appears inside the trajectory). As
an illustration, one can imagine on Fig. 4.8 a trajectory remaining always inside the
outer separatrix, but outside the inner one when it appears. Precisely, we saw in
Sect. 4.1.4 that for a large parameter |2πJ |, the secular level curves are very flat, without
any large variations of the perihelion distance: this means that the particle reaches a
permanent smooth high-perihelion evolution15. As shown by numerical simulations,

15Naturally, as the final trajectory relies on a high-amplitude oscillation of the resonant angle, the
proximity of the separatrices can lead to an accidental extra transition. However, this proves to be
very rare and only temporary, as seen in the next section.
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Figure 4.22 – Example of a particle initially trapped in the 1 : 17 mean-motion resonance with
Neptune. This numerical integration includes the four giant planets with the secular variations of
their orbital elements. On the right, the same trajectory is plotted in the (ω, q) plane. It should be
compared with Fig. 4.7 (neighbouring resonance and similar initial conditions), for which the circular
and coplanar planetary orbits make the resonant dynamics much more stable, even at high perihelion
distances.

that mechanism is rather frequent for the resonant particles attaining the discontinuity
line. Naturally, it cannot involve resonances of type 2 : k and further, because the
corresponding secular trajectories are all periodic (there is no discontinuity line, see
Sect. 4.1.1). To get specific examples, one can anticipate a bit and look at Figs. 4.25
to 4.27.

These two mechanisms imply that even a set of non-migrating planets can produce
a permanent high-perihelion reservoir, continuously supplied with new objects which
have a very low probability to come back to smaller perihelion distances during the
lifetime of the Solar System. These objects are added to the primordial population of
high-perihelion bodies, left on non-resonant orbits by the migration of Neptune (Gomes
et al., 2005b).

Our secular model can be used to estimate the size and location of the high-
perihelion reservoir produced by the second mechanism. For this purpose, we plotted
the secular discontinuity line of all the resonances of type 1:k from a0 = 90 to 600 AU
in a grid of parameters η0 in [0; 1] (prograde orbits). Since the crossings can happen
at all values of ω, we retained only the average line, judged to be representative of a
typical perihelion value for the capture (for example q̃ ≈ 60 AU and Ĩ ≈ 41◦ for the left
graph of Fig. 4.21). The result is shown in Fig. 4.23, both for perihelion distance and
inclination. We added the limits of the range of interest for 1 : k resonances (same as
Fig. 4.17), because such a trapping can occur only if there are secular level curves lead-



146 CHAPTER 4. THE RESONANT DYNAMICS

ing to the discontinuity line. Naturally, a separatrix crossing can happen much before
the discontinuity line (see the graph B of Fig. 4.9), but at low perihelion distances the
resonant dynamics is unstable for large values of |2πJ | and a separatrix crossing often
triggers a diffusion of semi-major axis. Hence, in practice the high-perihelion trappings
occur indeed near the secular discontinuity line. The reservoir is rather well delimited
in the perihelion-inclination space because the position of the average discontinuity line
follows more or less the range of interest: from Fig. 4.23, we can estimate its extension
as roughly q ∈ [55; 70] AU and I ∈ [30; 50]◦. This is consistent with the results of
Gomes et al. (2005b), although their approach was rather different (they counted the
numbers of objects ending up at q > 40 AU in their numerical simulations, whatever
the mechanism that led them there). Naturally, these limits do not mean that an object
cannot reach higher perihelion distances (see for instance the graph C of Fig. 4.6), but
simply that an accumulation of objects should be observed there.

Figure 4.23 – Average po-
sition of the secular discon-
tinuity line for all reson-
ances of type 1 : k with
Neptune from 1 : 5 to
1 : 89. In the grey re-
gion, there is no discontinu-
ity line in the secular plots.
The black lines delimit the
“range of interest”, that is
the interval of η0 allowing
libration centres. A high-
perihelion trapping is only
possible between these lines,
where secular level curves
can lead the particle from
low perihelion values to the
discontinuity line.
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4.5 Incoming objects from the Oort Cloud

The Oort Cloud is a well-known source of “new comets” and more generally of small
bodies arriving in the planetary region with very eccentric orbits. There is an extensive
literature about the flux of comets traversing the observable zone (near the orbit of the
Earth) and the different ways to cross the Jupiter-Saturn barrier, but very little about
the contribution of the Oort Cloud to the Scattered Disc. Actually, the combined effects
of the planetary perturbations and of the galactic tides form an efficient mechanism
that continuously replenish the Scattered Disc, which, in turn, contribute to feed the
accumulation zone described in the previous section. The main effect of the galactic
tides is a long-period oscillation of the perihelion distance, whereas the planets produce
the well-known diffusion of semi-major axis. Since the galactic tides are only effective
for a > 1000 AU, a typical scenario to create a Scattered Disc object from the Oort
Cloud is to drive the perihelion distance a little beyond Neptune, where the planetary
perturbations make the semi-major axis decrease below 1000 AU, turning off the action
of the galactic tides. The particle becomes part of the Scattered Disc, where it can be
possibly captured in a mean-motion resonance of type 1:k with Neptune and eventually
end up in the accumulation zone.

The reservoir is actually pretty visible in the results by Fouchard et al. (2017) (see
their Fig. 4), although they do not describe it in details. They simulated a precursor
of Oort Cloud consisting in 107 objects with initial orbital elements such that a ∈
[1100; 50 000] AU, q ∈ [15; 32] AU and I ∈ [0; 20]◦. In order to trace the high-perihelion
trapping mechanism in their simulation, we picked up the objects arriving into the
Scattered Disc (when their semi-major axes become smaller than 500 AU), and used it
as initial conditions for a numerical integration until the date J2000. The corresponding
initial times range from the formation of the Solar System until today. We used a more
realistic planetary model than in Fouchard et al. (2017), including the four giant planets
with the secular variations of their orbital elements. The particles reaching perihelion
distances inside the planetary region were removed from the simulation. Technical
details about that numerical integration are given in appendices C.4 and C.5. The final
distribution of the sample is plotted in Fig. 4.24, centred on the region of interest in
the scope of this work (a ∈ [30, 500] AU). At first, we see that we should redefine the
lower limit of the accumulation zone at q ∼ 50 AU (instead of 55 AU from Sect. 4.4)
because a significant amount of objects reach the discontinuity line below its average.
Naturally, the reservoir is also delimited in semi-major axis, because extremely high-
order resonances are unstable and associated with timescales much longer than the age
of the Solar System. According to Fig. 4.24, the mean-motion resonances are efficient
to drive the objects into the accumulation zone for a ∈ [100; 300] AU.

Some examples of orbital evolutions coming from this simulation are shown in
Figs. 4.25-4.28. The resonant relations with Neptune, necessary to explain the trap-
ping process, are pretty obvious. Figure 4.25 presents a very common example of high-
perihelion trapping by means of a resonance of type 1:k with Neptune. The resonance
capture is deep (small area |2πJ |) which allows to bring the perihelion to distances
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Figure 4.24 – Final state of the sample of particles transferred from the Oort Cloud to the Scattered
Disc (q > 30 AU and a < 500 AU). The blue points are particles with perihelion distances larger than
50 AU and semi-major axes smaller than 450 AU. All of them are locked in mean-motion resonance
with Neptune, including only one particle in a resonance of type 2:k. The other ones are all locked in
resonances of type 1:k and reached their current perihelion distances and inclinations billion years ago
thanks to the trapping mechanism (the first one arrived 3 Gyrs ago and did not move ever since). For
semi-major axes larger than 450 AU, the high-perihelion particles denote the beginning of the Oort
Cloud (see Fouchard et al., 2017, for a wider scale).

where the diffusion of a is not a risk anymore. When the occupied resonance island
shrinks and eventually disappears (thick green line), the particle adopts a dynamics with
long-term stability: the resonant angle switches smoothly from high-amplitude oscilla-
tions inside the single island (beyond the line, in particular when ω ≈ π/2 mod π) to
horseshoe oscillations (below the line, in particular when ω ≈ 0 mod π). This is the
second mechanism described in Sect. 4.4.

Figure 4.26 shows that the trapping mechanism does not trigger always at the first
attempt: in that particular case, the particle switches resonant configurations before
finding the perfect entrance. That kind of “integrable by parts” trajectory was described
in Sect. 3.4.3.

In Fig. 4.27, we see that the reservoir is not absolutely closed, because the slow
diffusion of J can still occasion an extra transition inside one of the two resonance
islands (instead of the more or less grazing horseshoe orbit). In that case, the new



4.5. INCOMING OBJECTS FROM THE OORT CLOUD 149

a
(A

U
)

q
(A

U
)

I
(d

eg
)

ω
(r

ad
)

Ω
(r

ad
)

σ
(r

ad
)

time (Gyrs)

Ĩ
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Figure 4.25 – Example of a particle coming from the Oort Cloud and captured in a resonance of type
1 : k with Neptune. The origin of time is the date J2000. The resonant dynamics brings the particle
toward the secular discontinuity line where it is trapped into the high-perihelion reservoir. On the
right, the blue part of the trajectory is shown in the plane (ω, q) in front of the level curves given by
the resonant secular model (the parameters used are indicated above the graph).

secular level curve may lead the particle back to smaller perihelion distances, but as
long as the resonant link is not broken, this excursion is only temporary. In that
specific example, the particle rejoins indeed the reservoir with a perihelion even higher
than before. There is however a possibility of definitive escape from the reservoir if
the perihelion distance decreases so much as to enter the chaotic region near Neptune,
where the overlap of neighbouring resonances can break the quasi-integrable dynamics
and trigger the diffusion of a. However, that kind of evolution seems to be rather
exceptional.

Figure 4.28 presents the case of a resonant capture with inappropriate parameters:
the area |2πJ | is rather high and the parameter η0 is too close to the limit of the
range of interest (see Fig. 4.17). Consequently, the particle is unable to reach the
discontinuity line and trigger the trapping mechanism. It does not participate to the
reservoir as described in Sect. 4.4, though Gomes et al. (2005b) would consider it as a
High Perihelion Scattered Disc Object (HPSDO).

Finally, the particle presented in Fig. 4.29 is a kind of interloper: it is trapped in
a resonance of type 2 : k which indeed brings it into the range of orbital parameters
specific to the reservoir, but its presence there is only temporary since there is no secular
discontinuity line able to trigger the trapping mechanism. Such objects participate
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Figure 4.26 – Same as Fig. 4.25 for a particle which is not trapped immediately after the rise of
its perihelion distance. Some extra separatrix crossings occur before reaching the long-term stability
state specific to the accumulation zone. After the trapping, σ oscillates with a high amplitude around
a circulating centre (even if the points seem to cover the entire range from 0 to 2π).

though to the accumulation (but to a lesser extent), because once trapped in resonance
the time spent inside the accumulation zone can be pretty long.

We can estimate the current population contained in the reservoir by the fraction
of blue points in Fig. 4.24: we get 42 objects, to be compared to the 263 627 initial
conditions coming from the simulation by Fouchard et al. (2017), that is a fraction of
1.6/10 000. With respect to the 107 particles used in that simulation, we get a total
fraction equal to 1/250 000 of the Oort Cloud objects.

There is no mention of irreversible trappings in Gomes et al. (2005b) other than
the escape out-of-resonance due to Neptune’s migration. According to them, every
particle driven by a resonant secular dynamics is bound to recover its low-perihelion
state after some amount of time. The fact that they did not observe such trappings is
probably due to the narrowness of the dynamical path compared to the relatively low
number of particles they simulated (10 000 for their largest sample). This could be also
an indication that the distribution of the objects coming from the Oort Cloud is more
suitable for the trappings to occur. Another possibility would be that the synthetic
representation of the planetary motions used in our work is stable enough to allow the
trappings, whereas the weak chaos produced in full N-body simulations (in particular
the small variations of the planets semi-major axes) has a destabilising effect. Further
numerical experiments should be conducted to get definite conclusions.
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Figure 4.27 – Same as Fig. 4.25 for a particle incurring temporary escapes out of the reservoir. The
time spent in the accumulation zone is though much longer than these random excursions.



152 CHAPTER 4. THE RESONANT DYNAMICS
a

(A
U

)
q

(A
U

)
I

(d
eg

)
ω

(r
ad

)
Ω

(r
ad

)
σ

(r
ad

)

time (Gyrs)
Ĩ
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Figure 4.28 – Example of a particle coming from the Oort Cloud and captured in a resonance of
type 1 : k with Neptune, but with parameters making impossible the transfer to the high-perihelion
accumulation zone.
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Figure 4.29 – Example of a particle coming from the Oort Cloud and captured in a resonance of
type 2 : k with Neptune. The perihelion distance reaches high values but the periodic trajectory
brings it back toward Neptune. (This numerical integration comes from another sample but the initial
conditions are consistent with the distribution given by Fouchard et al. (2017) and used throughout
this section).
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Chapter 5

The breaking of symmetry:
influence of an outer planet

Most of the results detailed in this chapter are more succinctly presented
in Saillenfest et al. (2017b).

The hypothesis of a distant giant planet orbiting beyond Neptune is often proposed
in the literature as accounting for otherwise mysterious features of the Solar System.
Indeed, it could reproduce the observed orbital clustering of the distant trans-Neptunian
objects (Batygin and Brown, 2016a), or the 6◦-tilt of the solar equator with respect to
the planetary invariable plane (Gomes et al., 2016; Bailey et al., 2016). In this chapter,
we will not discuss the existence of such a planet, but focus on the rich dynamical
system that it would create. We propose to study the effect of a distant perturber on
the non-resonant secular dynamics of trans-Neptunian objects: the loss of symmetry
implied by a massive body with significant eccentricity and inclination should disrupt
the classic picture detailed in Sect. 3.2, so we aim at determining which features persist
(if any) and how they transform under the perturbation.

In Sect. 5.1, we give a brief overview of our approach and how it places among pre-
vious studies. Then, Sect. 5.2 presents the planetary model used and the development
of the secular Hamiltonian function, which is the starting point for the exploration of
the dynamics. Section 5.3 details the dynamical features induced by a planar perturber
on an arbitrarily inclined small body. This intermediate model makes the link between
our study from Sect. 3.2 and the work by Beust (2016), mixing up the properties of
both systems. Finally, we give an approach of the general case in Sect. 5.4, where we
consider an eccentric and inclined distant planet but with a non-precessing argument
of perihelion. Our observations and conclusions are outlined in Sect. 5.5.

5.1 Context

With no distant perturber, the non-resonant secular dynamics beyond Neptune is de-
tailed in Sect. 3.2. Using coplanar and circular orbits for the known planets, the equi-
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librium points and libration islands have well-determined locations and sizes in the
space of orbital elements: for semi-major axes larger than 80 AU, the only equilib-
rium points are located at ω = π/2 and 3π/2 for an inclination I of about 63◦ or
117◦. The perihelion distance at equilibrium is obtained through the constant para-
meter CK = (1 − e2) cos2 I. Moreover, we saw that the maximum variations of the
perihelion distance, given by the width of the libration islands, cannot exceed 16.4 AU
with that mechanism. For realistic values of the eccentricities and inclinations of the
giant planets (non-zero but small), numerical integrations of the secular system show
that these structures are almost unaltered: the weak interaction with these new de-
grees of freedom makes the equilibrium points become periodic orbits, tightly bounded
around their nominal values (see for instance Fig. 3.4). One can note that the libration
islands of ω divide the zones where ω circulates upwards from the zones where it cir-
culates downwards. In the same way, the equilibrium point of Ω at I = 90◦ divides the
zones where Ω circulates upwards from the zones where it circulates downwards. This
is summed up in Fig. 5.1.

90°

117° 63°

0°180°

orbital inclination

Figure 5.1 – Summary of the non-resonant secular dynamics beyond Neptune with no distant per-
turber. The angular scale represents the orbital inclination, from 0◦ to 180◦. The classic libration
islands for ω lie at I ≈ 63◦ and I ≈ 117◦ and they have a maximum width of 16.4 AU in perihelion
distance. For I = 90◦, any orbit is an equilibrium point for Ω (degeneracy). The different regimes are
strictly hermetic: it is impossible for the particle to switch from one to another.

As pointed out by Batygin and Brown (2016a), the output of numerical simulations
get much more significance when we understand the underlying dynamical processes.
Their analytical computations about the effect of the distant planet, however, were
limited to very low-order terms, and strong assumptions were used to get integrable
models. These limitations were observed by Beust (2016), who subsequently studied
the fully planar case. The corresponding secular system has only one degree of freedom
so the dynamics is integrable: all the trajectories can be described by plotting the level
curves of the secular Hamiltonian, with the semi-major axis as parameter. Let us write
Δ� the difference between the perihelion longitude of the particle and of the distant
planet. Beust (2016) reported secular equilibrium points with libration zones around
Δ� = 0 (at large perihelion distances) for non-crossing orbits, and Δ� = π (at small
perihelion distances) when the orbit of the particle crosses the trajectory of the distant
planet. Then, he extended that model to introduce a mean-motion resonance between
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the particle and the distant planet, keeping a single degree of freedom by using the
adiabatic approximation. The level curves of the resonant secular Hamiltonian function
present a large variety of equilibrium points distributed at no particular value of Δ�.
Of course, these results hold only for a completely planar problem; besides, Beust (2016)
used only the second-order term of the inner planetary perturbation (although the outer
planet component was fully computed). When considering an arbitrarily inclined small
body, such a truncated model cannot give rise to the Lidov-Kozai mechanism, whereas it
has been shown that it can have important effects for trans-Neptunian objects (Gallardo
et al., 2012).

Secular models for hierarchical systems in the general spatial case appear in the lit-
erature with works as early as Harrington (1968) for triple-star systems. Such models
can be very efficient to capture the essence of the dynamics, so they are widely used
and developed for systems with increasing complexity. We can mention for instance
the recent work by Hamers et al. (2015) describing the evolution of two planets orbit-
ing a binary star, and its generalisation by Hamers and Portegies Zwart (2016). In
the planetary case, and in particular when one body is massless, such models are the
natural generalisation of the work of Kozai (1962) so they are often said to raise an
“eccentric-Kozai” mechanism, with two degrees of freedom (see for instance the review
by Naoz, 2016). The non-zero eccentricity of the perturbing body makes possible a
wide variety of trajectories, including striking orbital flips, during which the orbit of
the small body switches suddenly from prograde to retrograde (see for instance Katz
et al., 2011; Lithwick and Naoz, 2011; Naoz et al., 2013; Li et al., 2014b). In the con-
text of the octupolar development of the secular system, Li et al. (2014a) studied the
dynamics of a test-particle perturbed by an eccentric and inclined distant planet. In
our case, the presence of an inner axis-symmetric component should mix the features
of both models: a classic Kozai mechanism is produced by the known planets, while
an eccentric Kozai mechanism is driven by the distant super-Earth. As before, we will
restrict the study to orbits with a perihelion distance beyond Neptune, since they are
much less chaotic and more likely to follow a secular dynamics. We will also focus
on prograde orbits, since no retrograde object has been observed yet with a perihelion
distance beyond Neptune.

5.2 Model and method

We use a set of N inner planets evolving on circular and coplanar orbits, along with an
eccentric and inclined outer planet.

• The inner component of the perturbation stands for the currently known planets of
the Solar System (which have indeed roughly circular and coplanar trajectories).
We recall that the circular-coplanar approximation is justified by the very small
eccentricity and inclination of the giant planets, especially when measured in their
invariable plane. More generally, such a model can be seen as the dominant term
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of an expansion in powers of the planetary eccentricities and inclinations (Thomas
and Morbidelli, 1996).

• The mass of the outer planet is chosen to be ten earth-masses and its orbital
elements at current epoch are given in Tab. 5.1. These values are within the best
estimates obtained so far (Brown and Batygin, 2016) and consistent with those
used in the literature.

Such a system is qualitatively similar to those studied by Innanen et al. (1997) or Takeda
et al. (2008), namely a tight planetary system orbited by a distant star companion. They
showed that due mutual interactions, the precession of the inner system of planets under
the action of the inclined distant perturber is “rigid” (the mutual inclinations remain
small, as well as the eccentricities). In our case, the perturber is much less massive
than a star companion, but Bailey et al. (2016) and Gomes et al. (2016) showed that
this mechanism could still be responsible for the tilt of the mean planetary plane of the
Solar System with respect to the spin axis of the Sun.

Consistently with the notation used in the previous chapters, the orbital elements
of the inner planets are written with a subscript i, whereas we use a prime for the outer
one.

a′ e′ I ′ ω′ Ω′

700 AU 0.6 30◦ 150◦ 113◦

Table 5.1 – Current orbital elements of the distant planet used in this work. This “nominal” orbit is
used for instance by Fienga et al. (2016).

5.2.1 Dynamics of the outer planet

Considering the distances involved, the inner planets are supposed negligibly affected by
their distant companion. We thus neglect the effect of rigid precession described above
(which is anyway relevant only in the inclined case, see Sect. 5.4). Arguments favouring
this simplification are given by the Roy-Walker parameters ε23 and ε32 (Walker et al.,
1980): whereas mutual parameters for the giant planets are of orders 10−4 to 10−6, the
effects of the distant planet on the internal system range from 10−9 (Neptune) to 10−11

(Jupiter). Conversely, the effects of the giant planets on their distant companion are of
order 10−7 to 10−8, so this is the next level of approximation to be taken into account,
beyond strictly decoupled systems.

Hence, the long-term dynamics of the outer planet is accurately represented by a
secular model as described in Sect. 3.2. Since it is far from every equilibrium point
of both non-resonant and resonant secular Hamiltonians, this planet is a typical case
of “decoupled” object with constant semi-major axis, eccentricity and inclination. Its
long-term dynamics is thus accurately approximated by the leading-order term of the
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development in the semi-major axes ratios (see Sect. 3.2.2). Up to this level of approx-
imation, the constant precession rates of ω′ and Ω′ are:⎧⎪⎨

⎪⎩
ω̇′ = δ2

3

8

(
5 cos2 I ′ − 1

)
Ω̇′ = −δ2

3

4
cos I ′

with δ2 =

√
a′

μ

(
1

a′(1− e′2)

)2 N∑
i=1

μi

(ai
a′

)2

(5.1)

In these expressions, ai is the constant semi-major axis of the ith planet, and μ and
μi are the gravitational parameters of the Sun and of the ith planet, respectively.
The elements with prime symbol are the ones of the distant planet, with the values
from Tab. 5.1. By including Jupiter, Saturn, Uranus and Neptune (the masses of the
terrestrial planets being added to the Sun), we obtain the following numerical values:

ω̇′ = 0.201 rad/Gyr and Ω̇′ = −0.126 rad/Gyr (5.2)

They can be verified by unaveraged numerical simulations. In the rest of this work, we
will refer to these two quantities as ν ′

ω and ν ′
Ω.

At some points, we will also consider a planar perturber, with orbital elements
still given by Tab. 5.1 but with I ′ = 0. In that case, ω′ and Ω′ will be replaced by
�′ = ω′ + Ω′, with a precession rate of:

�̇′ = δ2
3

4
≈ 0.146 rad/Gyr (5.3)

We will refer to this last quantity as ν ′
� in the following1.

5.2.2 Osculating dynamics of the small body

We consider the orbit of a small body perturbed by both the inner planets and the
precessing outer super-Earth. In Delaunay heliocentric elements, the corresponding
Hamiltonian function writes generically:

H
(
{Λi},Λ′, P ′

ω, P
′
Ω, L,G,H, {λi}, λ′, ω′,Ω′, �, g, h

)
=

H0

(
{Λi},Λ′, P ′

ω, P
′
Ω, L

)
+ εH1

(
L,G,H, {λi}, λ′, ω′,Ω′, �, g, h

)
(5.4)

where the integrable part and the perturbation are respectively:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0 = − μ2

2L2
+ ν ′

ωP
′
ω + ν ′

ΩP
′
Ω +

N∑
i=1

ni Λi + n′ Λ′

εH1 = −
N∑
i=1

μi

(
1

|r− ri| − r · ri
|ri|3

)
− μ′

(
1

|r− r′| − r · r′

|r′|3
) (5.5)

1This is the same expression as the Eq. 2 by Batygin and Brown (2016a), except that they give the
associated period 2π/ν′�. Please note that there is a typo error in their expression (the inverse of a
sum is not the sum of the inverses).
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The vectors r, ri and r′ are the heliocentric positions of the particle, of the ith inner
planet, and of the outer one. The constants μi and μ′ are the gravitational parameters
of the planets, whereas {ni} and n′ are their mean motions. The momenta {Λi} and
Λ′ are conjugate to the mean longitudes {λi} and λ′ of the planets, and P ′

ω and P ′
Ω are

conjugate to ω′ and Ω′. They allow the definition of an autonomous system. We have
then: ⎧⎪⎨

⎪⎩
ri ≡ ri(λi) for i = 1, 2 . . . N

r′ ≡ r′(λ′, ω′,Ω′)

r ≡ r(L,G,H, �, g, h)

(5.6)

Finally, we recall that the Delaunay canonical coordinates (L,G,H, �, g, h) are directly
linked to the Keplerian elements (a, e, I, ω,Ω,M) of the particle through (2.88).

The Hamiltonian system described by (5.4) has N + 6 degrees of freedom, but this
number can be reduced using a geometric argument. Indeed, the perturbation involves
ω′ and Ω′ only via the scalar product r·r′ (this can be seen using a Legendre development
of the inverse mutual distance, see Sect. 3.2.1). Computing this product in Keplerian
elements and after some trigonometric manipulations, we get:

r · r′
r r′

= sin(α) sin(α′) sin(I) sin(I ′)

+ cos
(
α− α′ +ΔΩ

)
cos2(I/2) cos2(I ′/2)

+ cos
(
α + α′ +ΔΩ

)
cos2(I/2) sin2(I ′/2)

+ cos
(
α + α′ −ΔΩ

)
sin2(I/2) cos2(I ′/2)

+ cos
(
α− α′ −ΔΩ

)
sin2(I/2) sin2(I ′/2)

(5.7)

where of course, the norms r ≡ |r| and r′ ≡ |r′| are independent of ω′ and Ω′. In that
expression, the symbol α represents the sum of ω and the true anomaly (with a prime
for the outer planet), and ΔΩ = Ω−Ω′. The longitudes of ascending nodes appear only
through their difference, so it is possible to remove one degree of freedom by studying
the system in a frame rotating with Ω′. This is realised by a linear transformation
involving the Delaunay angle h = Ω:(

δh
γ

)
=

(
1 −1
0 1

)(
h
Ω′

)
(5.8)

and applying its conjugate transposed to the momenta:(
H̃
Γ

)
=

(
1 0
1 1

)(
H
P ′
Ω

)
(5.9)

This change of coordinates allows the momentum associated to δh = ΔΩ to be simply
H̃ = H so we will omit the “tilde” sign in the following. In the new coordinates, the
integrable part of the Hamiltonian function writes:

H0 = − μ2

2L2
+ ν ′

ωP
′
ω + ν ′

ΩΓ− ν ′
ΩH +

N∑
i=1

ni Λi + n′ Λ′ (5.10)
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and the perturbation does not depend on γ. The momentum Γ being a constant of
motion, we will discard the term ν ′

ΩΓ in the Hamiltonian (thus dropping one degree of
freedom).

5.2.3 Secular model

The same method as in Sect. 3.2 will be used to switch to the secular coordinates:
assuming that the particle is far from any mean-motion resonance with the planets,
we can get rid of the short-period angles by a close-to-identity change of coordinates.
At first order of the perturbation, the Hamiltonian function in the new coordinates
(hereafter named secular Hamiltonian) is given by the average of H with respect to the
fast independent angles � and λ1, λ2...λN , λ

′. Dropping the constant parts, it writes:

F(P ′
ω, L,G,H, ω′, g, δh) = ν ′

ωP
′
ω − ν ′

ΩH + F1(L,G,H, ω′, g, δh) (5.11)

where F1 is the numerically-computed average of εH1. Even if we use the same symbols
as before, we now manipulate the secular coordinates. As usual for non-resonant secular
models, the semi-major axis of the particle (momentum L) becomes a parameter.

In the following, it is useful to have a normalized version of F which takes values of
the order unity. This can be realised by adding a constant to F (dynamics unchanged)
and multiplying it by a constant factor (change of time unit). For small bodies with a
trajectory stretching between aN and the orbit of the outer planet, judicious values of
these constants are given by the development in the semi-major axes ratios :

F = ν ′
ωP

′
ω − ν ′

ΩH

− 1

a

N∑
i=1

μi − 1

a′
μ′

− 1

a

N∑
i=1

μi

(ai
a

)2 1

8(1− e2)3/2
(3 cos2 I − 1)

+O
(

N∑
i=1

μi

(ai
a

)4
)

+O
(
μ′
( a

a′

)2
)

(5.12)

where computational details can be found in Laskar and Boué (2010) or in Sect. 3.2.1
for the inner component. The secular semi-major axis a being a constant of motion,
the normalised version of the secular Hamiltonian is chosen to:

F =
F − Coffset

Cscale

(5.13)
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where the constant coefficients Coffset and Cscale are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Coffset = −1

a

N∑
i=1

μi − 1

a′
μ′

Cscale =
1

4 a

N∑
i=1

μi

(ai
a

)2

(5.14)

By this choice of scaling factor Cscale, we suppose that the second-order term of the
development for the inner planets is the leading term of the Hamiltonian. This holds for
small semi-major axes (a little beyond aN), but not for large ones, for which the second-
order term of the development for the outer planet is more important. Moreover, the
development (5.12) is valid only for trajectories entirely contained between the orbits of
Neptune and of the outer planet, hence, the chosen coefficients have no clear dynamical
meaning in the general case: they just allow to get a more “human-readable” value for
the Hamiltonian function (say, not too far from unity).

As seen in the previous chapters, the numerical computation of the secular Hamilto-
nian is now a common procedure in celestial mechanics. For one-degree-of-freedom
secular systems, the Hamiltonian value with respect to the coordinates gives an imme-
diate qualitative description of the dynamics, since every possible trajectory is defined
by a distinct level curve (Chps. 3 and 4). When two orbits cross, the resulting polar
singularity of order 1 in the integral must be appropriately handled, but this is easily
realised numerically so authors barely mention it anymore (see appendix B.5.1): the
averaged Hamiltonian always exists, and is a continuous function, even in the planet-
crossing case; this is because an improper integral over a two-dimensional torus of a
function with a polar singularity of order 1 is absolutely convergent (quoted from Gron-
chi and Milani, 1998). Hence, for one-degree-of-freedom secular systems, the geometry
of the phase portraits with respect to the parameters is obtained in a plain way even
for crossing orbits. Of course, as pointed out by Thomas and Morbidelli (1996), the
secular approximation does not automatically hold when two osculating orbits cross,
because of the possibility of actual physical collision (or very close encounter). How-
ever, each branch of the generalised secular trajectory is perfectly valid, so the latter
give at least the geometry of the solutions in a piecewise way. In addition, Gronchi
and Milani (1998) stress that particles with repeated orbit crossings can still exhibit
very smooth behaviours on a secular timescale. The system studied by Beust (2016)
is even more critical, since it contains orbits which intersect at all time. Nevertheless,
he reported system lifetimes larger than the age of the Solar System (before the acci-
dental occurrence of a dramatically close encounter which does invalidate the secular
representation), showing the significance of the generalised secular model.

The use of the numerically-computed secular system is less straightforward when
there are several degrees of freedom: the complete equations of motion are required, and
their calculation as well as their very mathematical definition are more problematic.
Generically, any equation of motion can be obtained from F by inverting the partial
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derivative and the integral symbols: the chain rule is used from Cartesian, through
Keplerian, to Delaunay coordinates, and the result is numerically averaged over the
short-period angles (we used that method, for instance, for the numerical integrations
of the semi-secular system presented in Sect. 3.3). This amounts to consider the planets
as massive interacting rings, forming what is called a “N-ring system” by Touma et al.
(2009). The question to what extent this is equivalent to the time derivatives of the
secular variables was extensively studied by Gronchi and Milani (1998) and Gronchi
(2002). They demonstrated rigorously that this approach holds as long as the orbit of
the small body does not cross any of the planetary orbits. During an orbit crossing,
indeed, some of the partial derivatives are not defined (they present a polar singularity
of order 2), even if the Hamiltonian itself is. However, they have a well-defined value
arbitrarily close to the singularity on both sides, so in practice an orbit crossing results
simply in a discontinuity of the “force” term in the equations of motion. Gronchi
and Milani (1998) showed that a generalised solution passing through the discontinuity
can be uniquely defined as the trajectory connecting the limits of the incoming and
outgoing smooth solutions2. This generalised solution is necessarily non-smooth, but
it is continuous. For a one-degree-of-freedom system, this corresponds to the usual
level curves of the Hamiltonian, the crossings appearing as angular points. Please
note that an orbit crossing does not imply necessarily a collision in the non-averaged
system, neither a chaotic behaviour, since the bodies can be located in very distant
points of their orbits when they cross. Figs. 5.2 and 5.3 present two examples of secular
trajectories which are quasi-periodic even if they involve successive orbit crossings with
the distant planet and/or Neptune. This stresses the necessity to correctly handle the
crossings in this study, otherwise we could miss some equilibrium regions (any crossing
orbit would appear chaotic).

Gronchi and Milani (2001) presented a practical algorithm to integrate numerically
such a generalised secular trajectory: an integration step shall never pass through the
discontinuity, so the idea is to stop the integration exactly at the crossing point (limit of
the left smooth piece) and then restart it (right smooth piece) without computing the
force at the transition point. Some integrators, as those using a Runge-Kutta-Gauss
scheme, do not need the calculation of the force at the initial nor the final points of a
given step. Such an integrator must be used, at least for these two particular steps3.
To improve the stability of the numerical scheme even in the very neighbourhood of
the transition, the discontinuous terms can be computed analytically using Kantorovich
method with an appropriate intermediary function. For the sake of simplicity, we will
not use it in this work. In return, the conservation of the Hamiltonian will always be

2There is actually one very specific case for which the generalised solution is not uniquely defined,
namely when the crossing is exactly tangential. This can happen only if the mutual inclination of the
asteroid and the planet is zero at the very moment of the orbit crossing. We will discard that case in
this work, since it has negligible probability to occur for an initially arbitrarily inclined small body.

3Gronchi and Milani (2001) stress also the symplectic property of Runge-Kutta-Gauss integrators.
The handling of the discontinuity, however, requires necessarily an adjustable integration step, which
breaks the symplecticity of the overall scheme.
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Figure 5.2 – Example of integrable secular trajectory incurring orbit crossings with Neptune. The
distant perturber has a zero inclination and the fixed semi-major axis of the particle is a = 150 AU.
This numerical integration is borrowed from Fig. 5.6h. On the top graph, the trajectory is projected
on the plane (ω, q). Since the orbit of Neptune is circular with zero inclination, the positions of the
crossings, obtained by setting Eq. (5.15) to zero, are simple functions of ω and q (green and blue
curves). The trajectory forms an angle where the crossings take place. The two bottom graphs show
the evolution of the mutual nodal distances with Neptune and the distant perturber. A crossing
happens whenever one of them crosses the zero limit.
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Figure 5.3 – Example of integrable secular trajectory incurring orbit crossings with Neptune and the
distant perturber. The distant perturber has a zero inclination and the fixed semi-major axis of the
particle is a = 200 AU. This numerical integration is borrowed from Fig. 5.7d. On the top graph,
the crossings with the distant planet are not only functions of ω and q so they cannot be represented
(contrary to Neptune). Still, they appear as angular points along the trajectory.
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checked as a proxy of reliability of the numerical solutions (constancy of the normalised
value at the 10−10 level). “Bad” behaviours were found very rare in our work and
always avoidable by suitable integration steps. The detailed equations of motion of the
averaged system are given in appendix B.3.2.

5.2.4 Computational details

When two orbits cross, the calculation of an integration step arriving exactly on the
transition point deserves some comments. Gronchi and Milani (2001) present an it-
erative procedure using nested dichotomy methods, associated with a polynomial ex-
trapolation to detect a priori when a crossing could occur. We preferred to use the
method of Hénon (1982) which seems to be more straightforward: when a sub-step of
the integrator is found to cross a discontinuity, the current step is immediately stopped
and a unique, well-determined step is performed, arriving exactly on the desired point.
This is made possible by a change of the independent variable used for the integration.
In our case, two orbits cross when their mutual nodal distance vanishes, so the idea is to
take this mutual nodal distance as a fictitious “time” and to make a single step leading
it to zero. As detailed in appendix B.5.2, the mutual nodal distance of the small body
with an arbitrary planet j (either the outer or an inner one) is given by:

Δ±
j =

a(1− e2)

1± e cos ω̃
− aj(1− e2j)

1± ej cos ω̃j

(5.15)

where ± stands for the ascending or descending mutual nodes. The angles ω̃ and ω̃j

are the arguments of perihelion in the mutual reference frame, defined by the z-axis
being parallel to the angular momentum of the planet and the x-axis pointing toward
the ascending mutual node of the small body (that is where its orbit crosses the (x, y)
plane from negative to positive z values). Please note that this reference frame is
defined only for non-zero mutual inclinations, but it is anyway just a mathematical
intermediate, used to define the orbit crossings. In terms of the Keplerian elements in
the inertial frame, we get:

cos ω̃ =
cosω(sin I cos Ij − cos I sin Ij cosΔΩj) + sinω sin Ij sinΔΩj√

1− (cos I cos Ij + sin I sin Ij cosΔΩj)2

cos ω̃j =
− cosωj(sin Ij cos I − cos Ij sin I cosΔΩj) + sinωj sin I sinΔΩj√

1− (cos I cos Ij + sin I sin Ij cosΔΩj)2

(5.16)

where ΔΩj = Ω − Ωj. Naturally, the expression of Δ±
j is greatly simplified for non-

inclined planets on circular orbits (as the first N planets considered in this chapter).
For any planet j, the time derivative of the mutual nodal distances can be computed
in terms of the canonical coordinates by using the chain rule:

dΔ±
j

dt
=

∂Δ±
j

∂g
ġ +

∂Δ±
j

∂δh
˙δh+

∂Δ±
j

∂G
Ġ+

∂Δ±
j

∂H
Ḣ +

∂Δ±
j

∂ω′ ω̇
′ (5.17)
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The expression of each term is given in appendix B.5.3. In practice, when a specific
node crossing is detected, the corresponding mutual nodal distance (5.15) is taken as
the new independent variable τ . Noting generically ρ its time derivative (5.17), the
new equations of motion are obtained by dividing the Hamilton equations by ρ. The
evolution of the physical time t must be added among the dynamical equations as:

dt

dτ
=

1

ρ
(5.18)

Hence, the exact position on the node crossing is obtained by a single integration step
Δτ leading τ to zero. The conventional variables are then recovered to pursue the
integration. The drawback of this method is that, when switching to the variable τ ,
the integrator cannot make use of the previous integration steps4 (for instance to build
a first guess for predictor-corrector iterations). In the same way, the restart of the
integration in the conventional variables is equivalent to begin from scratch again. We
considered, though, that the consequent increase of computation time was compensated
by dropping the possibly numerous iterations otherwise required to reach the node
crossing to machine precision.

5.2.5 Preliminary remarks

Before presenting our results, some comments about their comparison to previous works
can be useful. The strategy used in this chapter is similar to that of Li et al. (2014a),
and in both studies, the eccentric Kozai mechanism is raised by an outer planet acting
on a test-particle. However, the comparison should be realised with care, for two major
reasons:

• On the one hand, Li et al. (2014a), as well as most works related to the eccentric
Kozai mechanism, use a development of the Hamiltonian up to the octupolar term
and the second order of the semi-major axis ratio. Of course, such a truncation
is valid only for strictly hierarchical systems. They estimated this approximation
to be valid for:

a

a′
e′

1− e′2
< 0.1 (5.19)

which amounts to a < 75 AU in our case, using the parameters in Tab. 5.1. In
this article, this strong limitation is bypassed by using the full averaged Hamilto-
nian (obtained numerically), which is equivalent to a development containing an
infinity of terms. We will consequently explore a parameter space which is well
beyond the octupolar approximation.

• On the other hand, in our work the inner planets are the dominant part of the
perturbation, especially for the small semi-major axes required in (5.19). Even

4Correcting coefficients could actually be computed but they would require to save a lot of inform-
ation from the previous steps.
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when the octupolar approximation could be valid, our results are thus strongly
different from those obtained with models containing only the outer perturber.

In conclusion, the present study should be considered as an extension of the classic
Kozai mechanism driven by inner planets to an additional external eccentric perturber,
and not the contrary. Whereas numerous features of the eccentric Kozai mechanism are
indeed revealed, they cannot be compared directly to previous works which use only
the octupolar development5.

5.3 Planar perturber

By imposing the perturber inclination to be zero, the dependence on ω′ and Ω′ from (5.7)
becomes:

r · r′
r r′

= cos
(
α− v′ + Ω−�′) cos2(I/2)

+ cos
(
α + v′ − Ω +�′) sin2(I/2)

(5.20)

where v′ is the true anomaly of the distant planet. Since � is the only meaningful angle
for zero-inclination orbits, the term ν ′

ωP
′
ω + ν ′

ΩP
′
Ω in the osculating Hamiltonian (5.5) is

replaced by ν ′
�P

′
�. The variable �

′ acts just as Ω′ from the general case, so the secular
Hamiltonian for a planar perturber is simply:

F(L,G,H, g, δh) = −ν ′
�H + F1(L,G,H, g, δh) (5.21)

where this time δh = Ω −�′. As before, the momentum L (or equivalently the semi-
major axis a of the particle) is a free parameter. We are left with a two-degree-of-
freedom system, non integrable in general, but which can be explored with Poincaré
sections.

A Poincaré section can be used for the mapping of a two-degree-of-freedom Hamilto-
nian system in a two-dimensional surface spanned by one pair of conjugate coordinates.
This surface is defined by a fixed value of a function of the coordinates, as well as a
direction of crossing. Besides, each map is parametrised by the value of the Hamilto-
nian. In practice, the computation of such a map consists in integrating numerically
the equations of motion in a large range of initial conditions (with same Hamiltonian
value), and retaining only the points where the obtained trajectories cross the section
in the chosen direction. The method of Hénon (1982) can be used once again, in order
to get an integration point exactly on the surface. For two-degree-of-freedom systems, a
Poincaré section allows to distinguish in a glance which trajectories are regular, as well
as the size of the chaotic zones. Indeed, an integrable dynamics implies the existence
of a second first integral (the first one being the Hamiltonian), so the corresponding
trajectories evolve in a one-dimensional manifold. In practice, their section crossing

5We use here a broader definition of “classic” and “eccentric” Kozai mechanisms than Naoz et al.
(2013) (right after their Eq. 26). Here, our definition holds for the non-truncated averaged Hamiltonian:
it only indicates the orbit of the perturber, which is respectively circular or eccentric.
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points accumulate on continuous lines (quasi-periodic trajectories) or finite-numbered
fixed points (periodic trajectories). On the contrary, chaotic trajectories evolve in a
two-dimensional manifold, so their section crossing points are area-filling. Since a point
of the map defines one and only one solution, a chaotic trajectory cannot cross the
section inside a region filled with an integrable flow. Thus, authors often speak of
“stability islands embedded in a chaotic sea”. This property implies the existence of
“stable chaos” (so-called after Milani and Nobili, 1992), for which chaotic trajectories
are tightly trapped between two integrable manifolds. In that case, the corresponding
chaotic zone looks more like a moat than an open sea. At some points, we will also use
the terms “sticky chaos” (introduced by Karney, 1983) in order to describe chaotic tra-
jectories which behave temporarily as integrable ones (they “stick” to a nearby regular
orbit). Such trajectories form denser accumulations of points in the sticky regions of
the chaotic sea.

In all the following, the inner N planets considered are Jupiter, Saturn, Uranus and
Neptune (N = 4), whereas the masses of the terrestrial planets are added to the Sun.
The exploration of the parameter space is conducted as follows: for increasing values
of the constant semi-major axis a, we present the most representative maps obtained
when varying the value of the secular Hamiltonian F . The sections in both planes of
conjugate coordinates are made simultaneously, so that we always present two maps for
each value of F . In order to ease the interpretation, the momenta are replaced by non-
canonical variables: we use the perihelion distance q instead of G, and H/L instead of
H. Besides, the ranges of inclination spanned by the represented trajectories are given
along with the chosen values of F . Some examples of parameters for real objects are
given in Tab. 5.2.

name a q H/L ω Ω−�′ F1 Ω− Ω′ F2

(AU) (AU) (rad) (rad) (rad)
2012VP113 255.9 80.54 0.6650 5.131 3.277 −1.561 5.895 −3.062
2004VN112 316.4 47.32 0.4745 5.708 2.845 0.672 5.463 1.155
2013RF98 349.2 36.09 0.3851 5.441 2.873 3.383 5.491 0.795
2010GB174 367.1 48.79 0.4633 6.071 3.974 8.277 0.308 8.715
2007TG422 476.5 35.57 0.3593 4.986 3.664 36.11 6.282 35.80
Sedna 493.1 76.03 0.5219 5.438 4.215 52.82 0.550 57.43

Table 5.2 – Heliocentric osculating elements at current time of the six objects with a > 250 AU
used by Batygin and Brown (2016a). These elements are computed using AstDyS database
(http://hamilton.dm.unipi.it/astdys/), where the value of 
′ and Ω′ are taken from Tab. 5.1. On
the right, the corresponding value of the secular Hamiltonian is given using the osculating elements as
an approximation of the secular ones. The two models considered here are written “1” for the planar
perturber and “2” for the inclined perturber with ν′ω = 0.

We use the following colour code for the points on the maps:

• Black – for integrable non-resonant trajectories. A fixed point on the maps corres-
ponds to oscillations of the angle itself (by opposition to a resonant combination).
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• Blue – for integrable trajectories driven by a resonance between the two degrees
of freedom. A fixed point on the maps corresponds to oscillations of a linear
combination of the two angles (which individually circulate6). Among them, large
green dots are used to draw the 1 : 1 resonances, in order to help the reader to
distinguish the different features.

• Red – for chaotic trajectories, that is with unpredictable crossing points on the
section spreading in a surface. This surface can be very large, or tightly packed
between integrable curves.

Finally, please note that some regions of the maps are forbidden by the chosen value of
the Hamiltonian: in our figures, such regions are represented in grey.

With no distant perturber, the equilibrium points and corresponding libration is-
lands are well-known from Gallardo et al. (2012) and Sect. 3.2. If these equilibrium
points persist in the perturbed problem, they are expected to become periodic orbits
(mapped in discrete points on the sections), surrounded by quasi-periodic trajectories
(mapped as curves).

Figure 5.4, computed for a = 70 AU, shows that the effect of the distant planet is
almost unnoticeable for small semi-major axes. Indeed, the most notable features of the
maps are driven by the inner planets: the classic equilibrium points at ω equal to π/2
and 3π/2 are easily recognisable and the quantity

√
1− e2 cos I is almost conserved.

In that particular case, the maps are very close to the trajectories in the physical space
itself (which oscillates slightly around the lines on the sections). The only extra features
due to the distant planet have a very little impact on the dynamics. They are namely:

a) The libration zones around ω equal to π/2 and 3π/2 allow slightly larger oscilla-
tions of the perihelion distance.

b) The resonances 1 :±1 appear between the two angles (with respective resonant
angles ω + δh and ω − δh), but they have a very little effect on the dynamics.

c) The degeneracy of the I = 90◦ line is removed: it splits into two fixed points
at δh = 0 and π surrounded by thin libration islands. We recall that without
eccentric perturber, the H = 0 line is entirely composed of equilibrium points
for Ω.

One can note that the classic equilibrium points of ω at about I = 63◦ divide the
zones where ω circulates towards the right (ω̇ > 0 below the islands) from the zones
where it circulates towards the left (ω̇ < 0 above the islands). In the same way, the
equilibrium points of δh at about I = 90◦ divide the zones where δh circulates towards

6Such a simple colour code can be a bit ambiguous, in particular for resonances between the
oscillation frequency of one angle and the circulation frequency of the other: in our graphs, they will
be represented in blue even if one angle oscillates. This should not mislead the reader, though, since
further indications are given in the captions and in the text.
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Figure 5.4 – Poincaré maps for a planar perturber. The constant semi-major axis of the particle is
a = 70 AU. Each of the four panels (a,b,c,d) corresponds to a different value of the secular Hamiltonian.
The range of inclination given for each panel is the range spanned by all the represented trajectories.
Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in the (δh,H) plane
is made for ω = π/2, with ω̇ > 0 for (a,b) and ω̇ < 0 for (c,d). The panels b and d feature the
resonances ω + δh and ω − δh, respectively. The panel c shows two fixed points for ω (at I ≈ 63◦),
and the panel d shows two fixed points for δh (at I ≈ 90◦).

the right ( ˙δh > 0 for I > 90◦) from the zones where it circulates towards the left
( ˙δh < 0 for I < 90◦). The same situation was reported for the dynamics with no
distant perturber (Fig. 5.1). It is important to keep it in mind all along this work, since
the Poincaré sections are defined for a specific direction of crossing. Here, we mainly
focus on prograde orbits, thus with ˙δh < 0, however, some sections feature also several
trajectories with slightly negative momentum H, which consequently do not produce
any point on the (ω, q) maps.

The confrontation with the results of Beust (2016) deserves some comments. In
the fully planar case, ω and Ω are replaced by �, and his figures are plotted in the
(Δ�, e) plane. Using our set of coordinates, Δ� writes ω+δh, so the equilibrium points
reported by Beust (2016), corresponding to apsidal alignments or anti-alignments with
the distant planet, are equivalent to the resonance 1 : 1 (drawn in green) in our more
general model7. This has a direct consequence: in the weakly perturbed system, apsidal

7For a more straightforward comparison with Beust (2016), we could have taken directly the angle
Δ
 = ω + δh as canonical coordinate. However, the other resonances would have become harder to
interpret (for instance ω−δh turns to 2ω−Δ
), and we would have lost the property of the equilibrium
points of ω and δh, dividing prograde from retrograde resonances.
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confinement is only possible when ω and δh circulate in opposite directions, that is for
inclinations below 63◦, or lying between 90◦ and 117◦. A direct link to the study of
Beust (2016) is also given by the limits of the forbidden (grey) regions on the panels
compatible with I = 0◦. These limits are precisely given by I = 0, so they represent a
specific level curve of the planar Hamiltonian function. This is not very informative in
Fig. 5.4 since the limit is very flat (panel a). In the next figures, however, the positions
and shapes of the libration zones will be clearly recognisable. To ease the comparison,
we added in appendix B.4 the level curves of the Hamiltonian in the completely planar
case (Fig. B.1). Each of these level curves could represent the limit of a forbidden region
in a Poincaré section for the spatial case.

Beust (2016) reported no stable equilibrium point for small semi-major axes: there
is actually one at Δ� = 0 (corresponding to an apsidal alignment with the distant
planet), but located at non-zero inclinations. This can be seen on the panel b of
Fig. 5.4, where the centre of the resonant trajectories corresponds to Δ� = 0, whereas
the Δ� = π point lies on the separatrix8. We note that Δ� oscillates but ω and δh
circulate in opposite directions.

For a = 100 AU, Fig. 5.5 shows that a chaotic zone shows up around the fixed
points of ω (panels c and d). The libration islands for ω are besides very enlarged
with respect to their maximum width of 16.4 AU without distant perturber. Various
resonances appear between the two angles, including resonances between the circulation
frequencies of ω and δh, resonances between the libration frequency of ω and the circu-
lation frequency of δh, as well as secondary resonances. As usual for Poincaré sections,
the maps show only the most obvious ones: a more careful analysis reveals a lot of
complex high-order resonances hidden in the chaos. On the panel b of Fig. 5.5, there is
a very thin island of apsidal alignment, barely noticeable, at high perihelion distances
(Δ� = 0). Contrary to other resonances present in Figs. 5.4 and 5.5, its position is
fixed even when we slightly change the Hamiltonian value: it always remains close to
the circular orbit. This is the precursor of the Δ� = 0 equilibrium point reported
by Beust (2016) in the planar case. For such a small semi-major axis, it is though
limited to non-zero inclinations and a narrow range of Hamiltonian values.

For a = 150 AU, this equilibrium point is much more obvious (panels b and d
of Fig. 5.6). We added extra panels to detail its evolution with inclination. On the
panels a and b, remember that the limits of the grey zones correspond to the zero-
inclination case. Knowing the position of the planar equilibrium points from Fig. B.1,
we can determine whether they persist or not for inclined orbits. Indeed, the upper
green points on the panel b come from very slightly inclined trajectories, and they
enclose completely the zero-inclination limit (the small grey zone detached from the
top). This implies that the Δ� = 0 equilibrium is transported continuously toward
non-zero inclinations. For more inclined orbits, the fixed point switches from apsidal

8These sections are made respectively for δh and ω equal to π/2, so a fixed point at 3π/2 means
for both sections an equilibrium point of Δ
 = ω + δh at 0.
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Figure 5.5 – Poincaré maps for a planar perturber (see text for details). The constant semi-major axis
of the particle is a = 100 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every
section in the (δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b,c) and ω̇ < 0 for (d,e). Among
other resonances, the panels b and e feature the resonances ω+δh and ω−δh (same as in Fig. 5.4). In
the panels c and d numerous resonances are embedded in the chaotic sea (the corresponding resonant
angles are given by the number of islands on the left and right graphs). The blue islands organised
around the fixed points of ω are resonances between the libration frequency of ω and the circulation
frequency of δh. A zoom-in view reveals secondary resonances as well.
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alignment to anti-alignment in a small range of inclinations (panel c near the circular
orbit). Moreover, the other 1 : 1 resonance, already present for smaller semi-major
axes, now stretches in a much wider region of the phase space (panel c), multiplying
the possibilities of Δ� oscillations. Hence, the claim of Beust (2016) that the non-
resonant dynamics is able to produce both apsidal alignment and anti-alignment is
widely generalised for inclined bodies. For semi-major axes as modest as a = 150 AU,
though, the aligned case is clearly favoured. In the overall Fig. 5.6, we see that the
possible excursion in inclination for a fixed Hamiltonian value is much wider than for
smaller semi-major axes, making appear the classic ω fixed points on more numerous
panels (e–h). However, the libration islands are quite “nibbled” by the surrounding
chaotic sea, so they appear much thinner than in Fig. 5.5. The asymmetry of the two
islands is due to the fixed value of δh used to build the map: the geometry of the two
islands is inversed by taking 3π/2 instead of π/2 (mirror symmetry). This dependence
of the chosen section plane is another indicator of the stronger interaction between the
two degrees of freedom.

For a = 200 AU (Fig. 5.7), the Δ� libration island near the circular orbit becomes
wider as the fixed point moves toward higher eccentricities (panels b,c,d). The evolution
of its position and shape when varying a is thus generalised to non-zero inclinations.
As before, it becomes a Δ� = π libration island in some range of inclination (panel c).
The other Δ� = 0 island, on the contrary, which was very large for a = 150 AU, is now
surrounded by a chaotic zone (panels b and c). In some range of Hamiltonian values,
it merges with the upper 1 : 1 resonance and produces a very wide island (panel d).
For slightly higher values of the Hamiltonian, however, this island turns to a chaotic
zone (panel e), which announces the proximity of the classic libration zone for ω.
Numerous orbits now intersect the trajectories of Neptune and/or the distant planet,
especially in the chaotic regions. For trajectories with I = 0, we know from Beust
(2016) that the intersecting orbits produce an equilibrium point at Δ� = π (apsidal
anti-alignment). This results in the detached grey zone in the panel a. It is surrounded
by a thin quasi-periodic flow, showing that the libration island persists for very small
inclinations (the green curve represented oscillates between I = 0.1◦ and 0.5◦). For
more inclined orbits, the chaos dominates but still sticking around the resonance. The
chaos spreads also around the δh equilibrium points (panel g), allowing chaotic orbital
flips between prograde and retrograde orbits. This is quite different from the regular
orbits oscillating around I = 90◦ (present also for smaller semi-major axes), since this
time the orbit can stay retrograde for a long period of time, according to its wandering
inside the chaotic zone. Very inclined and retrograde objects are actually observed in
the distant Solar System9, and their formation was studied in particular by Gomes et al.
(2015) and Batygin and Brown (2016b). The latter pointed out that highly-inclined
objects with small semi-major axes can still be explained by this mechanism, through
a subsequent diffusion of semi-major axis due to the inner giant planets. Of course,

9On 2017-06-06, the JPL Small-Body Database Search Engine reports 8 non-cometary objects with
a > 150 AU, q > 5 AU and I > 50◦ (https://ssd.jpl.nasa.gov/sbdb query.cgi).
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Figure 5.6 – Poincaré maps for a planar perturber. The constant semi-major axis of the particle is
a = 150 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in the
(δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a–g) and ω̇ < 0 for h. In the panel e, the libration
island of ω around π/2 appears only as a 1:1 resonance between the libration frequency of ω and the
circulation frequency of δh (small black island at δh = 3π/2). We used black lines, though, to stress
that ω itself oscillates around π/2, but please note that δh actually circulates, despite the closed black
curves drawn on the right.
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this last effect cannot appear in a secular model as ours. Finally, the most striking
new features are the two forbidden regions at ω = 0 and π on the panel f. They
correspond to oscillations of both ω and δh around 0 or π, thus producing no points on
these sections. In these regions, Δ� oscillates also around 0 or π, leading to “frozen”
aligned or anti-aligned orbits. The inclination of these trajectories oscillates around 90◦

(which is impossible to see in Fig. 5.7 because of the parameters chosen for the section),
leading to a very particular geometry avoiding close orbital approaches. That kind of
orbit is described more in detail below (Fig. 5.11). On the panel e, the different density
of red points between the two chaotic zones has a purely numerical origin: orbits in the
lowermost region are subject to repeated close encounters with either the outer or the
internal planets, slowing down the computations. As a consequence, only a few points
are obtained during a reasonable computing time.

For a = 300 AU, the only substantial stable features consists in resonances of apsidal
alignment and anti-alignment (Fig. 5.8). The previous equilibrium points of ω (at π/2
and 3π/2) and of δh (at 0 and π) persist only marginally on the panel e. Emerging
from I = 0, the stable anti-aligned trajectories reach now moderate inclinations. For
instance the resonant orbits on the panel d evolve between I = 10◦ and 25◦. On the
panel c, note the presence of the two kinds of apsidal alignment: the very tiny green
orbit at q ≈ 200 AU is the residual of the island emerging from I = 0, whereas the
bottom one is the usual 1 :1 resonance present in every previous figure. Finally, the two
forbidden zones on the panel d at ω = 0 and π correspond also to apsidal alignments:
they are filled with frozen orbits with both ω and δh oscillating around 0 or π, whereas I
oscillates around 90◦ (same as for a = 200 AU, Fig. 5.7f). The variations in inclination
allowed in the chaotic zones are very large, and orbital flips are allowed in almost
every panel. The retrograde region of the phase space (not shown) is identical to the
prograde one (mirror symmetry), with δh circulating in the opposite direction. Hence,
the particles on chaotic trajectories can jump indifferently from prograde resonances
(ω+δh) to retrograde ones (ω−δh). In the retrograde case, however, the resonance does
not correspond to a particular orbital alignment. The complete orbital evolutions of the
chaotic trajectories reveal transient states in every regime presented in Fig. 5.8, with
sticky chaos. Fig. 5.9 presents a typical example (which contributes to fill with red dots
the chaotic sea of Fig. 5.8c). We recognise apsidal alignments, apsidal anti-alignments,
aligned frozen orbits with I = 90◦, along with fast orbital flips (it takes some hundreds
of Myrs to pass from 0◦ to 180◦). Occasionally, the residuals of the classic equilibrium
points make ω oscillate briefly around π/2 or 3π/2. Such a behaviour is typical of what
we obtain when integrating the known distant objects using the parameters given in
Tab. 5.2 (using the first or the second secular model).

For completeness, we also present sections for a = 500 AU (Fig. 5.10). For such high
semi-major axes, the phase space is filled with chaos, but the distant planet imposes
strong constraints on the shape of the forbidden regions. Hence, even in the chaotic
regime, the particle has no other possibility than following temporarily the various 1 :1
resonances described throughout this section (similar to Fig. 5.9). Some very isolated
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Figure 5.7 – Poincaré maps for a planar perturber. The constant semi-major axis of the particle is
a = 200 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in
the (δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a-e) and ω̇ < 0 for (f,g). On the panel f, the
libration island of ω around π/2 appears only as a 1 : 1 resonance between the circulation frequency
of δh and the libration frequency of ω. We used black lines, though, to stress that ω itself oscillates
around π/2 (but please note that δh actually circulates, despite the closed black curves drawn on the
right).
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regular trajectories persists, either as very high-order resonances hidden in the chaotic
sea (panel b at Δ� ≈ 0), or at very low inclinations (less than 1◦). These latter,
lying in the very vicinity of the forbidden regions, should persist for all values of the
semi-major axis, since we retrieve the integrable model of Beust (2016). In the panel
c, small stable regions in the resonances ω − δh and ω + δh are also visible.

We did not explore orbits with semi-major axes larger than the one of the distant
planet. There exist probably other stable equilibrium points for trajectory entirely
exterior to its orbit, but the problem becomes too significantly disconnected from the
observed Solar System objects.

All the maps presented above are chosen at ω = π/2 and δh = π/2, which does not
allow to observe directly the equilibrium configurations with ω and δh both oscillating
around 0 or π (they appear only as forbidden zones in Figs. 5.7f and 5.8d). In order
to track that kind of behaviour, Fig. 5.11 shows the previous trajectories projected in
sections chosen at ω = 0 and δh = 0. These two equilibrium configurations appear from
semi-major axes slightly smaller than 200 AU and become unstable beyond 300 AU.
The aligned configuration is the last to vanish. The instability seems to be due to
the oscillation of the perihelion: it goes through the inner planetary region for higher
values of a, producing a complex pattern of orbit crossings. However, the signature of
both configurations remains in the form of sticky chaos, producing in particular high-
amplitude orbital flips for anti-aligned orbits (thin corridor available for a = 300 AU).
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Figure 5.8 – Poincaré maps for a planar perturber. The constant semi-major axis of the particle is
a = 300 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in
the (δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a-d) and ω̇ < 0 for e. The axes ranges are
mainly focussed on prograde orbits (H > 0), but most of the chaotic orbits can flip (see the inclination
ranges). On the panel e, the libration island of ω around π/2 appears only as a 1:1 resonance between
the circulation frequency of δh and the libration frequency of ω (black island at δh = 3π/2). We used
black lines, to stress that ω itself oscillates around π/2, but please note that δh actually circulates
despite the closed black curves drawn on the right. On the panel d the two forbidden regions at ω = 0
and π correspond to oscillations of both ω and δh around 0 or π, thus producing no points on these
sections.
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Figure 5.9 – Complete evolution of a chaotic trajectory with a = 300 AU. It contributes to the red
dots on the maps c in Fig. 5.8. Firstly, the particle switches from apsidal alignment to anti-alignment
(both with circulating ω and δh). Then it adopts a frozen aligned orbit (ω ≈ δh ≈ π) with I oscillating
around 90◦, and after brief states in apsidal anti-alignment and alignment, it flips to a retrograde orbit.
In the retrograde state, it sticks to the ω − δh resonance, symmetric to the prograde ω + δh one, but
producing no particular alignment in the physical space. One can note that the apsidal anti-alignments
are realised at very small inclinations, since the corresponding points on the Poincaré section lie near
the limit of the forbidden zone (Fig. 5.8c), around the few regular trajectories.
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Figure 5.10 – Poincaré maps for a planar perturber. The constant semi-major axis of the particle is
a = 500 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in the
(δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b) and ω̇ < 0 for c. The axes ranges are mainly
focussed on prograde orbits (H > 0), but all of the chaotic orbits can flip (see the inclination ranges).
On the panel c, a resonance ω − δh (leading to no particular orbital alignment) is visible for I < 90◦

in both the surfaces of section. It has a curious two-lobed geometry on the right. In the plane (δh,H),
a resonance Δ
 ≈ π is also visible for I > 90◦ (it has two islands because ω and δh alternate between
oscillation and circulation).
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Figure 5.11 – Poincaré maps for a planar perturber. The sections in the (ω, q) plane are made for
δh = 0 and ˙δh < 0. The sections in the (δh,H) plane are made for ω = 0, with ω̇ < 0. The Hamiltonian
value is the same as in Figs. 5.7f and 5.8d. For a = 200 AU, both the aligned and anti-aligned stable
configurations are visible (as well as the classic equilibrium points of ω). For a = 300 AU, only the
aligned one is stable, in a very small region. The section in the (ω, q) plane features also a resonance
1:1 with circulating ω and δh (same as Fig. 5.8d).
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5.4 Toward a more general case

The complete system given by (5.11) has three degrees of freedom, with no possibility to
further reduce it without loss of generality. Different strategies can be used to study the
dynamics. The most direct one is to perform a series of numerical integrations, in order
to compute Lyapunov exponents and stability maps. This would be loosing, however,
the benefit of the secular model over the osculation system. Eventually, one can think
of a more “mathematician-like” approach, consisting in the study of an intermediate
system, less physically meaningful but still interesting dynamically speaking. This is
the strategy adopted in the scope of this work, by adopting an unrealistic precession
rate of ν ′

ω = 0. This is a reasonable approximation for small bodies with moderate semi-
major axes (say, less than 100 AU) far from the Kozai equilibrium points (inclination
near 63◦ or 117◦). Indeed the precession rates of such bodies are very fast compared to
the outer planet, so that the variation of ω′ can be considered as an adiabatic process
(the orbit passes smoothly from one fixed value of ω′ to the other, as long as no major
change of topology occurs). However, we will not restrict the study to that region: in
return, comparisons with the full secular system will be realised for typical trajectories
all along the study.

With the arbitrary use of ν ′
ω = 0, the secular system defined by (5.11) has only two

degrees of freedom:

F(G,H, g, δh) = −ν ′
ΩH + F1(G,H, g, δh) (5.22)

and two parameters (a and ω′). Once again, the dynamics can be explored using
Poincaré sections. The second angle is this time δh = Ω − Ω′, so one must be careful
when comparing with the results from Sect. 5.3. However, if ω′ is fixed, Ω′ behaves
exactly like �′, so we can safely identify and link the features from the two cases
(equilibrium points, resonances...). In the following, the constant ω′ is chosen to its
nominal current value given in Tab. 5.1.

Figure 5.12, computed for a = 70 AU, shows that even for small semi-major axes,
the breaking of symmetry induced by the inclination of the distant perturber produces
a richer dynamics, with numerous additional resonances. In the panel b, the two fixed
points due to the resonance ω + δh correspond to an alignment between the apsidal
line of the small body and the nodes line of the distant planet10. Hence, the orbital
configuration is pretty different from what we obtain for a planar perturber (Fig. 5.4),
although the same resonance is involved. Moreover, there are this time two fixed points
(alignment and anti-alignment) instead of a single one. This holds also for the resonance
ω−δh on the panel d. Numerical integrations of the full three-degree-of-freedom secular
system reveal that all the libration islands present in Fig. 5.12 persist for a precessing ω′.
These maps are thus representative of the complete system. Some resonances change
critical argument (for instance, ω−2δh turns to ω−2δh+ω′), but not the 1 :1 one. One

10On the contrary, apsidal alignment or anti-alignment would have resulted in fixed points on the
sections at ω′ ± π/2, where ω′ is given in Tab. 5.1.
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Figure 5.12 – Poincaré maps for an inclined perturber. The constant semi-major axis of the particle
is a = 70 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in the
(δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b) and ω̇ < 0 for (c,d). The panel a features
the resonance 2ω + 3δh. The panels b and d feature the resonances ω + δh and ω − δh, respectively,
with two different fixed points and horseshoe-type orbits. In the panel d, the resonances ω − 2δh and
ω − 3δh are also visible.

can argue that a resonance with critical angle ω+ δh = �−Ω′ violates the D’Alembert
rules, but as explained below, this resonance is not an artefact due to the fixity of ω′.
Actually, the system departs from the three-body problem by its inner component, so
one should not be surprised if some “unusual” resonances show up.

For a = 100 AU, a lot of resonances occupy the entire range of inclinations from 0◦

to 90◦ (Fig. 5.13). As seen in the panel e, the chaotic zone around the two fixed points
of ω is much larger than for a planar perturber (Fig. 5.5), allowing large excursions of
the perihelion distance. In the panel a, the resonance ω + 2δh is visible near the zero-
inclination limit. It appears also in the panel b, near the circular orbit, taking the place
of the island of apsidal alignment for a planar perturber (compare with Figs. 5.5 and
5.6). For a precessing ω′, this resonance appears to become ω + 2δh− ω′ = Δ� +ΔΩ,
oscillating around π. Hence, the apsidal alignment Δ� = 0, reported by Beust (2016)
and present for a planar perturber, does not persist (as such) if the perturber is itself
inclined.

This is confirmed for larger semi-major axes, since Fig. 5.15, plotted for a = 150 AU,
shows the same 1:2 resonance (panels a and b). In the panel d, only the right oscillation
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island of ω is visible (at q ≈ 140 AU); the other one is submerged by the chaotic sea.
This asymmetry is due to the arbitrary fixed value of ω′. Still in the panel d, the
red points form somewhat organised structures around the 3 : 1 resonance, due to
sticky chaos. Such trajectories evolve in a complex structure of secondary resonances:
Fig. 5.14 presents an example of resonant trajectory in that region, and it is indeed
very tortuous. The chaos spreads much faster than for a planar perturber, allowing
flips between prograde and retrograde orbits (panel f) even for a as small as 150 AU
(compare with Fig. 5.6 and 5.7).

For a = 200 AU, the chaos fills almost all the phase space (Fig. 5.17). The ω + 2δh
resonance is still present near the zero-inclination limit (panel a) and the circular orbit
(panel b). The classic equilibrium points for ω are almost entirely submerged by the
chaotic sea: we found only one quasi-periodic orbit related to oscillations of ω, visible
in the panel e (tiny blue points). Fig. 5.16 presents this trajectory in details and one
can verify that it stays indeed near I ≈ 63◦. In that very perturbed case, the sizes
of the stability islands do not give any idea of the variations of the orbital elements
themselves. In that example, the excursion of the perihelion distance is actually very
large, from about 30 to 180 AU. Eventually, the only feature still widely emerged in
Fig. 5.17 is the 1 :1 resonance between ω and δh (panels b and c). The panel d is drawn
for a Hamiltonian value slightly larger than for the panel c, showing the dissolution of
the 1 :1 resonance in chaos. Once again, the finite number of points allows to distinguish
structures in the chaotic region, and in particular the general shape of 1 : 1 resonance
island. Its signature thus persists, but in the form of sticky chaos. We found similar
results in the case of a planar perturber (Fig. 5.7, panels d-e).

For semi-major axes larger than 200 AU, our simplified model becomes less relev-
ant and its efficiency to describe the complete system is questionable. Moreover, the
exploration of a very chaotic system by the means of Poincaré sections is cumbersome,
since there is no guaranty that a stable volume of the phase space does not lie out of the
chosen sections. The relevance of the model with ν ′

ω = 0 can be assessed by tracking
some well-chosen trajectories for increasing values of the semi-major axis. Figures 5.18
and 5.19 present numerical integrations of the complete three-degree-of-freedom system
using initial conditions given by trajectories trapped in the 1 : 1 resonance in the sim-
plified model. The model with ν ′

ω = 0 proves to be qualitatively relevant from a = 70
to 150 AU, since the orbital configuration is conserved (alignment between the apsidal
line of the small body and the nodes line of the distant planet). The precession of
ω′ adds only extra periodic terms with small amplitudes. For larger semi-major axes,
the forcing frequency results in jumps of � from one node of the distant planet to the
other (� − Ω′ = 0 or π). In that example, these jumps produce an overall apsidal
alignment, even if the nodes were concerned in the first place. This proves that a model
with ν ′

ω = 0 could be misleading for higher semi-major axes (an extended numerical
analysis of the complete secular system would be required, loosing the vantage of a
semi-analytical method).
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Figure 5.13 – Poincaré maps for an inclined perturber. The constant semi-major axis of the particle
is a = 100 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in the
(δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b,c) and ω̇ < 0 for (d,e,f). The panels (c,d,e)
show the shift of the fixed points for ω at I ≈ 63◦ for nearby Hamiltonian values. The surrounding
chaotic sea is very wide when the islands are near the semi-major axis of Neptune (panel e). Resonances
between ω and δh are very numerous at all ranges of inclination. In the panels e and f, a zoom-in view
reveals a very complex pattern of secondary resonances spreading in a fractal-like way.
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Figure 5.14 – Complete trajectory producing the blue spots in the panel d of Fig. 5.15 (a = 150 AU).
This is a quasi-periodic orbit featuring the secondary resonance 6:1 between the circulation frequency
of ω and the libration frequency of the resonant angle 3ω + δh. On each graph, blue points are added
when the trajectory crosses the sections (same as Fig. 5.15). On the left, an enlargement shows the
classic rounded shape formed by the section crossing points around the periodic trajectory. According
to the resonance involved, the fixed points are 18 on the left and 6 on the right.
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Figure 5.15 – Poincaré maps for an inclined perturber. The constant semi-major axis of the particle
is a = 150 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in
the (δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b,c,d,e) and ω̇ < 0 for f.
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Figure 5.16 – Complete trajectory producing the tiny blue points in the panel e of Fig. 5.17 (a =
200 AU). This is a quasi-periodic orbit featuring the secondary resonance 2 : 1 between ˙δh and the
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views show the classic rounded shapes formed by the section crossing points around the periodic
trajectory. According to the resonance involved, the fixed points are 2 on both sides.
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Figure 5.17 – Poincaré maps for an inclined perturber. The constant semi-major axis of the particle
is a = 200 AU. Every section in the (ω, q) plane is made for δh = π/2 and ˙δh < 0. Every section in
the (δh,H) plane is made for ω = π/2, with ω̇ > 0 for (a,b,c,d) and ω̇ < 0 for (e,f).
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Figure 5.19 – Time evolution of the perihelion distance and of the inclination for the trajectories of
Fig. 5.18.
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5.5 Summary of the secular dynamics

For an eccentric planar perturber, the Δ� resonances reported by Beust (2016) are
smoothly transported toward non-zero inclinations, both in the aligned and anti-aligned
configurations. They are created through ω and Ω circulating in opposite directions.
Another island of apsidal alignment is highlighted, restricted to inclined orbits, and it
has a pretty wide extension for a > 150 AU. Finally, very particular stable configur-
ations exist from a ≈ 200 to 300 AU, in which both ω and Ω − �′ oscillate around
0 or π, and I oscillates around 90◦. These orbits are aligned or anti-aligned with the
distant planet and perpendicular to the planetary plane. They are probably related
to the high-inclination aligned population produced in the numerical experiments by
Brown and Batygin (2016). For higher semi-major axes, these configurations lead the
perihelion of the particle inside the inner planetary region, where the successive orbit
crossings make them unstable. In addition, the classic equilibrium points of ω at π/2
and 3π/2 (for I ≈ 63◦) are the source of a chaotic region, spreading all over the phase
space when a increases. For a > 300 AU, the Δ� resonances are the only remaining
stable features, and the chaotic trajectories jump from one of them to the other. Hence,
even if there are only small regular regions left beyond a ∼ 300 AU, the signature of
the apsidal alignments and anti-alignments largely remains in the form of sticky chaos.
This contributes probably to a large extent to the aligned bodies coming from the
simulations by Batygin and Brown (2016a).

The model with an inclined perturber with a fixed argument of perihelion, even
if not strictly realistic, gives an idea of the secular dynamics in the general case. As
expected, the chaos spreads faster than for a planar perturber. In the unsimplified
secular system, the extra forcing frequency adds even more chaos in the system: in
practice, the distant perturber can be neglected only for very small semi-major axes
(say below 70 AU). For a = 150 AU already, only a small portion of the phase space
is still filled with regular trajectories and large orbital flips become possible (switch
between prograde and retrograde orbits). An inclined distant perturber should thus
imply a substantial amount of retrograde objects with a > 150 AU, without even
mentioning close encounters. Such objects are indeed observed, as reported by Batygin
and Brown (2016b), even though none has been observed yet with a perihelion beyond
the semi-major axis of Neptune. As before, the 1 :1 resonance between the two degrees
of freedom is the most persistent structure. For small semi-major axes (say below
150 AU), it results in an unusual alignment between the apsidal line of the small body
and the nodes line of the distant planet. In a large sample, though, the signature of this
configuration is probably unnoticeable, mixed up with the numerous other features.



Chapter 6

Discussion and future work

In this chapter, we summarise our approach, results and conclusions about the long-
term orbital dynamics beyond Neptune. Some ideas of future work are also introduced
in order to address complementary problems or issues directly raised by our results.
In Sect. 6.1, the one-degree-of-freedom secular models developed throughout this work
are recalled, along with their application field, their main vantages and their limits.
Then, the exploration of the resonant model is exposed in Sect. 6.2 and its application
to known objects is addressed in Sect. 6.3. Finally, the effects of an additional distant
planet on the non-resonant dynamics are summed up in Sect. 6.4.

6.1 Secular models for the orbital dynamics beyond

Neptune

At first, the dynamics beyond Neptune driven only by the known planets was studied.
Considering an integrable (or quasi-integrable) short-term behaviour, the long-term
dynamics can be efficiently described by a one-degree-of-freedom model with two free
parameters. The approximations used are found to be relevant for semi-major axes
larger than 50 AU. This method allows to visualise the long-term trajectories of the
particles in the plane (ω, q), in which the notable features (equilibrium points, libration
islands, separatrices) can be located. It can thus be used to explore all the possible
trajectories allowed by the system. In particular, that method proves to be particularly
suitable to detect large perihelion excursions.

Such a model is easily obtained when there is no mean-motion resonance in the
system: the two parameters are then a and CK = (1 − e2) cos2 I. For a non-resonant
dynamics, we showed that the maximum perihelion excursion possible is 16.4 AU, at-
tainable on a Giga-year timescale for high semi-major axis and a very specific inclination
(near 63◦ or 117◦). A small body starting with a perihelion near the orbit of Neptune
and in the required range of inclination can thus reach rather high perihelion distances
from the planets, especially if it has undergone a prior diffusive process. That mech-
anism, though, cannot explain very large perihelion distances as the ones revealed by
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numerical integrations.

When there is a mean-motion resonance between the body and one of the planets,
the adiabatic invariance theory allows to construct a “resonant secular model”. The
two fixed parameters are then η0 (a surrogate of CK) and the area 2πJ enclosed by
the resonant canonical coordinates. The only obstruction to a fully integrable repres-
entation comes then from a possible extreme narrowing of the resonance island, which
can make circulate the resonant angle (separatrix crossing). In such a case, the secu-
lar representation is possible only by parts, each of them with a different parameter J .
Such transitions can happen frequently for the resonances of type 1:k, even for enclosed
areas equal to zero, because of the pure disappearance of the occupied resonance island.
For a specific trajectory, these repeated changes of behaviour are an evident source of
long-term chaos and make somehow questionable the use of a secular model. It remains
though very effective as a general tool, to locate the secular equilibrium points and
distinguish in a glance the regular trajectories from the “segmented” ones.

6.2 The long-term resonant dynamics

Using the resonant secular model, it was straightforward to bring out trajectories with
very large perihelion variations (for instance from 30 to 80 AU). Such extreme values
were usually considered too high to be reached by the means of perturbations from the
known planets. Moreover, that kind of trajectory is not restricted to high-inclination
regimes as in the non-resonant case: a low perihelion trajectory lying near the ecliptic
can be smoothly turned into a high-perihelion and high-inclination orbit. The general
geometry of the phase portraits depends very little on the resonance order (that is on
the reference semi-major axis a0 of the resonance kp :k) but it is function of its coefficient
kp. Indeed, the very same level curves can be obtained for very different values of a0
providing that the parameter η0 is modified accordingly (smaller η0 for higher a0). The
resonances with kp = 1 are the only ones to present wide regions with two resonance
islands. For prograde orbits of this type, there is a clear limit in perihelion distance
beyond which there remains only one resonance island. We refer to that limit as the
“secular discontinuity line”.

The resonant secular model highlights a dynamical path from low inclinations and
a perihelion near Neptune to a quasi-integrable high-perihelion state with long-term
stability. That mechanism is directly linked to the secular discontinuity line, so it is
specific to resonances with kp = 1. Indeed, the crossing of the secular discontinuity line
can trigger a very stable resonant behaviour, where the particle alternates smoothly
from high-amplitude oscillations inside the single island (when beyond the line) to
horseshoe oscillations (when below it). In that way, there is no more discontinuity and
J can be conserved indefinitely. As the final area |2πJ | is large, q is almost constant and
ω circulates. Thanks to the large value of q, the final orbit is stable despite the high-
amplitude oscillations of the resonant angle (no diffusion of semi-major axis). The very
long-term stability of that “reservoir” implies that its population should be increasing
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since the formation of the planetary system. We estimated its size by the means of the
semi-analytical model: it lies approximately in a ∈ [100; 300] AU, q ∈ [50; 70] AU and
I ∈ [30; 50]◦ (with circulating angles ω and Ω). Indeed, it happens to be the end-state of
an appreciable number of objects in numerical simulations of trans-Neptunian objects.

Along this study, we considered only resonances of “type eccentricity”, because
they are the most frequent for the observed and simulated trans-Neptunian objects.
For highly inclined objects, however, other types of resonances could be considered
(types “inclination” of “mixed”). Similar secular models, also based on the adiabatic
approximation, could be developed and used to explore the long-term dynamics driven
by such resonances. This could be interesting not only for trans-Neptunian objects, but
also for mutually-interacting satellite systems.

6.3 Application to known objects

The application to the known resonant trans-Neptunian objects is also very informative,
since it gives a precise idea of what type of trajectory they can follow. This allows us
to distinguish which orbits can have been created by a resonant link with Neptune on
its current orbit, and which ones have a more complex history (involving the planetary
migration or another source of perturbation). According to the secular model, most
of the known resonant objects experience virtually no change of perihelion distance,
indicating a small influence of the resonance on their long-term dynamics. Indeed, the
resonant link can never bring them away from their capture configurations, resulting in
unstable transient resonances. On the other hand, four objects are located near notable
features of the phase portraits:

• Locked in the 2:5 resonance, 135571 evolves very close to secular libration islands
and shows a retrograde (or possibly oscillatory) evolution of ω.

• In the same resonance, 2004KZ18 is located near the centre of a libration island
at ω = 0 (a perfect secular evolution would produce very small oscillations of ω
around 0).

• The object 82075 (3 : 8 resonance) shows oscillations of the perihelion distance
from 38 to 44 AU (with circulating ω).

• In the more distant 1 : 6 resonance, 2008 ST291 evolves in a wide asymmetric
libration island centred at ω ≈ 117o, resulting in oscillations of q from 39 to
55 AU.

The cases of 2015FJ345 and 2014FZ71 are more complicated, since they follow secu-
lar trajectories leading to separatrix crossings. Following the level curves backwards,
possible scenarios can be retraced from their capture into resonance to their current
positions. They require one or more resonant transitions (passage from one resonance
island to the other) and originate at much smaller perihelion distances.
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As already stated in previous studies, a resonant interaction with Neptune is found
unable to explain the current orbits of Sedna and 2012VP113. However, the majority
of the observed objects (resonant or not) with a > 100 AU and q > 30 AU, are
located inside the range of parameters that would allow strong variations of their orbital
elements in case of mean-motion resonance. This is however unable to explain an
accumulation of objects as the one invoked recently to postulate the existence of a ninth
planet in the Solar System. Indeed, for small perihelion distances (say < 40 AU), the
equilibrium points are all located at ω = 0 mod π whatever the resonance considered:
this could not favour ω = 0 against π, or produce any preferential location for Ω. Such
features, if they are really significant in the observed distribution of the trans-Neptunian
objects, would require an asymmetric perturbation. It could be an additional eccentric
distant planet (Batygin and Brown, 2016a) or the memory of a captured population
from another star (J́ılková et al., 2015). In the first case, one-degree-of-freedom secular
models cannot be obtain for the distant trans-Neptunian objects. In the second case,
they can be used to describe the current dynamics of these objects, now that the
perturber has gone.

6.4 Secular dynamics with a distant perturber

In the presence of an external ten-earth-mass perturber having a substantial eccentri-
city, a secular model can still be defined, but it has at least two degrees of freedom.
Indeed, the secular non-resonant dynamics is analogous to an “eccentric-Kozai” mech-
anism but with both an inner component (the four giant planets) and an outer one
(the eccentric distant perturber). By the means of Poincaré sections, the cases of a
non-inclined or inclined outer planet were successively studied, making the connection
with previous works. In the inclined case, the problem was reduced to two degrees of
freedom by assuming a non-precessing argument of perihelion for the perturbing body.
A special attention was given to prograde orbits with perihelion distances beyond Nep-
tune. Classically, the equilibrium points of ω at I ≈ 63◦ or 117◦ divide the regions
where ω circulates toward the right and toward the left. The analogous limit for Ω is
I = 90◦. This puts some constraints on the regions sensible to a confinement of � in
the weakly perturbed case, only possible when ω and Ω circulate in opposite directions
(I ∈ [0; 63]◦ or I ∈ [90; 117]◦).

The size of the external perturbation is typically ruled by the semi-major axis of
the small body: the classic integrable picture is still valid below about 70 AU, but it
is progressively destroyed when we get closer to the external perturber. In particular,
for a > 150 AU, large-amplitude orbital flips become possible, and for a > 200 AU,
the Kozai libration islands at ω = π/2 and 3π/2 are totally submerged by the chaotic
sea. Numerous secular resonances are highlighted. The most large and persistent ones
are associated to apsidal alignments or anti-alignments with the orbit of the distant
perturber. A non-resonant secular dynamics produces two kinds of stable aligned or
anti-aligned orbits: the ones with a small inclination (for which ω and Ω circulate in
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opposite directions), and the ones with an inclination near 90◦ (for which ω and Ω are
both fixed to 0 or π, producing “frozen” orbits).

Despite the existence of numerous stable orbits, the secular dynamics at high semi-
major axes is largely dominated by chaos. We conclude that even in the secular system,
which is free from any diffusion of semi-major axis, the orbital alignment of distant ob-
jects (as well as any organised structure beyond a ∼ 200 AU) induced by a distant
perturber are almost only produced through a collective behaviour of chaotic traject-
ories, each of them spending more time in preferred locations of the phase space but
still wandering “everywhere”. In particular, this is the case of the six objects with
a > 250 AU analysed by Batygin and Brown (2016a) and gathered in Tab. 5.2. Hence,
the fact that the seemingly clustered objects do not remain efficiently shepherded in
long-term numerical simulations is not a sufficient argument to rule out the hypothesis
of an external perturber in the Solar System, neither the discovery of distant bodies
out of the accumulation regions. For instance, the recently discovered trans-Neptunian
object 2015GT50 (Bannister et al., 2017) is neither aligned nor anti-aligned: according
to the MPC database, in this case Δ� ≈ 272◦ using for the distant perturber the data
of Tab. 5.1. Here, the only viable approach is to deal with distributions, which should
be peaked or not around preferential configurations. Whereas it would be simple (in
theory) to confirm the existence of a distant planet by direct observation, to exclude it
requires the analysis of a large observational sample, pretty hard to obtain.

This study was limited to secular orbits away from mean-motion resonances with the
planets. Mean-motion resonances are a well-known source of orbital confinements, and
they are likely to allow a lot of stable configurations. However, particles with slowly dif-
fusing semi-major axes, even with successive transient captures in various mean-motion
resonances, would present in overall the signature of a non-resonant secular dynamics
(see for instance Fig. 3.5). Hence, in order to allow specific confinements, such resonance
trappings must be long enough. Since a long-term resonant interaction with Neptune
cannot confine ω in a manner that fits the orbital distribution of the observed distant
objects, the mean-motion resonances involved should be with the hypothetical distant
planet. An averaged model in the resonant case could also be developed (by taking
advantage of the separation between the timescales involved), but the corresponding
Poincaré maps are expected to be extremely rich and probably difficult to interpret.
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Appendix A

The frequency analysis

Most of the work presented in this chapter was realised for my Master thesis,
however, the program developed in this occasion was reused during my Ph.D. in a

published paper (Renner et al., 2016), so I summarise it here.

The frequency analysis method of J. Laskar was first introduced in Laskar (1988, 1990).
Section A.1 recalls the basics of it and details some theoretical and practical aspects
about its implementation. See Laskar (2005) for thorough details and proofs about its
application to quasi-periodic trajectories. Section A.2 presents the use of the frequency
analysis in the context of the orbital dynamics of Atlas, a natural satellite of Saturn.

A.1 Theoretical context and method

In Sect. 2.2.5, we introduced the action-angle coordinates. Let us consider a Hamilto-
nian system with n degrees of freedom, represented by the Hamiltonian function H.
If it is integrable (and under certain conditions), we are assured that action-angle co-
ordinates (J, θ) ∈ Rn×Tn exist, but we do not known the change of coordinates leading
to them (this is all the difficulty of analytical theories). However, the action-angle co-
ordinates are intrinsic to the system, such that even if the system is written in other
coordinates, the latter still evolve with the proper frequencies {ωj}j=1,2...n (which are
the constant circulation frequencies of the angles {θj}j=1,2...n). The proper frequencies
are not uniquely defined: any integer combination of some {ωj} can be chosen also as
a proper frequency.

Let f(t) be a real function of the time, representing any dynamical variable describ-
ing the system. The previous property allows to write it as a multidimensional Fourier
series of θ:

f(t) =
∑
h∈Zn

ah exp ih · θ(t) , ah ∈ C (A.1)

By developing the scalar products h · θ(t), we get a series of the form:

f(t) =
∑
k∈N

Ak exp iνkt , Ak ∈ C (A.2)

199
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in which the {νk} are integer combinations of the proper frequencies {ωj}j=1,2...n. Now,
let us suppose that we know a solution f(t) of the dynamics (for instance, coming from
a numerical integration). Then, the frequency analysis of J. Laskar, presented below,
allows to determine numerically the amplitudes {Ak} along with the corresponding
frequencies {νk} of the Fourier development of f(t). By identifying each νk as an
integer combination of fixed frequencies, we finally get the proper frequencies of the
system. If the system is not degenerated, that is if:

det

(
∂ω(J)

∂J

)
= det

(
∂2H(J)

∂J2

)
	= 0 (A.3)

then the application J 
→ ω(J) is a diffeomorphism, so the system can be described
equivalently by its proper frequencies ω or by the actions J (see Arnold, 1989). The
dynamics is thus entirely characterised. Numerically-computed series of the type (A.1)
form a so-called synthetic representation: they have the form and the regularity of an
analytical theory, but all the coefficients and frequencies were obtained numerically.

If the system is not integrable, of course, a Fourier series of the form (A.1) is not
defined anymore. If the system is not too far from being integrable, though, a frequency
analysis could still provide a set of frequencies and amplitudes but they would result
only in an approximation of the real dynamics, more or less accurate according to the
degree of chaos. In practice, such frequencies are not constant (they are not “proper”),
and their rates of variation allow to quantify the degree of stability of the system (see
Laskar, 1990).

A.1.1 Fine analysis

We aim at reconstructing numerically a quasi-periodic function f(t) from a series of its
values on the interval1 [0, T ]. It consists thus in determining the different frequencies
contained in f and the corresponding complex amplitudes. Let us consider a general
quasi-periodic function of the form:

f(t) =
N∑
k=1

Ak ek(t) where Ak ∈ C and ek(t) ≡ exp(iνkt) (A.4)

Its Fourier series on [0, T ] is defined by:

f̂(t) =
+∞∑

n=−∞
〈f, vn〉 vn(t) with vn(t) = exp(i nν0 t) and ν0 =

2π

T
(A.5)

f̂(t) is thus the projection of f(t) on the vector space generated by the vectors {vn}n∈Z,
with the scalar product:

〈f, g〉 = 1

T

∫ T

0

f(t)g(t) dt (A.6)

1Laskar (2005) defines this interval as [−T, T ], which is only a matter of convention.
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In practice, the integral will be computed numerically by the method of Hardy (see
appendix C.6), considering that f(t) is stored with a small-enough step size to neglect
the numerical errors and the aliasing2. One can note that if the frequencies {νk}k=1,2..N

are not integer multiples of ν0, then f̂(t) will be a very poor representation of f(t),
in which the frequencies are only obtained at the ν0 level of precision. Actually, we
can obtain a much better precision of the frequencies by studying the variations of the
“amplitude function” defined by:

A(ν) =
〈
f , exp(iνt)

〉
(A.7)

Indeed, if f(t) is made of only one oscillating term, we get:

∣∣∣A(ν)
∣∣∣ = ∣∣∣〈A1 exp(iν1t) , exp(iνt)

〉∣∣∣ =
∣∣∣∣∣A1

sin
[
(ν1 − ν)T/2

]
(ν1 − ν)T/2

∣∣∣∣∣ (A.8)

This function reaches its maximum when ν is equal to the exact value of ν1, and we
have besides the equality A(ν1) = A1 (Fig. A.1a). The determination of ν1 simply
amounts to find the maximum of the function |A(ν)|. Practically, a preliminary Fast
Fourier Transform allows to locate roughly the maximum, then an algorithm using a
quadratic interpolation can be used for the fine search (see appendix C.7).

0

a1
2

a1

ν1 − 5ν0 ν1 ν1 + 5ν0

a) |A(ν)|

0

a1
2

a1

ν1 − 5ν0 ν1 ν1 + 5ν0

b) |A(ν)|

Figure A.1 – Norm of the amplitude function in the case of only one sinusoidal term: a) without the
Hanning window; b) with the Hanning window.

In the more realistic case in which f(t) is the sum of several (possibly numerous)
terms, a local maximum is associated to each frequency νk. The addition of one term
causes a distortion of the peaks associated to the other terms: this changes their heights
and theirs exact positions, which are not centred anymore at the {νk} (Fig. A.2a).
Fortunately, the distortion is weak for well-separated frequencies, and we can limit its
effect by adding a weight function to the scalar product.

2The temporal sampling of f(t) puts a cut-off frequency νcut = π/Δt: any frequency larger than
νcut cannot be determined correctly, and this comes from a pure lack of knowledge about the function.
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0

a1
2

a1

ν1 ν2

a) |A(ν)|

0

a1
2

a1

ν1 ν2

b) |A(ν)|

Figure A.2 – Norm of the amplitude function in the case of two sinusoidal terms: a) without the
Hanning window; b) with the Hanning window. The curves obtained for the two terms taken separately
are drawn in blue and green.

A.1.2 Weight function for the scalar product

In order to minimise the mutual perturbations between the various terms, it is possible
to reduce the oscillations of A(ν) around its maxima. This can be realised by a new
definition of the scalar product. In the equation (A.6), we introduced implicitly a
weight χ(t) = 1, which results in a decrease of |A(ν)| as the inverse of the distance
to the maximum (Fig. A.1a). This decrease can be accelerated by using the Hanning
window3, which writes:

χ(t) = 1− cos(ν0 t) (A.9)

The scalar product becomes then:

〈f, g〉 = 1

T

∫ T

0

f(t)g(t)χ(t) dt (A.10)

This new scalar product results in a decrease of the oscillations of |A(ν)| as the inverse
cubed of the distance to the maximum (Fig. A.1b). The different terms are consequently
much less distorted by each other (Fig. A.2b). In return, the Hanning window doubles
the width of the central peak4.

The use of the Hanning window allows to detect the maxima of |A(ν)| with a
precision of about 1.2 ν0

√
ε , in which ε is the machine precision (see appendix C.7).

However, these maxima still do not correspond exactly to the values of the frequencies
{νk}: in Fig. A.2, we note a slight shift of the maxima of the red curve with respect
to the terms taken separately. Of course, Fig. A.2 presents the worst case in which
the two terms have the same amplitude, the same phase, and neighbour frequencies

3See Laskar (2005) for the types of function which can be used as window in this context.
4We consider that two maxima are indistinguishable if their separation is smaller than Δν = 2 ν0.

Even if some methods can be used to bypass this limitation (see Sect. A.1.4), this comes from a lack
of information on the function f(t), namely a too small tabulation interval [0, T ].
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(Δν = 2.5 ν0). Actually, terms of very distant frequencies (with respect to ν0) virtually
do not interact with each other, and in the same way, high-amplitude terms are not
distorted by small-amplitude ones. Hence, it is enough to subtract from the signal the
already-determined terms to make fully appear the remaining ones.

A.1.3 Basis of orthonormal functions

Once the frequencies {νk} are obtained, the reconstruction of f(t) as a quasi-periodic
series is simply its projection on the vector subspace formed by the vectors {ek =
exp(iνkt)}. However, contrary to its Fourier series, these basis vectors are not necessar-
ily orthogonal. In order to perform the projection, we must define a basis of orthogonal
vectors {uk}, for which the projection of f on uk is equivalent to the scalar product
〈f, uk〉. As pointed out for instance by Laskar et al. (1992), this can be realised using
Gram-Schmidt orthonormalisation algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = e1

u2 =
e2 − 〈e2, u1〉 u1

‖e2 − 〈e2, u1〉 u1‖
...

uN =

eN −
N−1∑
k=1

〈eN , uk〉 uk∥∥∥∥eN −
N−1∑
k=1

〈eN , uk〉 uk

∥∥∥∥

(A.11)

that is: ⎛
⎜⎜⎜⎝

u1

u2
...
uN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
a1,1 0 · · · 0
a2,1 a2,2 · · · 0
...

...
. . .

...
aN,1 aN,2 · · · aN,N

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

e1
e2
...
eN

⎞
⎟⎟⎟⎠ (A.12)

where the coefficients aij are obtained line by line, by recursion. Writing:

Wik =
k∑

m=1

akm 〈ei, em〉 (A.13)
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the recursion formula is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1,1 = 1

aii =
1∥∥∥∥ei − i−1∑

n=1

(
i−1∑
k=n

aknWik

)
en

∥∥∥∥

aij =

−
i−1∑
k=j

akjWik∥∥∥∥ei − i−1∑
n=1

(
i−1∑
k=n

aknWik

)
en

∥∥∥∥
∀ j < i

aij = 0 ∀ j > i

(A.14)

In order to project the function f on the basis {uk}, every basis vector should be known.
Hence, the amplitudes {Ak} can be computed only when we known all the frequencies.
This is problematic for subtracting a term from the signal: since some frequencies have
not been obtained yet, it is impossible to know its correct amplitude. The solution is to
proceed by successive approximations: after the determination of each new frequency,
f is projected onto the subspace generated by the only vectors known so far. The
amplitudes are then corrected step by step.

Let us write A
(n)
k the nth estimate of Ak; f

(n) the residual function after the nth
step (n terms have been subtracted); and A(n)(ν) =

〈
f (n) , exp(iνt)

〉
the amplitude

function applied to f (n). Then, the procedure can be summarised by:

First term:

a) maximum of |A(ν)| � value of ν1 � computation of a11 (= 1)

b) projection of f onto the subspace generated by u1 � first approximation of A1:

P (f){u1} = 〈f, u1〉 u1 =
(
〈f, u1〉 a11

)
e1 = A

(1)
1 e1

c) The first term is removed from the signal: f (1) = f − A
(1)
1 e1

Second term:

a) maximum of |A(1)(ν)| � value of ν2 � computation of a21 and a22

b) projection of f onto the subspace generated by u1 and u2 � approximation of
A1 and A2:

P (f){u1,u2} =〈f, u1〉 u1 + 〈f, u2〉 u2 =
(
〈f, u1〉 a11 + 〈f, u2〉 a21

)
e1 +

(
〈f, u2〉 a22

)
e2

=A
(2)
1 e1 + A

(1)
2 e2
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c) The two terms are removed from the signal: f (2) = f − A
(2)
1 e1 − A

(1)
2 e2

Generalisation:

a) maximum of |A(n−1)(ν)|� value of νn � computation of the line n of the matrix

b) projection of f onto the subspace generated by {u1, u2...un} � new estimate of
the amplitudes: {

A
(n−k+1)
k = A

(n−k)
k + 〈f, un〉 ank ∀ k < n

A(1)
n = 〈f, un〉 ann

(A.15)

c) All the terms determined are removed from the signal:

f (n) = f −
n∑

k=1

A
(n−k+1)
k ek (A.16)

Table A.1 presents the example of a function composed of five terms. The successive
approximations of the amplitudes are shown step by step until all terms have been
obtained. We note that the precision estimate of the frequencies (1.2 ν0

√
ε ≈ 10−10,

see Sect. A.1.2) is overcome by a factor 10.

1st term obtained
ν1 8.999999999990624

A
(1)
1 10.000000004736222

2nd term obtained
ν2 7.000000000047539

A
(2)
1 10.000000000510646

A
(1)
2 8.000000002849145

3rd term obtained
ν3 4.999999999995975

A
(3)
1 10.000000000040544

A
(2)
2 8.000000000208155

A
(1)
3 5.000000001150417

4th term obtained
ν4 2.999999999993570

A
(4)
1 10.000000000000327

A
(3)
2 8.000000000020115

A
(2)
3 5.000000000094020

A
(1)
4 2.000000000528189

5th term obtained
ν5 1.000000000010531

A
(5)
1 10.000000000000000

A
(4)
2 8.000000000000007

A
(3)
3 5.000000000000000

A
(2)
4 1.999999999999990

A
(1)
5 1.000000000000002

Table A.1 – Frequency analysis of a function composed of five terms (series of 62401 points with a
time-step of 0.03). The true frequencies are {9, 7, 5, 3, 1}, the respective amplitudes are {10, 8, 5, 2, 1}
and the phases are all 0.

In the case of a series containing an unknown number of terms (which may be
infinite), we need a criterion to stop the search for new frequencies. Several conditions
can be considered:
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• A given number of terms is reached.

• The amplitude of the new term obtained is negligible (according to the required
precision).

• The standard deviation of the residual function f (n)(t) is below some threshold,
or does not decrease significantly.

• The new frequency detected is very close to some frequency already determined:
this can mean either that the two peaks cannot be dissociated, or that one term
has been badly determined (that last case is studied in Sect. A.1.4).

Note on discrete computations Until now, we always considered integrals as con-
tinuous, by supposing that the discretisation errors were below the machine precision;
moreover, one can note that some simple integrals involved in the algorithm can be
computed analytically. However, if the step-size is not small enough to allow the con-
tinuous approximation, one should not mix numerical (discrete) integrals and analytical
expressions: the frequencies and amplitudes would by surprisingly less precise. That
effect is probably due to the scalar product, which is defined as discrete (since the func-
tion f(t) is not known in a continuous way). Hence, the use of analytical expressions
would be equivalent to change of scalar product along the computation.

A.1.4 Re-determination of the frequencies

In Sect. A.1.2, we saw that the frequencies cannot be determined exactly because of the
mutual distortions of the maxima in the amplitude function (even if the Hanning win-
dow allowed to limit this phenomenon). In order to bypass this limitation, Champenois
(1994) presented an iterative method: when a second term has been subtracted from
the signal, it consists in re-injecting the first one and re-determining it. Indeed, the
corresponding peak will be much less distorted than previously, so it will be much closer
to the value of the real frequency. By iterations, the algorithm converges then toward
much more precise values of the two frequencies, and even allows (to some extent) to
distinguish two very neighbour peaks in the amplitude function, separated than less
than Δν = 2 ν0. The method is of course generalisable to more than two frequencies,
and various implementations are possible. The strategy used by Lainey et al. (2006)
seems quite satisfactory. It can be summed up by:

• A term is immediately re-injected if it is detected a second time (indeed, since the
frequencies are not recovered exactly, there remain residual peaks in the amplitude
function).

• If a term is detected two times in a row, all the terms determined so far are
re-injected and re-determined one by one.
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• The iterations stop when the re-determined frequencies do not change signific-
antly: it is thus impossible to improve the precision. As a last step, the complete
set of frequencies can possibly be re-determined once again, in order to assess the
convergence for each of them.

An illustration of this algorithm is presented in Tab. A.2, column “frequency”.

A.1.5 Optimisation of the algorithm

When it comes to re-determining a term, the whole orthonormalisation process (Sect.
A.1.3) becomes computationally intensive: indeed, the orthonormal vectors being defined
by recursion, the modification of only one term requires the computation of the corres-
ponding vector, but also of all the following ones. In this section, we present a way to
simplify this method.

In Sect. A.1.1, we saw that if the tabulated function f(t) is made of only one term
with frequency ν1, the corresponding amplitude A1 is simply given by A(ν1). This is
also the case if the vectors {ek} are intrinsically orthogonal5. Precisely, in order to re-
determine some term, the latter is re-injected into the residual function, which is thus
not far from being indeed composed of only one term. Hence, the method presented in
Sect. A.1.4, along with improving the frequency values, improves also their respective
amplitudes. In order to study this process more rigorously, let us consider a function
composed of two terms:

f(t) = A1 e1(t) + A2 e2(t) (A.17)

For now, we suppose that the two frequencies are obtained exactly at the first shot.
The orthonormalisation process gives then the following amplitudes (see Sect. A.1.3):

first step:
{
A

(1)
1 = 〈f, e1〉

second step:

⎧⎪⎪⎨
⎪⎪⎩

A
(1)
2 = 〈f, u2〉 a22 = 〈f, e2〉 − 〈f, e1〉 e12

‖e2 − e21 e1‖2

A
(2)
1 = A

(1)
1 + 〈f, u2〉 a21 = 〈f, e1〉 − 〈f, e2〉 − 〈f, e1〉 e12

‖e2 − e21 e1‖2 e21

(A.18)

in which we write e12 ≡ 〈e1, e2〉 ∈ C. Let us compare these results with the values given
directly by A(ν), but re-injecting and re-determining the first term:

first step:
{
A

(1)
1 = 〈f, e1〉

second step:
{
A

(1)
2 = 〈f − A

(1)
1 e1 , e2〉 = 〈f, e2〉 − 〈f, e1〉 e12

re-determination:
{
A

(2)
1 = 〈f − A

(1)
2 e2 , e1〉 = 〈f, e1〉 −

(
〈f, e2〉 − 〈f, e1〉 e12

)
e21

(A.19)

5The vectors {ek} are orthogonal if they correspond to very different frequencies (infinitely differ-
ent), if the width T of the interval is very large (infinitely large), or if the frequencies νk are integer
multiples of ν0 = 2π/T .
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We note that (A.18) and (A.19) are equal apart from a real factor, which can be
expressed as:

1

‖e2 − e21 e1‖2 =
1

〈e2 − e21 e1 , e2 − e21 e1〉
=

1

1− |e21|2
= 1 + |e21|2 + |e21|4 + |e21|6 + ...

(A.20)

If the two terms are nearly orthogonal, this factor is thus close to 1. Moreover, once the
first term has been re-determined, we can apply the same process to the second term
and repeat it iteratively. This gives the following chain:

A
(1)
2 = 〈f − A

(1)
1 e1 , e2〉 = 〈f, e2〉 − 〈f, e1〉 e12

A
(2)
1 = 〈f − A

(1)
2 e2 , e1〉 = 〈f, e1〉 −

(
〈f, e2〉 − 〈f, e1〉 e12

)
e21

A
(2)
2 = 〈f − A

(2)
1 e1 , e2〉 =

(
〈f, e2〉 − 〈f, e1〉 e12

) (
1 + |e21|2

)
A

(3)
1 = 〈f − A

(2)
2 e2 , e1〉 = 〈f, e1〉 −

(
〈f, e2〉 − 〈f, e1〉 e12

)
e21

(
1 + |e21|2

)
A

(3)
2 = 〈f − A

(3)
1 e1 , e2〉 =

(
〈f, e2〉 − 〈f, e1〉 e12

) (
1 + |e21|2 + |e21|4

)
A

(4)
1 = 〈f − A

(3)
2 e2 , e1〉 = 〈f, e1〉 −

(
〈f, e2〉 − 〈f, e1〉 e12

)
e21

(
1 + |e21|2 + |e21|4

)
...

(A.21)
The effect of the re-determination is obvious here (and it can be proved by recursion):
it simply adds a correction of higher order in |e21|2. The amplitudes converge thus
rapidly toward the values given by the orthonormalisation process (and of course, the
convergence is faster if the terms are nearly orthogonal). This is generalised to more
than two frequencies, so we conclude that the successive re-determination of the terms
is equivalent to projecting f using the orthonormal basis.

In the above calculation, we supposed that the two frequencies were obtained im-
mediately at the maximum precision. In practice, the re-determination of one term,
along with the refinement of its amplitude, improves also its frequency (this was the
first purpose of the re-determination). In this context, we consider that the repeated
modification of the orthonormal basis is an unnecessary intensive part of the algorithm,
since the re-determination process already realises it indirectly. As a precaution, it is
still possible to compute the orthonormal basis only once the “final” improvements of
the terms have been obtained, in order to suppress the potential imperfections of the
amplitudes that could subsist.

The whole procedure is illustrated in Tab. A.2, using the same five-term function
as in Tab. A.1: at each iteration, all the terms are re-injected and re-determined one
by one. Hence, the amplitudes are rapidly as good as using the orthonormal basis, and
the frequencies are clearly improved as well.
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Re-determination of the 2nd term (ν2 = 7 , A2 = 8)
iteration frequency amplitude

1 7.000000000047539 8.000000002849147
2 7.000000000003888 8.000000000000002
3 6.999999999999364 7.999999999999999
4 7.000000000000049 8.000000000000000

Table A.2 – Refinement of the frequencies and amplitudes by re-determination. The function contains
the same five terms as in Tab. A.1, but only the second one is shown here. From Tab. A.1, the final
result using the orthonormal basis is: ν2 = 7.000000000047539 and A2 = 8.000000000000007.

A.2 Application to the orbital dynamics of Atlas

Atlas is a natural satellite of Saturn (the closest one to the outer edge of the “A” ring).
Its orbital dynamics is very rich because of the perturbations by other satellites, as Pro-
metheus and Pandora, but also Janus, Epimetheus and Mimas. The Cassini spacecraft
provided very accurate images of these various satellites, allowing detailed dynamical
studies. In our paper Renner et al. (2016), it is shown that the orbital dynamics of At-
las is mainly driven by its 53 :54 mean-motion resonance with Prometheus. Since they
have comparable eccentricities, the two resonant combinations (which are respectively
Corotation and Lindblad eccentricity resonances):

σC = 54λP − 53λA −�P

σL = 54λP − 53λA −�A

(A.22)

have comparable strengths on the dynamics of Atlas (same order of magnitude in the
disturbing function). This gives rise to a chaotic dynamics with a Lyapunov time of∼ 10
years, to be compared to the orbital periods (∼ 14 hours). In that work, the frequency
analysis allows to track the proper frequencies from simplified integrable models to the
real chaotic case, in which the proper frequencies are not defined anymore. In the
full system, the frequency analysis still provides some frequencies and amplitudes (for
well-chosen tabulation intervals [0, T ]), which can be compared to their counterparts in
the integrable models. The addition of Pandora as a perturbing body does not change
significantly the measured frequencies and their rates of variation, showing that the
motion of Atlas is indeed dominated by its interaction with Prometheus. The reader
can find the full article by Renner et al. (2016) at:

https://doi.org/10.3847/0004-6256/151/5/122

It is also available in free access at:

https://arxiv.org/abs/1602.01967
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Appendix B

Computational details

In this chapter, we give some details about long analytical computations which would
have bother the reader interested by new results.

B.1 General proofs

B.1.1 Generalisation of a transformation applied to the posi-
tions

We present here the complete proof of the canonical nature of the first change of co-
ordinates given in Sect. 2.2.4. It amounts to show that for (Q,q) ∈ RN×RN , a function
of the form:

F (Q,q) = (Df(q)−1)T Q (B.1)

verifies automatically:
DqF (DQF )T = DQF (DqF )T (B.2)

This is equivalent to show that the matrix M = DqF (DQF )T is symmetric, that is
Mij = Mji. Let us use the notation A = (Df−1)T. We have thus DQF = A and:

DqF = Dq

⎛
⎜⎜⎜⎝
∑

k A1kQk∑
k A2kQk∑
k A3kQk

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
∑

k
∂A1k

∂q1
Qk

∑
k

∂A1k

∂q2
Qk

∑
k

∂A1k

∂q3
Qk . . .∑

k
∂A2k

∂q1
Qk

∑
k

∂A2k

∂q2
Qk

∑
k

∂A2k

∂q3
Qk . . .∑

k
∂A3k

∂q1
Qk

∑
k

∂A3k

∂q2
Qk

∑
k

∂A3k

∂q3
Qk . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠ (B.3)

The column n of the matrix DqF is thus equal to the vector ∂A/∂qn Q. Then, we can
use the following matrix identity:

∂M−1

∂x
= −M−1∂M

∂x
M−1 (B.4)

which gives, from the definition of A:

∂A
∂qn

= −(Df−1)T
(
∂Df

∂qn

)T

(Df−1)T = −A
(
∂Df

∂qn

)T

A (B.5)
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By computing the products and using (Df)m = ∂f/∂qm, one component of this matrix
writes: (

∂A
∂qn

)
ik

= −
∑
,m

∂2f
∂qm∂qn

AimAk (B.6)

By multiplication by Q, this gives the components of the matrix DqF :

(DqF )in = −
∑
k,,m

∂2f
∂qm∂qn

AimAkQk (B.7)

By multiplication by AT, we finally obtain the components of the matrix M:

Mij = −
∑

k,,m,n

∂2f
∂qm∂qn

AimAjnAkQk (B.8)

which are equal by permutation of i and j (since the indexes m and n are mute). This
closes the proof.

B.2 Analytical non-resonant secular model

B.2.1 Analytical integral of the odd Legendre polynomials

The following proof is required to compute the analytical form of the non-resonant
secular model (Sect. 3.2.1). We want to show that for k ∈ N:

Ik =

∫ 2π

0

(α cosλ+ β sinλ)2k+1 dλ = 0 (B.9)

where α, β ∈ R. It is immediate to verify this result for k = 0. Then, if it holds for the
index k, we have:

Ik+1 =

∫ 2π

0

(α cosλ+ β sinλ)2(k+1)+1 dλ

=

∫ 2π

0

(α cosλ+ β sinλ)(α cosλ+ β sinλ)2k+2 dλ

(B.10)

which can be integrated by parts:

Ik+1 =
[
(α sinλ− β cosλ)(α cosλ+ β sinλ)2k+2

]2π
0

−
∫ 2π

0

(α sinλ− β cosλ)(2k + 2)(α cosλ+ β sinλ)2k+1(−α sinλ+ β cosλ) dλ

(B.11)
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The first part is zero, hence, regrouping the terms:

Ik+1 = (2k + 2)

∫ 2π

0

[
α2 + β2 − (α cosλ+ β sinλ)2

]
(α cosλ+ β sinλ)2k+1 dλ

= (2k + 2)
[
(α2 + β2)Ik − Ik+1

] (B.12)

By factorising every Ik+1 in the left-hand side, we finally get:

Ik+1 =
2k + 2

2k + 3
(α2 + β2)Ik = 0 (B.13)

which ends the proof.

B.2.2 Analytical integral of the even Legendre polynomials

The following proof is required to compute the analytical form of the non-resonant
secular model (Sect. 3.2.1). We want to show that for k > 0:

Jk =

∫ 2π

0

(α cosλ+ β sinλ)2k dλ =
1× 3× 5× ...× (2k − 1)

2× 4× 6× ...× 2k
(α2 + β2)k

=
2k − 1

2k
(α2 + β2)Jk−1

(B.14)

where α, β ∈ R. It is immediate to verify this result for k = 1. Then, if it holds for the
index k, we have:

Jk+1 =

∫ 2π

0

(α cosλ+ β sinλ)2(k+1) dλ

=

∫ 2π

0

(α cosλ+ β sinλ)(α cosλ+ β sinλ)2k+1 dλ

(B.15)

which can be integrated by parts:

Jk+1 =
[
(α sinλ− β cosλ)(α cosλ+ β sinλ)2k+1

]2π
0

−
∫ 2π

0

(α sinλ− β cosλ)(2k + 1)(α cosλ+ β sinλ)2k(−α sinλ+ β cosλ) dλ

(B.16)
The first part is zero, hence, regrouping the terms:

Jk+1 = (2k + 1)

∫ 2π

0

[
α2 + β2 − (α cosλ+ β sinλ)2

]
(α cosλ+ β sinλ)2k dλ

= (2k + 1)
[
(α2 + β2)Jk − Jk+1

] (B.17)

By factorizing every Jk+1 in the left-hand side, we finally get:

Jk+1 =
2(k + 1)− 1

2(k + 1)
(α2 + β2)Jk (B.18)

which ends the proof.
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B.2.3 First terms of the development

By expanding the inverse of the mutual distances in Legendre polynomials, an analytical
expression of the non-resonant secular Hamiltonian can be obtained. The general form
of the result is presented in equations (3.26) and (3.27), and the first terms are the
followings:

n = 1

α1 = 1/8

P 0
1 (x) = 1

Q0
1(x) = −1 + 3x2

n = 2

α2 = 9/1024

P 0
2 (x) = 2 + 3x2

Q0
2(x) = 3− 30x2 + 35x4

P 1
2 (x) = 10

Q1
2(x) = −1 + 7x2

n = 3

α3 = 25/65536

P 0
3 (x) = 2 (8 + 40x2 + 15x4)

Q0
3(x) = −5 + 105x2 − 315x4 + 231x6

P 1
3 (x) = 210 (2 + x2)

Q1
3(x) = 1− 18x2 + 33x4

P 2
3 (x) = 63

Q2
3(x) = −1 + 11x2

n = 4

α4 = 245/33554432

P 0
4 (x) = 5 (16 + 168x2 + 210x4 + 35x6)

Q0
4(x) = 35− 1260x2 + 6930x4 − 12012x6 + 6435x8

P 1
4 (x) = 630 (48 + 80x2 + 15x4)

Q1
4(x) = −1 + 33x2 − 143x4 + 143x6

P 2
4 (x) = 1386 (10 + 3x2)

Q2
4(x) = 1− 26x2 + 65x4

P 3
4 (x) = 858

Q3
4(x) = −1 + 15x2

n = 5

α5 = 567/4294967296

P 0
5 (x) = 14 (128 + 2304x2 + 6048x4 + 3360x6 + 315x8)

Q0
5(x) = −63 + 3465x2 − 30030x4 + 90090x6 − 109395x8 + 46189x10

P 1
5 (x) = 9240 (32 + 112x2 + 70x4 + 7x6)

Q1
5(x) = 7− 364x2 + 2730x4 − 6188x6 + 4199x8

P 2
5 (x) = 240240 (8 + 8x2 + x4)

Q2
5(x) = −1 + 45x2 − 255x4 + 323x6

P 3
5 (x) = 8580 (14 + 3x2)

Q3
5(x) = 3− 102x2 + 323x4

P 4
5 (x) = 12155

Q4
5(x) = −1 + 19x2
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n = 6

α6 = 7623/549755813888
P 0
6 (x) = 14 (256 + 7040x2 + 31690x4 + 36960x6 + 11550x8 + 693x10)

Q0
6(x) = 231− 18018x2 + 225225x4 − 1021020x6 + 2078505x8 − 1939938x10 + 676039x12

P 1
6 (x) = 60060 (128 + 768x2 + 1008x4 + 336x2 + 21x8)

Q1
6(x) = −3 + 225x2 − 2550x4 + 9690x6 − 14535x8 + 7429x10

P 2
6 (x) = 90090 (80 + 168x2 + 70x4 + 5x6)

Q2
6(x) = 5− 340x2 + 3230x4 − 9044x6 + 7429x8

P 3
6 (x) = 12155 (224 + 160x2 + 15x4)

Q3
6(x) = −5 + 285x2 − 1995x4 + 3059x6

P 4
6 (x) = 230945 (6 + x2)

Q4
6(x) = 1− 42x2 + 161x4

P 5
6 (x) = 29393

Q5
6(x) = −1 + 23x2

n = 7

α7 = 5577/70368744177664

P 0
7 (x) = 264 (1024 + 39936x2 + 274560x4 + 549120x6 + 360360x8 + 72072x10 + 3003x12)

Q0
7(x) = −429 + 45045x2 − 765765x4 + 4849845x6 − 14549535x8 + 22309287x10 − 16900975x12 + 5014575x14

P 1
7 (x) = 180180 (768 + 7040x2 + 15840x4 + 11088x6 + 2310x8 + 99x10)

Q1
7(x) = 33− 3366x2 + 53295x4 − 298452x6 + 735471x8 − 817190x10 + 334305x12

P 2
7 (x) = 8423415 (1280 + 4608x2 + 4032x4 + 960x6 + 45x8)

Q2
7(x) = −1 + 95x2 − 1330x4 + 6118x6 − 10925x8 + 6555x10

P 3
7 (x) = 35565530 (192 + 288x2 + 90x4 + 5x6)

Q3
7(x) = 1− 84x2 + 966x4 − 3220x6 + 3105x8

P 4
7 (x) = 19399380 (72 + 40x2 + 3x4)

Q4
7(x) = −1 + 69x2 − 575x4 + 1035x6

P 5
7 (x) = 4056234 (22 + 3x2)

Q5
7(x) = (−1 + 5x2) (−1 + 45x2)

P 6
7 (x) = 1300075

Q6
7(x) = −1 + 27x2

n = 8

α8 = 96525/72057594037927936

P 0
8 (x) = 429 (2048 + 107520x2 + 1048320x4 + 3203200x6 + 3603600x8 + 1513512x10 + 210210x12 + 6435x14)

Q0
8(x) = 6435− 875160x2 + 19399380x4 − 162954792x6 + 669278610x8 − 1487285800x10

+1825305300x12 − 1163381400x14 + 300540195x16

P 1
8 (x) = 510510 (4096 + 53248x2 + 183040x4 + 219648x6 + 96096x8 + 13728x10 + 429x12)

Q1
8(x) = −143 + 19019x2 − 399399x4 + 3062059x6 − 10935925x8 + 19684665x10 − 17298645x12 + 5892945x14

P 2
8 (x) = 176534358 (512 + 2816x2 + 4224x4 + 2112x6 + 330x8 + 11x10)

Q2
8(x) = 11− 1386x2 + 26565x4 − 177100x6 + 512325x8 − 660330x10 + 310155x12

P 3
8 (x) = 25219194 (1792 + 4608x2 + 3024x4 + 560x6 + 21x8)

Q3
8(x) = −21 + 2415x2 − 40250x4 + 217350x6 − 450225x8 + 310155x10

P 4
8 (x) = 87885070 (528 + 616x2 + 154x4 + 7x6)

Q4
8(x) = 7− 700x2 + 9450x4 − 36540x6 + 40455x8

P 5
8 (x) = 47322730 (176 + 80x2 + 5x4)

Q5
8(x) = −5 + 405x2 − 3915x4 + 8091x6

P 6
8 (x) = 23401350 (26 + 3x2)

Q6
8(x) = 3− 174x2 + 899x4

P 7
8 (x) = 19389690

Q7
8(x) = −1 + 31x2
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B.3 Equations of motion in the averaged coordin-

ates

B.3.1 Non-resonant case

In this section, we detail the equations of motion for the secular system in the non-
resonant case. The Hamiltonian function F(L,G,H, g) is given by (3.13) and (3.28).
Dropping the constant parts and making apparent the required averages, it writes:

F = − 1

(2π)N+1

∫ 2π

0

∫ 2π

0

...

∫ 2π

0

N∑
i=1

μi

|r− ri| dλ1dλ2...dλN d�

= − 1

4π2

∫ 2π

0

(
N∑
i=1

∫ 2π

0

μi

|r− ri| dλi

)
d�

(B.19)

Since the variables λi are mute, we can gather each integral of the summation into a
single integral, realised over a common variable λ
:

F = − 1

4π2

∫ 2π

0

∫ 2π

0

(
N∑
i=1

μi

|r− ri|

)
dλ
 d� (B.20)

Finally, it is more convenient to perform the integral over the true anomaly ν instead
of the mean anomaly � = M . By using (2.26), we get:

F = − 1

4π2

∫ 2π

0

∫ 2π

0

(
N∑
i=1

μi

|r− ri|

)
(1− e2)3/2

(1 + e cos ν)2
dλ
 dν (B.21)

Since (B.21) is written in terms of the Keplerian elements:

a =
L2

μ
; e =

√
1− G2

L2
; I = acos

H

G
; ω = g ; Ω = h (B.22)

its partial derivatives are computed using the chain rule:⎧⎪⎨
⎪⎩

∂F
∂G

=
∂F
∂e

∂e

∂G
+

∂F
∂I

∂I

∂G
∂F
∂H

=
∂F
∂I

∂I

∂H

;

⎧⎪⎪⎨
⎪⎪⎩

∂F
∂g

=
∂F
∂ω

∂F
∂h

= 0

(B.23)

From (B.22), the required partial derivatives of the Keplerian elements write:

∂e

∂G
= − G

μae
;

∂I

∂G
=

cos I

G sin I
;

∂I

∂H
=

−1

G sin I
(B.24)

The computation of the dynamical equations (B.23) requires the partial derivatives of
F with respect to the Keplerian elements. This is realised by inverting the integrals
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and partial derivatives symbols (this holds as long as there is no crossing between
the orbits considered). Injecting the explicit expression of F (B.21) in the dynamical
equations (B.23), we get:

∂F
∂G

=
1

4π2

∫ 2π

0

∫ 2π

0

[(
N∑
i=1

μi
r− ri
|r− ri|3

)
·
(
∂r

∂e

∂e

∂G
+

∂r

∂I

∂I

∂G

)
(1− e2)3/2

(1 + e cos ν)2

+

(
N∑
i=1

μi

|r− ri|

) √
1− e2

(1 + e cos ν)2

(
3e+

2(1− e2) cos ν

1 + e cos ν

)
∂e

∂G

]
dλ
 dν

∂F
∂H

=
1

4π2

∫ 2π

0

∫ 2π

0

(
N∑
i=1

μi
r− ri
|r− ri|3

)
· ∂r
∂I

∂I

∂H

(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

∂F
∂g

=
1

4π2

∫ 2π

0

∫ 2π

0

(
N∑
i=1

μi
r− ri
|r− ri|3

)
· ∂r
∂ω

(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

∂F
∂h

= 0

The partial derivative of F with respect to h is zero because of the average (see
Sect. 3.2.1), but the integrand takes non-zero values.

At this point, the partial derivatives of r with respect to the Keplerian elements are
the only ones which have not been explicitly written in this section. Using the notation
r = r n with:

r =
a(1− e2)

1 + e cos ν
and n =

⎛
⎝cos(ω + ν) cosΩ− sin(ω + ν) sinΩ cos I
cos(ω + ν) sinΩ + sin(ω + ν) cosΩ cos I

sin(ω + ν) sin I

⎞
⎠ (B.25)

we give them all for completeness (some of them are used in the following sections):

∂r

∂a
=

r

a
n (B.26)

∂r

∂e
= −r cos ν + 2ae

1 + e cos ν
n (B.27)

∂r

∂I
= r

⎛
⎝ sin(ω + ν) sinΩ sin I
− sin(ω + ν) cosΩ sin I

sin(ω + ν) cos I

⎞
⎠ (B.28)
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∂r

∂ω
= r

⎛
⎝− sin(ω + ν) cosΩ− cos(ω + ν) sinΩ cos I
− sin(ω + ν) sinΩ + cos(ω + ν) cosΩ cos I

cos(ω + ν) sin I

⎞
⎠ (B.29)

∂r

∂Ω
= r

⎛
⎝− cos(ω + ν) sinΩ− sin(ω + ν) cosΩ cos I

cos(ω + ν) cosΩ− sin(ω + ν) sinΩ cos I
0

⎞
⎠ (B.30)

∂r

∂ν
=

re sin ν

1 + e cos ν
n+ r

⎛
⎝− sin(ω + ν) cosΩ− cos(ω + ν) sinΩ cos I
− sin(ω + ν) sinΩ + cos(ω + ν) cosΩ cos I

cos(ω + ν) sin I

⎞
⎠ (B.31)

B.3.2 Non-resonant case with a distant perturber

In this section, we detail the equations of motion for the secular system in the non-
resonant case, with the presence of an additional planet with non-zero eccentricity and
inclination (Chp. 5). The equations are quite generic: this perturber is not necessar-
ily “distant”. The Hamiltonian function F(P ′

ω, L,G,H, ω′, g, δh) is given by (5.11).
Making apparent the required averages, its explicit form is F = F0 + FP + FS with:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F0 = ν ′
ωP

′
ω − ν ′

ΩH

FP = − 1

4π2

∫ 2π

0

∫ 2π

0

(
N∑
i=1

μi

|r− ri|

)
(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

FS = − 1

4π2

∫ 2π

0

∫ 2π

0

μ′

|r− r′|
(1− e′2)3/2

(1 + e′ cos ν ′)2
(1− e2)3/2

(1 + e cos ν)2
dν ′ dν

(B.32)

In the expression of the planar component FP , the mean longitudes of all the planets
i are gathered in the mute variable λ
, resulting in a single integral (see Sect. B.3.1).
In the spatial component FS, both the integrals are realised over the true anomalies,
resulting in the two coefficients depending on e, ν, e′ and ν ′. The canonical coordinates
used are the same as in Sect. B.3.1, except that δh is the relative ascending node instead
of simply h = Ω. However, since Ω appears only in FS and only through δh = Ω− Ω′,
the partial derivative of F with respect to δh is equal to its partial derivative with
respect to Ω.

Since λ
, ν ′ and ν are all mute variables, the components FP and FS can actually
be gathered into a single double integral using the common angle ν
:

FPS = FP + FS

= − 1

4π2

∫ 2π

0

∫ 2π

0

(
μ′

|r− r′|
(1− e′2)3/2

(1 + e′ cos ν
)2
+

N∑
i=1

μi

|r− ri|

)
(1− e2)3/2

(1 + e cos ν)2
dν
 dν

(B.33)
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The average may seem a bit confusing in that form, since ν
 has a different meaning
for each planet. However, it is better handled numerically because it requires the
computation of only one double average.

The dynamical equations are computed using the chain rule:⎧⎪⎨
⎪⎩

∂F
∂G

=
∂FPS

∂e

∂e

∂G
+

∂FPS

∂I

∂I

∂G
∂F
∂H

= −νΩ +
∂FPS

∂I

∂I

∂H

;

⎧⎪⎪⎨
⎪⎪⎩

∂F
∂g

=
∂FPS

∂ω
∂F
∂δh

=
∂FS

∂Ω

(B.34)

where the derivatives of the Keplerian elements with respect to the canonical coordin-
ates can be taken from (B.24).

The computation of the dynamical equations (B.34) requires the partial derivatives
of FS and FPS with respect to the Keplerian elements. This is realised by inverting
the integrals and partial derivatives symbols (this holds as long as there is no crossing
between the orbits considered). Injecting the explicit expression of F (B.32-B.33) in
the dynamical equations (B.34), we get:

∂F
∂G

=
1

4π2

∫ 2π

0

∫ 2π

0

[
(
μ′ r− r′

|r− r′|3
(1− e′2)3/2

(1 + e′ cos ν
)2
+

N∑
i=1

μi
r− ri
|r− ri|3

)
·
(
∂r

∂e

∂e

∂G
+

∂r

∂I

∂I

∂G

)
(1− e2)3/2

(1 + e cos ν)2

+

(
μ′

|r− r′|
(1− e′2)3/2

(1 + e′ cos ν
)2
+

N∑
i=1

μi

|r− ri|

) √
1− e2

(1 + e cos ν)2

(
3e+

2(1− e2) cos ν

1 + e cos ν

)
∂e

∂G]
dν
 dν

∂F
∂H

=
1

4π2

∫ 2π

0

∫ 2π

0(
μ′ r− r′

|r− r′|3
(1− e′2)3/2

(1 + e′ cos ν
)2
+

N∑
i=1

μi
r− ri
|r− ri|3

)
· ∂r
∂I

∂I

∂H

(1− e2)3/2

(1 + e cos ν)2
dν
 dν

∂F
∂g

=
1

4π2

∫ 2π

0

∫ 2π

0(
μ′ r− r′

|r− r′|3
(1− e′2)3/2

(1 + e′ cos ν
)2
+

N∑
i=1

μi
r− ri
|r− ri|3

)
· ∂r
∂ω

(1− e2)3/2

(1 + e cos ν)2
dν
 dν

∂F
∂δh

=
1

4π2

∫ 2π

0

∫ 2π

0

μ′ r− r′

|r− r′|3 · ∂r
∂Ω

(1− e′2)3/2

(1 + e′ cos ν ′)2
(1− e2)3/2

(1 + e cos ν)2
dν ′ dν
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At this point, the partial derivatives of r with respect to the Keplerian elements are the
only ones which have not been explicitly written in this section. They can be found in
Sect. B.3.1, equations (B.26-B.31).

B.3.3 Case of a single resonance

In this section, we detail the equations of motion for the semi-secular system in the
resonant case. The Hamiltonian function K(Σ, U, V, σ, u) is given by (3.57) and (3.58).
Making apparent the required averages, its explicit form is K = K0 +KN +KR with:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0 = − μ

2a
− np

kp
k

√
μ a

KN = − 1

4π2

∫ 2π

0

∫ 2π

0

(∑
i �=p

μi

|r− ri|

)
(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

KR = − 1

2πk

∫ 2πk

0

μp

(
1

|r− rp| − r · rp
|rp|3

)
dλp

(B.35)

In the expression of the non-resonant part KN , the mean longitudes of all the planets
i 	= p are gathered in the mute variable λ
, resulting in a single integral (see Sect. B.3.1).
Moreover, the integral over γ is realised through the true anomaly ν, since:

• a turn of γ equivalent to kp turns of λ

• the integrand of KN is 2π-periodic in λ so one turn is enough

• the integral over λ can be turned into an integral over ν by using (2.26)

In the expression of the resonant part KR, the integral over γ is realised through k turns
of λp. We note, however, that r depends also on λp via the resonant angle σ (3.41).
Indeed, in KR the mean anomaly of the particle has to be replaced by:

M(σ, λp, ω,Ω) =
1

k
σ +

kp
k
(λp − ω − Ω) (B.36)

and its true anomaly ν accordingly. Since (B.35) is written in terms of the Keplerian
elements: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =
(kΣ)2

μ

e =

√
1−

(
U + kpΣ

kΣ

)2

I = acos

(
V + kpΣ

U + kpΣ

)
;

⎧⎪⎨
⎪⎩

ω = u

Ω = v

ν = f(Σ, U, σ, u, v)

(B.37)
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its partial derivatives are computed using the chain rule:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂K
∂Σ

=
∂K
∂a

∂a

∂Σ
+

∂K
∂e

∂e

∂Σ
+

∂K
∂I

∂I

∂Σ
+

∂KR

∂ν

∂ν

∂Σ
∂K
∂U

=
∂K
∂e

∂e

∂U
+

∂K
∂I

∂I

∂U
+

∂KR

∂ν

∂ν

∂U
∂K
∂V

=
∂K
∂I

∂I

∂V

;

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂K
∂σ

=
∂KR

∂ν

∂ν

∂σ
∂K
∂u

=
∂K
∂ω

+
∂KR

∂ν

∂ν

∂ω
∂K
∂v

= 0

(B.38)
Most of the partial derivatives of the Keplerian elements are not too complicated (only
the non-zero ones are shown here):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂Σ
=

2k2Σ

μ

∂e

∂Σ
=

√
1− e2

e

U

kΣ2

∂I

∂Σ
=

cos I − 1

sin I

kp
U + kpΣ

;

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂e

∂U
= −

√
1− e2

e

1

kΣ
∂I

∂U
=

cos I

sin I

1

U + kpΣ

∂I

∂V
=

−1

sin I

1

U + kpΣ

(B.39)

but the true anomaly ν appearing in KR requires a specific treatment. Indeed, it is
function of both of the angles (σ, u, v) and the momenta (Σ, U), because its value from
the mean anomaly (B.36) depends on the eccentricity e through Kepler’s equation.
The partial derivatives of the true anomaly with respect to the angles are obtained
straightforwardly: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ν

∂σ
=

∂ν

∂M

∂M

∂σ
=

1

k

(1 + e cos ν)2

(1− e2)3/2

∂ν

∂ω
=

∂ν

∂M

∂M

∂ω
= −kp

k

(1 + e cos ν)2

(1− e2)3/2

∂ν

∂Ω
=

∂ν

∂M

∂M

∂Ω
= −kp

k

(1 + e cos ν)2

(1− e2)3/2

(B.40)

Its partial derivatives with respect to the momenta are more subtle. The dependence
of ν on the eccentricity can be made apparent by considering it as a three-stage nested
function, passing through the eccentric anomaly E:

ν ≡ ν
(
e, E

(
e,M(σ, λp, ω,Ω)

))
(B.41)

Hence, the required derivatives can be computed as:

∂ν

∂Σ
=

dν

de

∂e

∂Σ
;

∂ν

∂U
=

dν

de

∂e

∂U
(B.42)

using (B.39). It remains only to compute the total derivative of ν with respect to the
eccentricity:

dν

de
=

∂ν

∂e
+

∂ν

∂E

∂E

∂e
(B.43)
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Two partial derivatives are obtained from the relation (2.21) between the real and
eccentric anomalies:

∂ν

∂e
=

sinE√
1− e2 (1− e cosE)

;
∂ν

∂E
=

√
1− e2

1− e cosE
(B.44)

The last one can be computed from Kepler’s equation, considering the eccentric anomaly
E as a function of M and e:

M = E − e sinE =⇒ 0 = ∂E − e cosE ∂E − sinE ∂e (B.45)

which leads finally to:
∂E

∂e
=

sinE

1− e cosE
(B.46)

Gathering (B.44) and (B.46) together, the total derivative of ν (B.43) is finally:

dν

de
=

2− e2 − e cosE√
1− e2 (1− e cosE)2

sinE (B.47)

Now that we know all the partial derivatives of the Keplerian elements with respect
to the canonical coordinates (Σ, U, V, σ, u, v), the computation of the dynamical equa-
tions (B.38) requires the partial derivatives of K with respect to the Keplerian elements.
This is realised by inverting the integrals and partial derivatives symbols (this holds
as long as there is no crossing between the orbits considered). Injecting the explicit
expression of K (B.35) in the dynamical equations (B.38), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K0

∂Σ
=

μ

aΣ
− npkp

∂KN

∂Σ
=

1

4π2

∫ 2π

0

∫ 2π

0

[(∑
i �=p

μi
r− ri
|r− ri|3

)
·
(
∂r

∂a

∂a

∂Σ
+

∂r

∂e

∂e

∂Σ
+

∂r

∂I

∂I

∂Σ

)
(1− e2)3/2

(1 + e cos ν)2

+

(∑
i �=p

μi

|r− ri|

) √
1− e2

(1 + e cos ν)2

(
3e+

2(1− e2) cos ν

1 + e cos ν

)
∂e

∂Σ

]
dλ
 dν

∂KR

∂Σ
=

1

2πk

∫ 2πk

0

μp

(
r− rp
|r− rp|3 +

rp
|rp|3

)
·
(
∂r

∂a

∂a

∂Σ
+
(∂r
∂e

+
∂r

∂ν

dν

de

) ∂e

∂Σ
+

∂r

∂I

∂I

∂Σ

)
dλp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K0

∂U
= 0

∂KN

∂U
=

1

4π2

∫ 2π

0

∫ 2π

0

[(∑
i �=p

μi
r− ri
|r− ri|3

)
·
(
∂r

∂e

∂e

∂U
+

∂r

∂I

∂I

∂U

)
(1− e2)3/2

(1 + e cos ν)2

+

(∑
i �=p

μi

|r− ri|

) √
1− e2

(1 + e cos ν)2

(
3e+

2(1− e2) cos ν

1 + e cos ν

)
∂e

∂U

]
dλ
 dν

∂KR

∂U
=

1

2πk

∫ 2πk

0

μp

(
r− rp
|r− rp|3 +

rp
|rp|3

)
·
((∂r

∂e
+

∂r

∂ν

dν

de

) ∂e

∂U
+

∂r

∂I

∂I

∂U

)
dλp
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K0

∂V
= 0

∂KN

∂V
=

1

4π2

∫ 2π

0

∫ 2π

0

(∑
i �=p

μi
r− ri
|r− ri|3

)
· ∂r
∂I

∂I

∂V

(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

∂KR

∂V
=

1

2πk

∫ 2πk

0

μp

(
r− rp
|r− rp|3 +

rp
|rp|3

)
· ∂r
∂I

∂I

∂V
dλp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂K0

∂σ
= 0

∂KN

∂σ
= 0

∂KR

∂σ
=

1

2πk

∫ 2πk

0

μp

(
r− rp
|r− rp|3 +

rp
|rp|3

)
· ∂r
∂ν

∂ν

∂σ
dλp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K0

∂u
= 0

∂KN

∂u
=

1

4π2

∫ 2π

0

∫ 2π

0

(∑
i �=p

μi
r− ri
|r− ri|3

)
· ∂r
∂ω

(1− e2)3/2

(1 + e cos ν)2
dλ
 dν

∂KR

∂u
=

1

2πk

∫ 2πk

0

μp

(
r− rp
|r− rp|3 +

rp
|rp|3

)
·
(
∂r

∂ω
+

∂r

∂ν

∂ν

∂ω

)
dλp

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂K0

∂v
= 0

∂KN

∂v
= 0

∂KR

∂v
= 0

The partial derivative of KN with respect to v is zero because of the average (see
Sect. 3.3.3), but the integrand takes non-zero values.

At this point, the partial derivatives of r with respect to the Keplerian elements are
the only ones which have not been explicitly written in this section. They can be found
in Sect. B.3.1, equations (B.26-B.31).
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B.4 Secular Hamiltonian with a distant perturber

in the fully planar case

Figure B.1 presents the level curves of the secular Hamiltonian in the case of a zero-
inclination eccentric perturber and a zero-inclination trans-Neptunian object. If we
consider an arbitrarily inclined trans-Neptunian object, on the contrary, each of these
lines corresponds to the limit of a forbidden region in the Poincaré sections (Sect. 5.3).
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Figure B.1 – Level curves of the secular Hamiltonian in the fully planar case (same as Beust, 2016).
The perturbations of both the internal planets and the distant one are completely taken into account
(numerical average). In order to ease the comparison with the Poincaré sections throughout Chp. 5,
we use the perihelion distance q instead of e, and Δ
 − π/2 instead of Δ
.
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B.5 Numerical treatment of the singularities

B.5.1 Splitting of the integral at node crossings

The computation of the secular (or semi-secular) Hamiltonian requires the numerical
averaging of the inverse of the mutual distance between two bodies on Keplerian or-
bits. Here, the two bodies are called generically the “particle” and the “planet” (the
latter with primed elements). The integrand is singular if the two orbits cross, but the
double average is still well defined (Gronchi and Milani, 1999). However, the numerical
computation can fail if the singularity is not explicitly taken into account. In practice,
it is enough to split the integral where the crossing occurs and sum the segments.

If one of the two orbits lie in the reference plane, a necessary condition for a crossing
to occur is that the second body is at one of its nodes (true anomaly equal to −ω or
−ω + π). This is the case for the planets considered in Chp. 3 or for the inner planets
used in Chp. 5. By default, the double integral can always be split at these two points,
whether a crossing happens or not.

The value of the true anomaly of the particle at a potential crossing point is less
trivial if the planet has an eccentric and inclined orbit, as for the outer planet considered
in Chp. 5. Let us introduce an intermediary reference frame (x̃, ỹ, z̃), in which the z̃-
axis is perpendicular to the orbital plane of the planet (in the direction of its angular
momentum). For now, the x̃- and ỹ-axes can be chosen arbitrarily in the orbital plane
of the planet, so we will use the simplest possibility, in which the x̃-axis points toward
the ascending node of the planet. In that reference frame, the instantaneous position
of the particle can be written in terms of its conventional coordinates (x, y, z):

⎛
⎝x̃
ỹ
z̃

⎞
⎠ = R1(−I ′)R3(−Ω′)

⎛
⎝x
y
z

⎞
⎠ (B.48)

with as usual:⎛
⎝x
y
z

⎞
⎠ =

a (1− e2)

1 + e cos ν

⎛
⎝cos(ω + ν) cosΩ− sin(ω + ν) sinΩ cos I
cos(ω + ν) sinΩ + sin(ω + ν) cosΩ cos I

sin(ω + ν) sin I

⎞
⎠ (B.49)

from Eqs. 2.28 and 2.29. The explicit computation of the two rotations appearing
in (B.48) gives:

⎛
⎝x̃
ỹ
z̃

⎞
⎠ =

a (1− e2)

1 + e cos ν

⎛
⎝ cosα cosΔΩ− sinα sinΔΩ cos I
sinα sin I sin I ′ + (cosα sinΔΩ + sinα cosΔΩ cos I) cos I ′

sinα sin I cos I ′ − (cosα sinΔΩ + sinα cosΔΩ cos I) sin I ′

⎞
⎠

(B.50)
where α = ω + ν and ΔΩ = Ω − Ω′. An orbit crossing can only happen at one of the
two points where the particle crosses the orbital plane of the planet, which means at
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z̃ = 0. The corresponding two values of the true anomaly ν of the particle are thus
given by the two solutions of:

tan(ω + ν) =
sinΔΩ sin I ′

sin I cos I ′ − cosΔΩ cos I sin I ′
(B.51)

As before, the double integral can always be split at these two points, whether a crossing
happens or not. This prevents from the more complicated tests of actual orbit crossings
presented in Sect. B.5.2.

B.5.2 The mutual nodal distances

As far as only the value of the secular Hamiltonian is required, the simple method
presented in Sect. B.5.1 can be used to split the integral in smooth segments easily
handled numerically. On the contrary, if the partial derivatives of the secular Hamilto-
nian are required (for instance to perform a numerical integration in the secular co-
ordinates, as in Chp. 5), we need a way to verify if an orbit crossing is reached or has
been encountered inside a given time-step. Indeed, contrary to the Hamiltonian itself,
some of the partial derivatives are not defined at orbit crossings, so a special care should
be taken. Convenient quantities were introduced by Gronchi (2002) in order to measure
the proximity to orbit crossings: the ascending and descending mutual nodal distances.
As we will see, they can be positive or negative according to the mutual positions of
the two Keplerian orbits, and one of them is equal to zero if a crossing occurs.

Let us introduce the mutual reference frame (x̃, ỹ, z̃), in which the z̃-axis is perpen-
dicular to the orbital plane of the planet (in the direction of its angular momentum),
and the x̃-axis points in the direction of the mutual ascending node of the particle, that
is, the point where it crosses the orbital plane of the planet from negative to positive
z̃ values. Then, we define the mutual arguments of perihelion ω̃ and ω̃′ as the angles
between the x̃-axis and the directions of the respective perihelia (measured along the
two orbits in the same direction as their true anomaly). The two mutual nodal distances
are defined as:

Δ± =
a(1− e2)

1± e cos ω̃
− a′(1− e′2)

1± e′ cos ω̃′ (B.52)

where ± stands for the ascending or descending mutual nodes. This distance is negative
if the node of the particle is located inside the orbit of the planet, positive if it is located
outside it, and zero at the exact crossing. The computation of ω̃ and ω̃′ is realised as
follows: let n and n′ be unit vectors pointing in the directions of the angular momenta
of the two bodies. In the conventional reference frame, they can be written in terms of
their orbital elements as:

n =

⎛
⎝ sinΩ sin I
− cosΩ sin I

cos I

⎞
⎠ ; n′ =

⎛
⎝ sinΩ′ sin I ′

− cosΩ′ sin I ′

cos I ′

⎞
⎠ (B.53)
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(see Sect. 2.1.3). The vector n′ gives directly the direction of the z̃-axis. On the other
hand, the x̃-axis is perpendicular to both n and n′ and it points in direction of the
mutual ascending node of the particle, so it is directed by the unit vector:

m =
n′ × n

|n′ × n| (B.54)

Setting the true anomaly to zero in (2.28), the directions of the two perihelia write:

p =

⎛
⎝cosω cosΩ− sinω sinΩ cos I
cosω sinΩ + sinω cosΩ cos I

sinω sin I

⎞
⎠ ; p′ =

⎛
⎝cosω′ cosΩ′ − sinω′ sinΩ′ cos I ′

cosω′ sinΩ′ + sinω′ cosΩ′ cos I ′

sinω′ sin I ′

⎞
⎠

(B.55)
in the conventional reference frame. The cosines of the mutual arguments of perihelion
are thus simply given by cos ω̃ = m · p and cos ω̃′ = m · p′. Their explicit calculation
from (B.53-B.55) gives the formulas used in Chp. 5, namely:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cos ω̃ =

cosω(sin I cos I ′ − cos I sin I ′ cosΔΩ) + sinω sin I ′ sinΔΩ√
1− (cos I cos I ′ + sin I sin I ′ cosΔΩ)2

cos ω̃′ =
− cosω′(sin I ′ cos I − cos I ′ sin I cosΔΩ) + sinω′ sin I sinΔΩ√

1− (cos I cos I ′ + sin I sin I ′ cosΔΩ)2

(B.56)

where ΔΩ = Ω − Ω′. In the case of a planet following a zero-inclination orbit (as the
distant planet considered in Sect. 5.3), we have of course ω̃ = ω, and ω̃′ is simplified
into:

cos ω̃′ = cos(Ω−�′) (B.57)

Finally, if the planet has a circular zero-inclination orbit (as the planets considered in
Chp. 3 or the inner planets used in Chp. 5), the mutual nodal distances (B.52) turn
simply to:

Δ± =
a(1− e2)

1± e cosω
− a′ (B.58)

One can note that the mutual nodes are not defined if the mutual inclination of the two
orbits is equal to zero. This was not a problem in the scope of this work, but this led
Gronchi and Tardioli (2013) to define another way to describe the “distance” between
two orbits, which is more general and more regular than its description in terms of
orbital elements.

B.5.3 Equations with a nodal distance as time variable

As stated in Sect. 5.2.3, the orbit crossings occurring in the numerical integration of the
secular system can be handled by a change of the independent (“time”) variable during
the integration. Indeed, taking the mutual nodal distance (Δ+ or Δ− accordingly)
as the new independent variable, it is straightforward to make an integration step
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arriving at the exact crossing point, which is then used to restart the integration after
the singularity. This method was introduced by Hénon (1982) in a more general way.
In this section, we detail the computation of the time derivative of the mutual nodal
distance, which is necessary to obtain the equations of motion in the new coordinates
(see Sect. 5.2.3). Using the chain rule, it writes generically:

dΔ±

dt
=

∂Δ±

∂g
ġ +

∂Δ±

∂δh
˙δh+

∂Δ±

∂G
Ġ+

∂Δ±

∂H
Ḣ +

∂Δ±

∂ω′ ω̇
′ (B.59)

where {ġ, ˙δh, Ġ, Ḣ, ω̇′} are obtained from the partial derivatives of the secular Hamilto-
nian F(P ′

ω, L,G,H, ω′, g, δh) detailed in the appendix B.3.2. Hence, it only remains
to compute the partial derivatives of the mutual nodal distance with respect to the
coordinates {g, δh,G,H, ω′}.

Case of a circular zero-inclination planet: From (B.58) and the expression of the
Keplerian elements in terms of the canonical coordinates (B.22), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Δ±

∂g
=

∂Δ±

∂ω

∂ω

∂g
= ± ae(1− e2)

(1± e cosω)2
sinω

∂Δ±

∂δh
= 0

∂Δ±

∂G
=

∂Δ±

∂e

∂e

∂G
=

−a

1± e cosω

[
2e± (1− e2)

1± e cosω
cosω

]
∂e

∂G

∂Δ±

∂H
= 0

∂Δ±

∂ω′ = 0

(B.60)

where the partial derivative ∂e/∂G is detailed in (B.24).

Case of an eccentric zero-inclination planet: In that case, the canonical co-
ordinate δh is equal to Ω−�′ and ω′ is suppressed from the equations (see Sect. 5.3).
From (B.52) and (B.57), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Δ±

∂g
=

∂Δ±

∂ω

∂ω

∂g
= ± ae(1− e2)

(1± e cosω)2
sinω

∂Δ±

∂δh
=

∂Δ±

∂ω̃′
∂ω̃′

∂δh
= ∓ a′e′(1− e′2)

(1± e′ cos δh)2
sin δh

∂Δ±

∂G
=

∂Δ±

∂e

∂e

∂G
=

−a

1± e cosω

[
2e± (1− e2)

1± e cosω
cosω

]
∂e

∂G

∂Δ±

∂H
= 0

(B.61)

where the partial derivative ∂e/∂G is detailed in (B.24).
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Case of an eccentric inclined planet: In that case, the canonical coordinate δh is
equal to Ω− Ω′ (see Sect. 5.2.2). From (B.52) and (B.56), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Δ±

∂g
=

∂Δ±

∂ cos ω̃

∂ cos ω̃

∂ω

∂Δ±

∂δh
=

∂Δ±

∂ cos ω̃

∂ cos ω̃

∂δh
+

∂Δ±

∂ cos ω̃′
∂ cos ω̃′

∂δh
∂Δ±

∂G
=

∂Δ±

∂e

∂e

∂G
+

∂Δ±

∂ cos ω̃

∂ cos ω̃

∂I

∂I

∂G
+

∂Δ±

∂ cos ω̃′
∂ cos ω̃′

∂I

∂I

∂G
∂Δ±

∂H
=

∂Δ±

∂ cos ω̃

∂ cos ω̃

∂I

∂I

∂H
+

∂Δ±

∂ cos ω̃′
∂ cos ω̃′

∂I

∂I

∂H
∂Δ±

∂ω′ =
∂Δ±

∂ cos ω̃′
∂ cos ω̃′

∂ω′

(B.62)

where the partial derivatives ∂e/∂G, ∂I/∂G and ∂I/∂H are detailed in (B.24). Some
of the other derivatives appearing in that expression are computed using (B.52):

∂Δ±

∂ cos ω̃
= ∓ ae(1− e2)

(1± e cos ω̃)2
;

∂Δ±

∂ cos ω̃′ = ± a′e′(1− e′2)
(1± e′ cos ω̃′)2

∂Δ±

∂e
=

−a

1± e cos ω̃

[
2e± (1− e2)

1± e cos ω̃
cos ω̃

] (B.63)

Finally, the last required expressions are obtained from (B.56). Indeed, writing:

cos ω̃ =
α√
β

and cos ω̃′ =
α′
√
β

(B.64)

with: ⎧⎪⎨
⎪⎩

α = cosω(sin I cos I ′ − cos I sin I ′ cos δh) + sinω sin I ′ sin δh

α′ = − cosω′(sin I ′ cos I − cos I ′ sin I cos δh) + sinω′ sin I sin δh

β = 1− (cos I cos I ′ + sin I sin I ′ cos δh)2
(B.65)

these partial derivatives are:

∂ cos ω̃

∂ω
=

1√
β

∂α

∂ω

∂ cos ω̃

∂δh
=

1√
β

(
∂α

∂δh
− α

2β

∂β

∂δh

)
∂ cos ω̃

∂I
=

1√
β

(
∂α

∂I
− α

2β

∂β

∂I

)

;
∂ cos ω̃′

∂ω′ =
1√
β

∂α′

∂ω′

;
∂ cos ω̃′

∂δh
=

1√
β

(
∂α′

∂δh
− α′

2β

∂β

∂δh

)

;
∂ cos ω̃′

∂I
=

1√
β

(
∂α′

∂I
− α′

2β

∂β

∂I

) (B.66)

It simply remains to use the expression of α to obtain:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α

∂ω
= − sinω(sin I cos I ′ − cos I sin I ′ cos δh) + cosω sin I ′ sin δh

∂α

∂δh
= (sinω cos δh+ cosω cos I sin δh) sin I ′

∂α

∂I
= cosω(cos I cos I ′ + sin I sin I ′ cos δh)

(B.67)
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as well as for α′:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂α′

∂ω′ = sinω′(sin I ′ cos I − cos I ′ sin I cos δh) + cosω′ sin I sin δh

∂α′

∂δh
= (sinω′ cos δh− cosω′ cos I ′ sin δh) sin I

∂α′

∂I
= cosω′(sin I ′ sin I + cos I ′ cos I cos δh) + sinω′ cos I sin δh

(B.68)

and for β:⎧⎪⎨
⎪⎩

∂β

∂δh
= 2(cos I cos I ′ + sin I sin I ′ cos δh) sin I sin I ′ sin δh

∂β

∂I
= 2(cos I cos I ′ + sin I sin I ′ cos δh)(sin I cos I ′ − cos I sin I ′ cos δh)

(B.69)

This closes the computation of the time derivative of the mutual nodal distance.



Appendix C

Some numerical methods used

In this chapter, we detail some of the numerical algorithm implemented and tested
throughout this work. The methods presented here usually come from reference works
and they were adapted to the problem under study. We will not introduce routines
which have been picked from libraries and used with only minor modifications: QUAD-
PACK for the computation of integrals (Piessens et al., 1983); LAPACK for linear
algebra; Numerical Recipes (Press et al., 2007) for maximisation/minimisation routines
and root computations.

C.1 Resolution of Kepler’s equation

Numerical studies involving the Keplerian elements often require the computation of the
real anomaly ν as a function of the mean anomalyM . In order to do so, an intermediate
step through the eccentric anomaly E is required (see Sect. 2.1.1). The difficulty comes
from the passage from M to E, since Kepler’s equation M = E − e sinE is implicit.
The numerical method used should involve the smallest computational cost possible,
because this operation can be required very frequently (as, for instance, at every step
of a numerical integration). A vast panel of iterative methods were developed and a
comparative study can be found in Danby and Burkardt (1983). The strategy used in
this work is a variant of the best compromise reported by Danby (1987). Noting:

f(E) = E − e sin(E)−M (C.1)

each iterative step Ek+1 = Ek + δk leading to the root of f(E) for a given value of M
requires the computation of:

δN = − f(Ek)

f ′(Ek)
−→ Newton’s method

δH = − f(Ek)

f ′(Ek) +
1
2
δNf ′′(Ek)

−→ Halley’s method

δk = − f(Ek)

f ′(Ek) +
1
2
δHf ′′(Ek) +

1
6
δ2Hf

′′′(Ek)
−→ higher order

(C.2)

231
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Using the initial guess:

E0 =

{
M + e2(

3
√
6M −M) if M < 1.14

M + 0.85e otherwise
(C.3)

we get a convergence to machine precision in one or two iterations almost everywhere
in the (M, e) space. As shown in Fig. C.1, some small regions require up to three
iterations, but never more than that. One can note that the threshold for M used
in (C.3) is slightly different from Danby (1987) in order to speed up the convergence
near pericentre. The difference comes from our more restrictive convergence criterion
(which is only set to 10−12 in Danby, 1987).

Figure C.1 – Number of iterations required to obtain the convergence of Kepler’s equation below
|f(E)| = 5 × 10−16 in double precision. The line e = 0 has a zero number of iterations since in that
case E = M . The slight modification of the method presented by Danby (1987) allows to reduce the
yellow zones near M = 0 and M = 2π.

Other methods should be used for hyperbolic orbits (see for instance Burkardt and
Danby, 1983; Serafin, 1998) with a special attention to “pathological” cases (Serafin,
2002). The exact parabolic case has an explicit solution, as detailed by Duriez (1990).
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C.2 Two-body propagator

Since the two-body problem is integrable analytically, the vector state at an arbitrary
instant t can be computed exactly from an initial condition. Whereas it is straight-
forward to obtain it in Keplerian elements (see Sect. 2.1.2), in practice, we often need
it directly in Cartesian coordinates centred on the second body. Fortunately, this can
be achieved without calculating the full transformation toward and from Keplerian ele-
ments, by using Gauss’ functions f(t) and g(t). The method presented here is taken
from Danby (1988), page 162.

Let r0 and v0 be the initial Cartesian position and velocity of the body, with C =
‖r0 × v0‖ 	= 0. The state of this body at any time t can be written in the form:{

r(t) = f(t)r0 + g(t)v0

v(t) = f ′(t)r0 + g′(t)v0

(C.4)

where the prime symbol represents the time derivative. In particular, in coordinates
(X, Y, Z) for which the Z-axis is perpendicular to the orbital plane, we have:⎛

⎝X(t)
Y (t)
Z(t)

⎞
⎠ = f(t)

⎛
⎝X0

Y0

0

⎞
⎠+ g(t)

⎛
⎝Ẋ0

Ẏ0

0

⎞
⎠ (C.5)

which is easily inverted to give:⎧⎪⎨
⎪⎩

f(t) =
1

C

[
X(t)Ẏ0 − Y (t)Ẋ0

]
g(t) =

1

C
[Y (t)X0 −X(t)Y0]

(C.6)

with C = X0Ẏ0 − Y0Ẋ0. In the elliptic case, the explicit expression of X(t) and Y (t)
can be obtained from Sect. 2.1.1 in function of the eccentric anomaly E:{

X(t) = a(cosE − e)

Y (t) = a
√
1− e2 sinE

(C.7)

Taking its time derivative and using the relation (2.26) between E and the mean an-
omaly M , we have also:⎧⎪⎪⎨

⎪⎪⎩
Ẋ(t) = −aĖ sinE = −na2

r
sinE

Ẏ (t) = a
√
1− e2 Ė cosE =

na2

r

√
1− e2 cosE

(C.8)

Using C = na2
√
1− e2 , we get the expression of the Gauss’ functions:⎧⎪⎨

⎪⎩
f(t) =

a

r0
(cosΔE − 1) + 1

g(t) = Δt+
1

n
(sinΔE −ΔE)

(C.9)



234 APPENDIX C. SOME NUMERICAL METHODS USED

which allow to get r(t). Finally their derivatives, required to compute v(t), are:⎧⎪⎪⎨
⎪⎪⎩

f ′(t) = −na2

r0

sinΔE

r(t)

g′(t) = a
cosΔE − 1

r(t)
+ 1

(C.10)

where r(t) is computed from the already-obtained vector r(t). These functions are
general, suitable also for an arbitrarily oriented reference frame (it amounts to apply
a constant rotation to the left and right-hand sides of Eq. C.4). Please note that we
expressed them only with respect to Δt = t− t0 and ΔE = E − E0.

The detailed procedure to compute Gauss’ functions is thus the following. At first,
the semi-major axis of the orbit is obtained from the energy integral:

1

2
v2
0 −

μ

r0
= − μ

2a
(C.11)

which gives also the mean-motion n =
√
μ/a3 . At this point, it only remains to

compute ΔE in order to apply f(t) and g(t). This is realised using the relations:⎧⎨
⎩

k0 ≡ e cosE0 = 1− r0
a

h0 ≡ e sinE0 =
r0 · v0

na2

(C.12)

which are necessary for the resolution of Kepler’s equation in the “difference form”.
The latter writes:{

M0 = E0 − e sinE0

M = E − e sinE
=⇒ ΔM = ΔE − e(sinE − sinE0) (C.13)

that is:
nΔt− h0 = ΔE − k0 sinΔE − h0 cosΔE (C.14)

This last equation is solved for ΔE by an iterative method analogous to the one presen-
ted for the conventional equation of Kepler (Sect. C.1).

Finally, it should be noted that for small values of ΔE, the cancellation errors in the
expression of g (C.9), when subtraction the very close quantity sinΔE, can be avoided
by using the equivalent relation:

g(t) =
1

n

[
(1− k0) sinΔE + h0(1− cosΔE)

]
(C.15)

and replacing any occurrence of 1− cosΔE in (C.9), (C.10) and (C.15) by:

1− cosΔE = 2 sin2 ΔE

2
(C.16)

A similar procedure can be applied to parabolic or hyperbolic orbits, see Danby (1988)
for more details.
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C.3 Cubic splines interpolation

In this section, we detail the interpolation method used to speed up the computation of
the two-degree-of-freedom semi-secular Hamiltonian K for (U, u) fixed (Sects. 3.3.3 and
3.3.4). The function to be interpolated here has thus two dimensions (σ and Σ). The
regularity condition of Hamiltonian functions (at least C2) makes natural the choice of
cubic splines, since they impose the continuity of the two first derivatives on the grid
points. After the introduction of the one-dimensional case (Sect. C.3.1), we discuss the
generalisation to two dimensions (Sect. C.3.2).

C.3.1 One-dimensional case

Let us begin with the case of N + 1 couples {xk, fk} for k = 1, 2...N + 1. Each point
(xk, fk) is linked to the point (xk+1, fk+1) by the cubic polynomial:

Pk(x) = ak + bk(x− xk) + ck(x− xk)
2 + dk(x− xk)

3 (C.17)

with the following conditions of continuity:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pk(xk) = fk

P ′
k(xk) = P ′

k−1(xk)

P ′′
k (xk) = P ′′

k−1(xk)

Pk(xk+1) = fk+1

(C.18)

Writing Δk = xk+1 − xk, the latter lead to the subsystem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ak = fk

bk−1 + 2ck−1Δk−1 + 3dk−1Δ
2
k−1 − bk = 0

ck−1 + 3dk−1Δk−1 − ck = 0

bkΔk + ckΔ
2
k + dkΔ

3
k = fk+1 − fk

(C.19)

which mixes the coefficients of Pk and Pk−1. Since all the {ak} are directly known, we
remove them from the system. The subsystem (C.19) can be written as the matrix
product:

⎛
⎝1 2Δk−1 3Δ2

k−1 −1 0 0
0 1 3Δk−1 0 −1 0
0 0 Δk Δ2

k Δ3
k

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

bk−1

ck−1

dk−1

bk
ck
dk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝ 0

0
fk+1 − fk

⎞
⎠ (C.20)

There are N splines in total, each a them with 3 unknown coefficients, so we need 3N
linear equations to close the system. For the first spline P1, the two continuity equations
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with the polynomial k − 1 are not possible. This gives two arbitrary conditions to be
added in the system, and they are usually chosen symmetrically for P1 and PN .

The general system can be written in terms of matrix blocks. Let us define the
block Ak by:

Ak =

⎛
⎜⎜⎜⎜⎝
−1 0 0
0 −1 0
Δk Δ2

k Δ3
k

1 2Δk 3Δ2
k

0 1 3Δk

⎞
⎟⎟⎟⎟⎠ for k = 2, 3...N − 1 (C.21)

At the borders, Ak has two lines less:

A1 =

⎛
⎝Δ1 Δ2

1 Δ3
1

1 2Δ1 3Δ2
1

0 1 3Δ1

⎞
⎠ and AN =

⎛
⎝−1 0 0

0 −1 0
ΔN Δ2

N Δ3
N

⎞
⎠ (C.22)

The general system to be inverted writes then:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x x x x x x x . . . x x x x x x
a a a
a A1 a a a a
a a a a a a

a A2 a
a a a a a a
a a a a a a

a A3 a
a a a
a a a ·

· ·
· ·

· a a a
a a a
a AN−1 a
a a a a a a
a a a a AN a

a a a
y y y y y y y y y . . . y y y y y y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
c1
d1

b2
c2
d2

b3
c3
d3

...

bN−1

cN−1

dN−1

bN
cN
dN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
f2 − f1

0
0

f3 − f2
0
0

f4 − f3
0
0
...
0
0

fN − fN−1

0
0

fN+1 − fN
Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.23)
where a signifies an entry of a Ak block, x and y mean arbitrary conditions for the
borders, and blank fields are zero. The two border conditions are a matter of choice.
For instance, we can choose to fix the values of the derivatives in x1 and xN+1 to
X, Y ∈ R: {

b1 = X

bN + 2 cNΔN + 3 dNΔ
2
N = Y

(C.24)

or we can choose to fix the values of the second derivatives:{
2 c1 = X

2 cN + 6 dNΔN = Y
(C.25)

Of course, these conditions can be mixed according to the case under study. Finally,
it simply remains to inverse the system (C.23) to get all the coefficients of the cubic
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splines (for instance, using the LAPACK library). In order to avoid border effects, one
must ensure that the abscissa in which we want to compute the value of the function
is sufficiently far from the boundaries of the interpolation.

The above resolution presents the most general case, where the points {xk} are
arbitrarily spaced. If they are equispaced, on the contrary, the uniform step Δ can
be used as unit of length, which greatly simplifies the overall method1. Indeed, all the
blocksAk (k = 2, 3...N−1) are equal and the matrix to be inversed contains only integer
coefficients. If successive interpolations have to be performed using the same number
of equispaced points and the same type of border conditions, the LU decomposition of
the matrix can be computed once for all and reused all along the program. In that way,
the resolution of (C.23) is even faster than a matrix multiplication2.

C.3.2 Two-dimensional case

For a two-dimensional function {xk, yk, fk}, it seems natural to generalise the method
presented in Sect. C.3.1 by using two-dimensional cubic polynomials, with 16 coefficients
each. In a regular grid, by imposing the first and second partial derivatives to be equal
at the grid points, and setting arbitrarily the cross derivative on the borders, plus
the cross derivative and the partial first derivatives at the four corners, we get indeed
a closed linear system. However, numerical experiments showed that such a system
has an approximate rank deficiency (non-zero but small determinant), and that this
situation gets worst when we increase the number of points. Hence, the numerical
resolution becomes rapidly inefficient. The exact origin of this rank deficiency is still
mysterious to me...

Two other (less satisfactory) strategies can be used to compute a two-dimensional
cubic interpolation. The first one, used for instance in image processing, consists in
imposing not only the value of the function at the corners of each cell, but also its two
partial derivatives and its cross derivative. Each cell is thus decoupled from the others
and the resolution becomes trivial. However, the computation of the three derivatives
at each grid point is computationally expensive in our case. Moreover, we note that
the resulting function is only C1. The second strategy, which is the one retained for
this work, consists in considering the two-dimensional interpolation as two sets of one-
dimensional cubic-spline interpolations. Let us consider a grid of the form:

{xi, yj, fij} , i = 1, 2...N , j = 1, 2...M (C.26)

Each grid line (x-direction) is interpolated by one-dimensional splines, and the coef-
ficients for each line j are saved. Then, the value of f at an arbitrary point (x, y) is
obtained by a two-step procedure:

1If Δ is taken as unit of length, please note that the border values X and Y should be multiplied
by Δ (for the derivatives) or Δ2 (for the second derivatives).

2The successive inversions of the linear system are faster if the LU decomposition is stored instead
of the inverse matrix. Indeed the unknown vector is obtained by “back-substitution”, rather than by
the (possibly very numerous) sums of products required by the matrix multiplication by the inverse.
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1. compute f at every point {x, yj} for j = 1, 2...M using the saved one-dimensional
splines

2. use these values to perform another one-dimensional interpolation in the y-direction,
which finally gives f at the point (x, y)

One can note that the x and y axes can be exchanged, in particular when the derivatives
of the splines are required (the above procedure allows to compute only the y-derivative
of f). The efficiency of this method may seem questionable, since a linear system of
type (C.23) has to be inversed for each call of the interpolated function. However,
the use of a regular grid allows to inverse the system by back substitution, which is
extremely fast (see Sect. C.3.1).

In our case, the function which has to be interpolated is the semi-secular Hamilto-
nian K(Σ, U, V, σ, u) seen as a function of σ and Σ only (see Sects. 3.3.3 and 3.3.4).
Its interpolation in a 30 × 30 grid covering the overall resonance island proves to be
drastically faster than the direct computation of its value and partial derivatives, oth-
erwise necessary for the numerical integrations. Such a grid resolution is found to be
more than enough considering the required precision.

C.4 The trans-Neptunian tree

In this section, we detail the algorithm used to integrate numerically a large sample
of Scattered Disc objects with initial conditions ranging from early stages of the Solar
System until today. The sample considered in this work comes from the simulation of
an Oort Cloud precursor by Fouchard et al. (2017): during that simulation, any object
that got a semi-major axis smaller than 500 AU together with a perihelion distance
beyond Neptune became part of the “Scattered Disc sample”. From the 107 simulated
particles, 263 627 of them were removed and put in this sample. Since they are not
affected anymore by the galactic tides, our goal is to follow their evolution in detail,
driven only by the perturbations of the planets, using a planetary model more accurate
than in Fouchard et al. (2017). Our results are presented in Sect. 4.5.

The use of a synthetic representation for the motion of the planets allows to get
directly their positions at a given time, without the need of long backward integrations
and heavy data files (the positions of the planets should have been stored at every time-
step during 5 Gyrs). The direct numerical integration of the planets together with the
massless particles is also judged inefficient, because the time-step would be restricted
according to the fastest planet in the system (a few years for Jupiter), whereas the
trans-Neptunian objects considered here have orbital periods of several thousand years.
Consequently, we used the synthetic representation of Laskar (1990), supposed valid on
a billion-year timescale. As discussed in Sect. 4.5, even if the orbits of the giant planets
are rather stable from the late planetary migration, such a model could be not strictly
realistic.
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The second difficulty comes from the different times of the initial conditions con-
tained in the sample. Even if the planets are modelled by a synthetic representation,
the computation of their positions is by far the most expensive part of the algorithm
(because of the sines and cosines). Hence, in order to get reasonable computation
times, a large number of particle should be integrated at the same time. At a given
time-step, the algorithm must thus determine which bodies are “active” (they must be
propagated), and which ones are still in the “waiting-list” because the integration has
not reached yet their time of initial conditions. If a time-step goes past the time of a
new initial condition, the corresponding particle is propagated using a two-body motion
around the barycentre of the Solar System in order to match the exact time reached by
the numerical integration3. It is then added to the active particles.

The particles reaching perihelion distances inside the planetary region or semi-major
axes larger than 2000 AU are removed from the simulation. In particular, if at a given
time all the active particles are removed, the time t reached by the numerical integration
is directly advanced to the earliest initial condition contained in the waiting-list (this
is allowed thanks to the use of a synthetic representation for the planets). The action
of removing particles adds a new technical problem: if the particles are sorted in a
array by their time of initial conditions, the removal of one of them requires to shift all
the remaining particles by one index. Considering the large number of particles and
the high rate of ejection, this would be pretty inefficient. That problem was treated by
sorting the particles in a Binary Search Tree according to their time of initial conditions.
In a Binary Search Tree, each element contains two pointers (left and right) pointing
towards elements which have a lower and higher value, respectively, than its own value.
Hence, the portion of the tree hanging to its left pointer contains only elements with
values lower than its own value, and the portion of the tree hanging to its right pointer
contains only elements with values higher than its own value. Such a structure allows
very fast operations as searching, adding or removing elements, which are implemented
using very elegant recursive algorithms. For instance, let us consider a given element of
the Binary Search Tree: if its time of initial conditions is below the current integration
time, then it is “active”, so it must be propagated in the next time-step. Since this is
also the case for every element hanging to its left pointer, we only have to repeat the
test to the right portion of the tree. On the contrary, if the time of initial conditions of
the element is above the current integration time, then it is “waiting” and this is also
the case for every element hanging to its right pointer, so we only have to repeat the
test to the left portion of the tree.

Figure C.2 illustrates the operations of adding an element (realised before the nu-
merical integration) and deleting an element (realised if a particle is removed from the
integration). If a new element has an already present number, in principle it could be

3The integration is realised with a symplectic integrator of type ABAC3 (Laskar and Robutel,
2001). In barycentric coordinates, a fixed time-step of 10 years was found to be a good compromise
(see Sect. C.5). Accordingly, the two-body propagations are used for a fraction of time-step, that is
only for some years. Considering the large orbital periods of the particles, the resulting change of the
sample distribution is negligible.
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added: 3 as a new-born child
deleted: 7 replaced by 8 (itself replaced by 9 and its possible progeny)

Figure C.2 – Elementary operations which can be applied to a Binary Search Tree. In our application,
the integers are replaced by the times of initial conditions. A new element does not modify the tree
structure: it is added as a new-born child, that is instead of a “leaf” (NULL child). An element to
be deleted is: i) simply suppressed if it has no child; ii) replaced by its child and its progeny if it has
only one; iii) replaced by the minimum element of its right progeny (or the maximum element of its
left progeny), which is suppressed according to i or ii.

added arbitrarily to the left or to the right portion of the tree. In our case, an object
having a time of initial condition equal to the time t reached by the integration must
be propagated. Hence we use the convention of adding elements with already present
numbers to the left portion of the tree, along with the elements with lower values (which
must also be propagated).

In order to achieve reasonable computation times, the program is also parallelized
such that at each time-step, the active particles are propagated in parallel. Indeed,
each portion of a Binary Search Tree can be considered as independent and treated
by a different processor. Hence, each processor propagate only the active objects con-
tained in its respective tree portion (the tree must though be balanced in order to fairly
divide the tasks between processors). Thanks to the Binary Search Tree structure, the
identification of the active particles, performed by each processor in its portion or tree,
is very fast. Using that algorithm, a good compromise was obtained by splitting the
sample of 263 627 objects into sub-samples of 20 000 particles. Each of them required
about 5 days of computation to complete 5 Gyrs of integration.

An alternative to the Binary Search Tree would have consisted in an ordered linked-
list, keeping at any time-step a pointer to the first element of the “waiting” portion of
the list. This would avoid to browse the list at each time-step, but with the drawback
to be less easily parallelized, since each element of a linked-list cannot be considered as
independent (contrary to the branch of a binary tree).
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C.5 Integrators for massive billion-year simulations

In this section, we discuss the choice of numerical integrator for computing the traject-
ory of several hundred thousand particles over a 5-Gyr timescale. Various numerical
integrators can be found in the literature, including the widely used Mercury package
by Chambers (1999). However, the particular type of orbits studied here (always bey-
ond the planets and possibly very distant from them), as well as the particular form of
the planetary trajectories used (a synthetic representation, see Sect. C.4), could allow
a more efficient specific treatment. In the following, we detail some of the integrators
implemented and tested during this study. Their efficiency is discussed in Sect. C.5.4
as compared to classic methods (as the non-symplectic integrator by Everhart 1985 and
its improved version by Rein and Spiegel 2015).

First of all, whatever the integrator used, the integration in barycentric coordinates
turns out to be several orders of magnitude faster than in heliocentric coordinates. In-
deed, the motion of distant small Solar System bodies consists in a slightly perturbed
two-body problem with respect to the barycentre of the Solar System, gathering the
mass of the Sun and the planets (Todorovic-Juchniewicz, 1981; Kaib et al., 2011). If
heliocentric coordinates are used for the numerical integration, the short-period oscilla-
tions of the “force” term, due to the displacement of the Sun around the barycentre of
the Solar System, make necessary the use of a very small time-step (a fraction of period
of Jupiter). Consequently, this cancels the benefit of the synthetic representation over
the direct integration of the planets. On the other hand, if barycentric coordinates are
used for the numerical integration, the same precision is reached with a much larger
time-step (a fraction of period of the small body), leading to a much faster algorithm.
As an example, Fig. C.3 compares the final orbital energy for the same orbits integrated
in heliocentric and barycentric coordinates. While the results are equally bad for small
perihelion distances (because of close encounters), the supremacy of the barycentric
coordinates is obvious for more distant trajectories. Using a non-symplectic integrator
with adjustable time-step (not shown), the final results in the two sets of coordinates
are equivalent, because the step size is adjusted to reach the precision requested. How-
ever, the integration in heliocentric coordinates is more than ten times slower since it
realises much more numerous smaller time-steps. Barycentric coordinates lead thus in
any case to a much more efficient algorithm. One can note that the analytical and
semi-analytical theories developed through this work are intrinsically heliocentric: in
order to allow their comparison to the numerical results, it is enough to write the out-
put of the numerical integrations in heliocentric coordinates, even if they are realised
in barycentric ones4.

4In some additional experiments, we performed also a few integrations in which the planets were
included consistently. In that case, the natural choice is to use Jacobi coordinates (see for instance
Milani and Gronchi, 2010): the most distant body included is the test-particle, so its coordinates
are indeed barycentric. Moreover, the equations in Jacobi coordinates take the form required by the
integrators by Laskar and Robutel (2001).
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Figure C.3 – Comparison of numerical integrations in heliocentric (left graph) and barycentric (right
graph) coordinates. The results are plotted in the plane of the initial barycentric values of the perihelion
distance q and the inclination I. The other initial barycentric orbital elements are for all orbits:
a = 800 AU, ω = 54◦, Ω = 0◦ and M = 180◦. We used in both case the symplectic integrator ABAC3

by Laskar and Robutel (2001) with a constant time-step of 10 years (see Sect. C.5.1). The numerical
integrations are all performed over 2500 time-steps, that is slightly more than one orbit. The colour
shade represents the relative error of the final value of 1/a, as compared to a reference numerical
integration (integrator by Rein and Spiegel, 2015, with strong tolerance factor).

Generically, there are two types of integrators: implicit (in which each time-step
requires to solve a system of non-linear equations) and explicit (in which the state after
one step is an explicit function of the current state). Of course, implicit integrators are
more difficult to implement and lead to heavier computational costs5. However, they
are much easier to develop theoretically and they are generally more stable numerically
than explicit schemes. Then, there are two kinds of problems in which a numerical
solution is needed, associated to different kinds of integrators:

1. The calculation of given trajectories with a high accuracy, in which the (algorithm-
dependent) deviation from the “exact” solution must be negligible.

2. The long-term computation of fictitious objects, for which we are interested in
the qualitative behaviour of the population, but not in the exactness of every in-
dividual trajectory (which is anyway impossible to obtained over long durations).

5The resolution of the system of non-linear equations requires an iterative procedure, for instance
a Newton-type method with a convergence criterion. The first guess is generally computed by inter-
polation from the previous steps.
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The first case is the typical problem of ephemerides calculations, in which the purely
numerical errors are (or should be) very small compared to the uncertainties coming
from the initial conditions. Long-term predictions are thus meaningless because of the
chaotic divergence of nearby trajectories. In such a case, the precision takes precedence
over the computation time, and since the integrations are performed on relatively short
timescales, fundamental algorithm-dependent errors (such as energy drifts) stay anyway
at a negligible level. For this purpose, two integrators are widely used in celestial
mechanics: the implicit method of Everhart (1985), actually quite messy (so one should
prefer the revised version by Rein and Spiegel, 2015), and the Bulirsch-Stoer algorithm
(Hairer et al., 2008).

The second case, on the contrary, deals with general properties of the dynamical
system such as its long-term stability. For instance, the precise position of a given object
is not important, in contrast to the qualitative evolution of its orbit. In such a case
(which is the one of this work), we must ensure that the fundamental properties of the
system are reproduced by the integrator, so that the general behaviour of the sample
stays close to the real one. We are dealing here with Hamiltonian systems, so their
basic features are the conservation of the Hamiltonian value, the time-reversibility of the
equations, and the conservation of the symplectic structure of the equations (each time-
step should be canonical, that is area-preserving in the phase space). Unfortunately,
numerical integrators cannot conserve exactly the Hamiltonian value generically while
being symplectic (Zhong and Marsden, 1988). However, the symplecticity ensures that
the energy undergoes no irreversible drift, so that the numerical solutions always stay
in the vicinity of the real trajectories (or say, in the dynamical region of the phase
space that they occupy). For instance, the periodic trajectory of a pendulum can
become quasi-periodic (or even chaotic for improperly large time-steps), but it will never
be damped or accelerated, as it would inevitably occur for non-symplectic methods
(until it asymptotically stops, or makes complete cycles around its axis). This property
of symplectic integrators can be summed up by: “instead of giving the approximate
solution of an exact system of differential equations, symplectic integrators provide
the exact solution of an approximate system”. At this point, please note that this
approximate system is defined by the time-step of the integrator, so that a change of
step size during the integration would be equivalent to a change of dynamical system!
This would of course break the conservation properties of the overall algorithm (see for
instance Yoshida, 1993; Breiter, 1999), even if some tricks can be used to reduce the
discontinuities due to variable steps or changes of numerical scheme (Kaib et al., 2011).

Implicit symplectic and time-reversible integrators can be obtained quite straight-
forwardly. For instance, these properties are shared by all the implicit Runge-Kutta
scheme of even order using the coefficients of the Gaussian quadrature (see Hairer
et al., 2008). On the other hand, explicit symplectic integrators can only by applied
to a particular form of Hamiltonian systems, namely when the Hamiltonian function
can be written as the sum of “sub-Hamiltonians” which are each integrable individu-
ally (Breiter, 1999). The most common case of application is when it has the form
H = A + εB, for which we can take advantage of the smallness of ε � 1. In the
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following, we briefly introduce the explicit symplectic and time-reversible integrators
of Laskar and Robutel (2001) and we detail their application to our problem, with and
without the use of time-regularisation methods.

C.5.1 Explicit symplectic integrators

From Sect. 2.2, we know that the time derivative of a function f of the coordinates
writes:

df

dt
= {f,H} = −LHf (C.27)

where LH = {H, .} is the linear operator associated to the Poisson brackets6. The
function f evaluated along the solution of the dynamical system, as seen as a function
of t, can be written as:

f(t) = exp(−tLH)f(0) =
∞∑
n=0

tn

n!
(−LH)nf(0) (C.28)

For instance, f can be one component of the state vector. The basic principle of a
symplectic integrator is to approximate the operator exp(−tLH) by the one coming
from an integrable Hamiltonian system, say exp(−tLK), mimicking the original one.
This method relies heavily on the Campbell-Baker-Hausdorff formula for several non-
commuting operators (Yoshida, 1993). For two non-commuting operators X and Y , it
states that:

expX expY = expZ (C.29)

for some unknown operator Z. Since X and Y do not commute, we have of course
Z 	= X + Y . In our case, though, it is enough to know that Z exists (whatever its
expression) to guarantee that an integrator composed of several sub-steps of integrable
Hamiltonians is symplectic. In particular, if we consider several Hamiltonian functions
{Xi}, the operator:

S(h) = exp(−a1hLX1) exp(−a2hLX2) exp(−a3hLX3) . . . with a1, a2, a3... ∈ R (C.30)

can be written as exp(−hLK) for some unknown Hamiltonian K. If the dynamical
systems defined by the {Xi} are all integrable analytically, then the operator S (which
can be considered as one step h of a symplectic integrator) has an exact analytical
expression. The difference between two integrators comes thus from the choice of the
Hamiltonians {Xi} and the corresponding coefficients {ai}, designed to make S as close
as possible to the original operator exp(−hLH).

Let us consider that the Hamiltonian H can be written as:

H = A+ εB (C.31)

6Laskar and Robutel (2001) define the Poisson brackets as the opposite of the one used in this work.
One must be careful of the corresponding minus signs when comparing the two versions.
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with no assumption yet on the smallness of the coefficient ε. IfA and B taken separately
are both integrable analytically, generic integrators with n stages can be obtained by
the operator:

Sn(h) = exp(−a1hLA) exp(−b1hLεB)... exp(−anhLA) exp(−bnhLεB) (C.32)

Indeed, one step h of the real system writes:

exp(−hLH) = 1− h{H, .}+ h2

2
{H, {H, .}}+O(h3) (C.33)

that is, using the expression of H:

exp(−hLH) = 1− h{A, .} − εh{B, .}
+

h2

2
{A, {A, .}}+ ε

h2

2
{A, {B, .}}+ ε

h2

2
{B, {A, .}}+ ε2

h2

2
{B, {B, .}}

+O(h3)
(C.34)

If we consider for instance a two-stage integrator

S2(h) = exp(−a1hLA) exp(−b1hLεB) exp(−a2hLA) exp(−b2hLεB) (C.35)

the analogous expansion for the approximate Hamiltonian K is:

exp(−hLK) =
(
1− a1h{A, .}+ (a1h)

2

2
{A, {A, .}}+O(h3)

)

×
(
1− b1εh{B, .}+ (b1h)

2

2
ε2{B, {B, .}}+O(h3)

)

×
(
1− a2h{A, .}+ (a2h)

2

2
{A, {A, .}}+O(h3)

)

×
(
1− b2εh{B, .}+ (b2h)

2

2
ε2{B, {B, .}}+O(h3)

)
(C.36)

that is:

exp(−hLK) = 1− (
a1 + a2

)
h{A, .} − (

b1 + b2
)
εh{B, .}

+

(
a21
2

+
a22
2

+ a1a2

)
h2{A, {A, .}}

+
(
a1b1 + a1b2 + a2b2

)
εh2{A, {B, .}}+ b1a2 εh

2{B, {A, .}}
+

(
b21
2
+

b22
2
+ b1b2

)
h2ε2{B, {B, .}}

+O(h3)

(C.37)
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By comparison to (C.34), a second-order symplectic integrator should thus verify:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1 + a2 = 1

b1 + b2 = 1

a1b1 + a1b2 + a2b2 =
1

2

b1a2 =
1

2

(C.38)

in which we removed the two redundant equations. The resolution of this system gives
(a1, b1, a2, b2) = (1/2, 1, 1/2, 0), which leads to the classic leapfrog integrator. It involves
only positive sub-steps, and Suzuki (1991) showed that this property is only possible
for integrators of order 2 or less. The problem with negative sub-steps is that while the
resulting step is equal to h, the covered distance (in absolute value) increases rapidly
with the order, leading to an unstable integrator. This is probably why the leapfrog
(which is also time-reversible because b2 = 0) is so widely used despite its low order.

In that context, Laskar and Robutel (2001) looked for a family of integrators being:

1. explicit

2. symplectic

3. symmetric, which leads to S(h)−1 = S(−h), that is, time-reversibility

4. containing only positive sub-steps

Their idea is that, whereas it is impossible to fulfil all these properties for integrators
of order larger than 2 in h, we can still take advantage of the smallness of ε to achieve
a much higher precision than the leapfrog. This is realised by the reproduction by
exp(−hLK) of not all the terms in h3 and higher orders, but only those of lowest order
in ε. They showed that such integrators S exist with orders hpε + h2ε2 for all p ∈ N

(for instance, p = 2 for the leapfrog). Furthermore, if the system with Hamiltonian:

C = {{A,B} ,B} (C.39)

is also integrable, the following integrator obtained from S:

Sc(h) = exp(c h3ε2LC)S(h) exp(c h3ε2LC) (C.40)

fulfils also all the required properties, and with the suitable choice of coefficient c, it
has a remainder of order hpε+ h4ε2.

In the following, we will use integrators with p = 6, namely the ABA3 (using the
terminology from Laskar and Robutel, 2001), and its version ABAC3 with the two
corrector steps using C. As in Laskar and Robutel (2001) or Breiter et al. (2007), these
integrators prove to be the best compromise in terms of complexity and accuracy: in our
applications, they give almost the same precision as integrators of types ABA4/ABAC4

and higher, with less computational effort. We note that similar results are obtained
using integrators of type BAB3 and BABC3 (which also have p = 6).
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C.5.2 Mixed-variable schemes

From Sect. 3, the equations of motion of a massless particle in the barycentric (inertial)
reference frame are:

ẍ = −μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3 (C.41)

in which {xi} are the barycentric positions of the planets, and x� is the barycentric
position of the Sun. Since the synthetic representation used in this work gives the
heliocentric positions of the planets {ri} as function of the time, the barycentric position
of the Sun is obtained from the definition of the barycentre:

N∑
i=1

μi xi + μx� = 0 ⇐⇒
N∑
i=1

μi ri + μtot x� = 0 where μtot = μ+
N∑
i=1

μi

⇐⇒ x�(t) = − 1

μtot

N∑
i=1

μi ri(t)

(C.42)

from which we get also the barycentric position of each planet i: xi = x� + ri. The
Hamiltonian reproducing the equations of motion (C.41) can be chosen as:

H(X, T,x, t) =
1

2
X2 − μ

|x− x�| −
N∑
i=1

μi

|x− xi| + T (C.43)

where X = ẋ is the momentum conjugate to the position x and T is the momentum
conjugate to the time t (in order to get an autonomous system). The initial value of T
is arbitrary: it only fixes the constant value of H (see Sect. 2.2.1).

For trajectories entirely beyond Neptune, we know that the solutions are perturbed
two-body orbits around the barycentre of the Solar System, so we define the splitting
H = A+ εB by adding and subtracting μtot/|x|:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A =
1

2
X2 − μtot

|x| + T

εB =
μtot

|x| − μ

|x− x�| −
N∑
i=1

μi

|x− xi|
(C.44)

Since the position of the barycentre of the Solar System almost coincides with the
centre of the Sun, the Hamiltonian εB is indeed a small quantity. In order to apply the
integrators by Laskar and Robutel (2001) to our dynamical system, we must compute
the explicit expression of the propagation over one step h of the systems defined by the
Hamiltonians A, εB and C = {{A,B},B} taken separately. Writing τ the time variable
(to prevent the confusion with the canonical coordinate t), the propagation using A is



248 APPENDIX C. SOME NUMERICAL METHODS USED

straightforward:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(τ),x(τ)
two-body propagator−−−−−−−−−−−→ X(τ + h),x(τ + h)

dt

dτ
=

∂A
∂T

= 1 =⇒ t(τ + h) = t(τ) + h

dT

dτ
= −∂A

∂t
= 0 =⇒ T (τ + h) = T (τ)

(C.45)

in which the two-body propagator consists of Gauss’ f and g functions presented in
Sect. C.2. Since they involve (to some extent) the Keplerian elements of the particle,
the integrator is said to use mixed variables. The propagation using the Hamiltonian
εB is also easily computed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dτ
=

∂εB
∂X

= 0 =⇒ x(τ + h) = x(τ)

dt

dτ
=

∂εB
∂T

= 0 =⇒ t(τ + h) = t(τ)

dX

dτ
= −∂εB

∂x
= μtot

x

|x|3 − μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3

=⇒ X(τ + h) = X(τ) + h

(
μtot

x

|x|3 − μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3
)

dT

dτ
= −∂εB

∂t
= μ

x− x�
|x− x�|3 · ẋ� +

N∑
i=1

μi
x− xi

|x− xi|3 · ẋi

=⇒ T (τ + h) = T (τ) + h

(
μ

x− x�
|x− x�|3 · ẋ� +

N∑
i=1

μi
x− xi

|x− xi|3 · ẋi

)

(C.46)

One can note that the propagation of T is only required for checking the conservation
of the Hamiltonian value, otherwise it can be ignored (so the time-consuming partial
derivatives of the planets positions are not required either). Finally, the application of
the two corrector steps involves the Hamiltonian:

C = {{A, εB}, εB} =
∂εB
∂x

· ∂εB
∂x

=

(
μtot

x

|x|3 − μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3
)2

(C.47)
that we will write schematically C = F · F with:

F =

⎛
⎝F1(x, t)
F2(x, t)
F3(x, t)

⎞
⎠ = μtot

x

|x|3 − μ
x− x�
|x− x�|3 −

N∑
i=1

μi
x− xi

|x− xi|3 (C.48)
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The propagation using the Hamiltonian C can thus be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dτ
=

∂C
∂X

= 0 =⇒ x(τ + h) = x(τ)

dt

dτ
=

∂C
∂T

= 0 =⇒ t(τ + h) = t(τ)

dX

dτ
= −∂C

∂x
= −2 (DF)TF =⇒ X(τ + h) = X(τ) + h

(−2 (DF)TF
)

dT

dτ
= −∂C

∂t
= −2

∂F

∂t
· F =⇒ T (τ + h) = T (τ) + h

(
−2

∂F

∂t
· F

)
(C.49)

Noting x = (x1, x2, x3)
T, the matrix (DF)T is defined as:

(DF)T =

⎛
⎝∂F1/∂x1 ∂F2/∂x1 ∂F3/∂x1

∂F1/∂x2 ∂F2/∂x2 ∂F3/∂x2

∂F1/∂x3 ∂F2/∂x3 ∂F3/∂x3

⎞
⎠

=
μtot

|x|3
[
�− 3

x

|x|2x
T
]
− μ

|x− x�|3
[
�− 3

x− x�
|x− x�|2 (x− x�)T

]

−
N∑
i=1

μi

|x− xi|3
[
�− 3

x− xi

|x− xi|2 (x− xi)
T
]

(C.50)

where � is the 3× 3 identity matrix. Finally, we have:

∂F

∂t
=

μ

|x− x�|3
[
ẋ� − 3

x− x�
|x− x�|2 (x− x�) · ẋ�

]

+
N∑
i=1

μi

|x− xi|3
[
ẋi − 3

x− xi

|x− xi|2 (x− xi) · ẋi

] (C.51)

which is only required to check the conservation of the Hamiltonian value.
Using that kind of algorithm, one can note that if ε tends to 0, the motion is an

exact two-body propagation around the barycentre of the Solar System. The validity of
the above formulas can be assessed by checking the behaviour of the error with respect
to the step h used. Fig. C.4 shows the maximum error of the Hamiltonian value for
a fictitious particle integrated during about one orbital period. In some range of step
size, the terms in h2ε2 dominate (slope equal to h2), but they are correctly removed by
the use of the corrector, pushing back the error in the h4ε2 terms (slope equal to h4).
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Figure C.4 – Maximum variation of the Hamiltonian value for a fictitious particle integrated over
200 years using the algorithm described in this section. The barycentric initial conditions are
(a, q, I, ω,Ω,M) = (33 AU, 2 AU, 0, 0, 0, π) at time J2000. The dynamics of the four giant planets
are given by the synthetic representation by Laskar (1990) and the masses of the inner planets are
added to the mass of the Sun. The initial value of T is chosen such that H = 0. The same integrator
is used without corrector (red curve) and with corrector (blue curve).

C.5.3 The regularisation by Kustaanheimo and Stiefel

The constant step size is often seen as a strong drawback of symplectic integrators. In
contrast, conventional integrators are designed to adapt the time resolution according
to the rate of change of the “force” in order to achieve a given accuracy of the new
state vector. This limitation of symplectic integrators can be bypassed to some extent
by regularisation methods (the development of which depends on the problem under
consideration). Such methods consist in replacing the time variable t by a fictitious time
τ which, while increasing with a constant step, will naturally realise more numerous
steps in regions where the force changes rapidly with respect to t. In the case of a
perturbed two-body problem, a judicious choice seems to be to increase the number of
steps near perihelion, that is, when the particle goes (possibly much) faster. This could
hold especially in our case, since the perturbations apply mostly near perihelion, when
the particle is closer to the planetary region. Such a regularisation can be achieved by
using the Kustaanheimo-Stiefel (KS) coordinates. The most important feature in our
case is the change of time variable (see Sect. 2.2.2), but the KS coordinates have also
the interesting property of turning the two-body problem into an harmonic oscillator,
which is much easier to propagate than in conventional coordinates (Sect. C.2). In
this section, we recall briefly the construction of a symplectic integrator using the KS
regularisation, as described for instance by Breiter (1999).



C.5. INTEGRATORS FOR MASSIVE BILLION-YEAR SIMULATIONS 251

First of all, let us define the coefficient α ∈ R+ which has the dimension of length.
Its choice, somehow arbitrary, is discussed later. Let (X, T,x, t) be our first set of
canonical coordinates, with Hamiltonian (C.43). The canonical transformation from
the KS coordinates:

(U, U
,u, u
) ∈ R4 × R× R4 × R 
−→ (X, T,x, t) ∈ R3 × R× R3 × R (C.52)

is defined by: ⎛
⎝x1

x2

x3

⎞
⎠ =

1

α

⎛
⎝u2

0 + u2
1 − u2

2 − u2
3

2(u1u2 + u0u3)
2(u1u3 − u0u2)

⎞
⎠ (C.53)

and: ⎛
⎝X1

X2

X3

⎞
⎠ =

α

2u2

⎛
⎝ U0u0 + U1u1 − U2u2 − U3u3

U0u3 + U1u2 + U2u1 + U3u0

−U0u2 + U1u3 − U2u0 + U3u1

⎞
⎠ (C.54)

whereas the time variables remain unchanged: (T, t) = (U
, u
). We note that the
relation (C.53) gives the remarkable property:

r ≡ |x| = 1

α
u2 (C.55)

Since the transformation drops one dimension (u ∈ R4 but x ∈ R3), its inverse contains
some arbitrariness. We will use the conventions from Breiter (1999) and Breiter et al.
(2007), setting:

⎛
⎜⎜⎝
u0

u1

u2

u3

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
α

2(r + x1)

⎛
⎜⎜⎝

0
r + x1

x2

x3

⎞
⎟⎟⎠ if x1 � 0

√
α

2(r − x1)

⎛
⎜⎜⎝

−x3

x2

r − x1

0

⎞
⎟⎟⎠ if x1 < 0

(C.56)

and enforcing the link:

U0u1 − U1u0 − U2u3 + U3u2 = 0 (C.57)

Adding the latter as a additional line of the matrix (C.54), the inverse transformation
for the momenta is:⎛

⎜⎜⎝
U0

U1

U2

U3

⎞
⎟⎟⎠ = LX where L ≡ 2

α

⎛
⎜⎜⎝

u0 u3 −u2

u1 u2 u3

−u2 u1 −u0

−u3 u0 u1

⎞
⎟⎟⎠ (C.58)
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We now need to express the Hamiltonian (C.43) in the new coordinates. From (C.54)
and using the convention (C.57), we get:

X2 =
α2

4

U2

u2
(C.59)

The Hamiltonian A expressed in the new coordinates is thus:

A =
α2

8

U2

u2
− α

μtot

u2
+ U
 (C.60)

Then, the perturbation εB is expressed as in (C.44), but where x is seen as a function
of u using (C.53). Let us now change the scale of time, introducing the fictitious time
τ such that:

dτ

dt
=

α

4r
=

α2

4u2
(C.61)

At this point, the meaning of the parameter α becomes apparent. Indeed, the definition
of the fictitious time should be compared to the relation (2.26) between the eccentric
and mean anomalies:

dE =
a

r
dM (C.62)

Using the fact that dM = ndt where n is the mean motion, the analogous expression
using the fictitious time is:

dE =
4a

α
ndτ (C.63)

Since we consider a perturbed two-body problem, we will choose the constant parameter
α = 4a (where a is the initial osculating semi-major axis of the orbit), leading to the
equality dE = ndτ at the initial instant. In the new coordinates, the fictitious time
τ has really the dimension of a time, and the orbital period is the same in t or in τ .
These properties would be verified at all time for a zero perturbation.

Since the scaling (C.61) is not constant along the trajectories (it depends on the
position), we must use the general time-regularisation transformation introduced in
Sect. 2.2.2. The pair of canonical coordinates (T, t) is already contained in the definition
of H, so the new Hamiltonian is given by:

M =
dt

dτ
H (C.64)

Dropping the constant term, it writes M = M0 + εM1 with:⎧⎪⎪⎨
⎪⎪⎩

M0 =
1

2
U2 +

4u2

α2
U


εM1 = −4u2

α2
γ(u, u
)

(C.65)

where we used the notation:

γ(u, u
) =
μ

|x− x�| +
N∑
i=1

μi

|x− xi| (C.66)
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In this expression, x is seen as a function of u using (C.53), whereas x� and {xi} are
functions of u
 = t given by the synthetic representation.

From Sect. 2.2.2, we know that this system is equivalent to the initial one provided
that the constant value of H is zero. This is easily achieved by choosing the initial value
of U
 accordingly (which so far was arbitrary). At all time, U
 is thus equal to the
opposite of the two-body-problem energy, minus the planetary perturbations (C.44),
that is:

U
 = T = −
(
1

2
X2 − μtot

|x|
)
− εB (C.67)

We note that it is positive for a (sufficiently slightly) perturbed elliptic orbit, and
negative for an hyperbolic one.

As in Sect. C.5.2, the Hamiltonian (C.65) contains an integrable part and a per-
turbation, and this perturbation, taken individually, is also integrable. We can thus
apply the integrator by Laskar and Robutel (2001) detailed in Sect. C.5.1. For this
purpose, we must first compute the explicit expression of the propagation over one step
h of the systems defined by the Hamiltonians M0, εM1 and N = {{M0, εM1}, εM1}
taken separately. The equations of motion generated by the unperturbed two-body
Hamiltonian M0 are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dτ
=

∂M0

∂U
= U

du


dτ
=

∂M0

∂U

=

4u2

α2

dU

dτ
= −∂M0

∂u
= − 8

α2
U
u

dU


dτ
= −∂M0

∂u

= 0

(C.68)

The last equation implies that U
 is constant along the propagation, which gives a very
simple form to the coupled equations governing the evolution of u and U:

ü = −8U


α2
u (C.69)

This is the dynamical equation of a harmonic oscillator, which has a very simple ana-
lytical solution. The type of the solution depends on the sign of U
 and we saw that it
is positive in the elliptic case. The solution of (C.69) oscillates thus with the constant
frequency7:

ω =

√
8U


α2
(C.70)

With u(τ) and U(τ) as initial conditions, by looking for a general solution composed

7One can note that if the perturbation tends to zero, the value of U� is simply μtot/(2a), so from
our choice of the constant parameter α = 4a, this leads to ω = n/2. Consequently, one pulsation of
the KS harmonic oscillator corresponds to two orbital periods of the two-body problem.
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of a cosine and a sine terms, the propagation from τ to τ + h using M0 is finally:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(τ + h) = u(τ) cos(ωh) +U(τ)
sin(ωh)

ω

u
(τ + h) = u
(τ) +
4

α2

∫ τ+h

τ

u(s)2ds

= u
(τ) +
2

α2

(
u(τ)2 +

U(τ)2

ω2

)
h− 2

α2ω2

(
u(τ + h) ·U(τ + h)− u(τ) ·U(τ)

)
U(τ + h) = −u(τ)ω sin(ωh) +U(τ) cos(ωh)

U
(τ + h) = U
(τ)

(C.71)
in which the quantity u2 +U2/ω2 in invariant along the propagation. Analogous for-
mulas can be obtained in the hyperbolic case (see Breiter et al., 2007). One can note
that they are much more straightforward than the two-body propagation required in
conventional coordinates (Sect. C.5.2).

On the other hand, the propagation using the Hamiltonian εM1 writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dτ
=

∂εM1

∂U
= 0 =⇒ u(τ + h) = u(τ)

du


dτ
=

∂εM1

∂U

= 0 =⇒ u
(τ + h) = u
(τ)

dU

dτ
= −∂εM1

∂u
=

8

α2

(
γ u− 1

2
u2Lw

)

=⇒ U(τ + h) = U(τ) + h
8

α2

(
γ u− 1

2
u2Lw

)
dU


dτ
= −∂εM1

∂u

=

4u2

α2

∂γ

∂u

=⇒ U
(τ + h) = U
(τ) + h

(
4u2

α2

∂γ

∂u


)
(C.72)

in which the matrix L(u) is defined in (C.58) and the function γ(u, u
) is defined
in (C.66). We have in particular the relations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂γ

∂u
= −Lw

∂γ

∂u

= μ

x− x�
|x− x�|3 · ẋ� +

N∑
i=1

μi
x− xi

|x− xi|3 · ẋi

(C.73)

where:

w(u, u
) =

⎛
⎝w1

w2

w3

⎞
⎠ = μ

x− x�
|x− x�|3 +

N∑
i=1

μi
x− xi

|x− xi|3 (C.74)

Finally the application of the two corrector steps involves the Hamiltonian:

N = {{M0, εM1}, εM1} =
∂εM1

∂u
· ∂εM1

∂u
=

64

α4

(
1

2
u2Lw − γ u

)2

(C.75)
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that we will write schematically:

N =
64

α4
F · F (C.76)

with:

F(u, u
) =

⎛
⎜⎜⎝
F0(u, u


)
F1(u, u


)
F2(u, u


)
F3(u, u


)

⎞
⎟⎟⎠ =

1

2
u2L(u)w(u, u
)− γ(u, u
)u (C.77)

The propagation using the Hamiltonian N can thus be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dτ
=

∂N
∂U

= 0 =⇒ u(τ + h) = u(τ)

du


dτ
=

∂N
∂U


= 0 =⇒ u
(τ + h) = u
(τ)

dU

dτ
= −∂N

∂u
= −128

α4
(DF)TF =⇒ U(τ + h) = U(τ) + h

(
−128

α4
(DF)TF

)
dU


dτ
= −∂N

∂u

= −128

α4

∂F

∂u

· F =⇒ U
(τ + h) = U
(τ) + h

(
−128

α4

∂F

∂u

· F

)
(C.78)

The matrix (DF)T is defined as:

(DF)T =

⎛
⎜⎜⎝
∂F0/∂u0 ∂F1/∂u0 ∂F2/∂u0 ∂F3/∂u0

∂F0/∂u1 ∂F1/∂u1 ∂F2/∂u1 ∂F3/∂u1

∂F0/∂u2 ∂F1/∂u2 ∂F2/∂u2 ∂F3/∂u2

∂F0/∂u3 ∂F1/∂u3 ∂F2/∂u3 ∂F3/∂u3

⎞
⎟⎟⎠

=
1

2
u2

(
M + LDLT

)− γ �4 + u(Lw)T + (Lw)uT

(C.79)

where �4 is the 4× 4 identity matrix. We have besides used the following matrices:

M(w) =
2

α

⎛
⎜⎜⎝

w1 0 −w3 w2

0 w1 w2 w3

−w3 w2 −w1 0
w2 w3 0 −w1

⎞
⎟⎟⎠ (C.80)

and:

D =
μ

|x− x�|3
[
�3 − 3

x− x�
|x− x�|2 (x− x�)T

]
+

N∑
i=1

μi

|x− xi|3
[
�3 − 3

x− xi

|x− xi|2 (x− xi)
T
]

(C.81)
where �3 is the 3× 3 identity matrix. Finally, the last partial derivative involved in the
propagation (C.78) is:

∂F

∂u

=

1

2
u2L

∂w

∂u

− ∂γ

∂u

u (C.82)
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using (C.73) and:

∂w

∂u

=

μ

|x− x�|3
(
−ẋ� + 3

x− x�
|x− x�|2 (x− x�) · ẋ�

)

+
N∑
i=1

μi

|x− xi|3
(
−ẋi + 3

x− xi

|x− xi|2 (x− xi) · ẋi

) (C.83)

As before, we note that if ε tends to 0, this algorithm gives the motion of an exact
two-body propagation around the barycentre of the Solar System. The validity of the
above formulas (especially the complex corrector steps) can be assessed by checking the
behaviour of the error with respect to the step h used. Fig. C.5 shows the maximum
error of the value of H for a fictitious particle integrated during about one orbital
period. In some range of step size, the terms in h2ε2 dominate (slope equal to h2), but
they are correctly removed by the use of the corrector, pushing back the error in the
h4ε2 terms (slope equal to h4). Contrary to Fig. C.4, the step size h refers now to the
fictitious time τ (however, since the semi-major axis of the particle does not vary much
over the time span considered, the number of steps per orbit is roughly the same).
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Figure C.5 – Maximum variation of the value of H for a fictitious particle integrated over 200 years
using the algorithm described in this section (KS barycentric coordinates). The initial conditions and
planetary model are the same as in Fig. C.4. The theoretical value of H is zero. The same integrator
is used without corrector (red curve) and with corrector (blue curve).
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C.5.4 Efficiency of the algorithms

First of all, we note that the computation of a single step h is a bit faster in the mixed-
variable integrator (Sect. C.5.2) than in the KS one (Sect. C.5.3), even if it requires
the two-body propagation8. Indeed, the use of KS coordinates makes necessary the
computation of the partial derivatives with respect to the physical time u
 = t, whereas
in conventional coordinates they are only needed to check the Hamiltonian conservation
(and thus removed after the experimental phase). These partial derivatives are quite
time-consuming in our case, since the synthetic representation involves trigonometric
functions. However, at a given precision the KS integrator is much faster, since it
requires a much smaller number of steps: Fig. C.6 presents the comparison of speed
versus accuracy of the two methods, showing that for the same computing time the
integrations using the KS coordinates are more accurate by several orders of magnitude.
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Figure C.6 – Same integrations as in Figs. C.4 and C.5, but using the computation time in the x-axis.
For a given integrator, the computation time is directly proportional to the time-step used. Since the
integration span is relatively small, the additional time required by the corrector steps is barely visible
(the curves with correctors are slightly shifted toward the right).

Let us now turn to the comparison of long-term numerical integrations. Please re-
member that our goal in Sect. 4.5 is to propagate a large sample of objects, in order to
track the qualitative long-term evolution of their orbits (by contrast to getting accurate
individual positions over time). Moreover, we are mainly interested in distant traject-
ories, with perihelion located (possibly much) beyond Neptune. Since any particle

8For instance, using the corrector and with the smallest time-step represented in Figs. C.4 and C.5,
the computing times using the same processor are in average 1.31 s and 1.22 s, using respectively the
KS and conventional coordinates (without energy checking). These two integrations involve the same
number of steps.



258 APPENDIX C. SOME NUMERICAL METHODS USED

reaching a perihelion distance smaller than the semi-major axis of Neptune is removed
from the simulation, there is no possibility of close encounter (except for very particular
cases that we can dismiss). Consequently, we deal here with the very slightly perturbed
case, as for all the models developed and discussed throughout this work, so the orbital
evolution only results from the long-term accumulation of perturbations, resonant or
not. In the following, we compare numerical integrations of particles with an initial
semi-major axis a = 800 AU and an initial inclination I = 0◦. Several initial perihe-
lion distances are considered, from a purely quasi-periodic trajectory (q = 100 AU) to
chaotic diffusion (q = 50 AU). Such a high semi-major axis has been chosen for the
corresponding high sensibility to chaos (Gallardo et al., 2012) and the inefficiency of
the captures into mean-motion resonances.

Figs. C.7 and C.8 show that surprisingly, for large perihelion distances the KS integ-
rator is largely outclassed by the mixed-variable one. It even needs a higher number of
steps per orbit in order to follow qualitatively well the smooth quasi-integrable traject-
ory. For such long integration spans, the KS scheme seems to behave as a non-symplectic
integrator: the solution does converge toward the real trajectory when decreasing the
step size, but in an unordered way. By comparison, the mixed-variable integrator fol-
lows qualitatively well the dynamics even for large steps, and the decrease of the step
size only reduces the oscillations around the real trajectory. In the two cases, we note
that the use the corrector steps somehow stabilises the numerical solution. Here, the
nature of the perturbation is secular by essence, that is very small in magnitude but
accumulating on a long timescale, all along the orbit of the particle. This is prob-
ably why the KS integrator, even for a quite eccentric orbit, turns out to be not as
competitive as we could have expected: the large increase of the (physical) time-step
near aphelion seems to keep it from accurately account for the secular accumulation of
perturbations. Contrarily, the mixed-variable symplectic integrator does spend a lot of
steps near aphelion, but thus it reproduces well the secular perturbations by the planets
(for instance, the orbital period of Neptune is always resolved by the steps).

Fig. C.9 shows the slightly chaotic case, for which the rate of semi-major axis diffu-
sion can be checked using a reference numerical integration. Using the mixed-variable
integrator, the green and red curves (step sizes of 10 and 3 years) are now noticeably
distinct, but still qualitatively equivalent in regards to the rate of diffusion. The same
conclusion as above holds for the KS integrator. Finally, Fig. C.10 shows the frankly
chaotic case, in which all the trajectories seem more or less acceptable. The very ac-
curate integrator by Rein and Spiegel (2015) gives itself diverging results according
to the exact precision parameter chosen: we reach the intrinsic uncertainty of chaotic
trajectories treated by finite-precision arithmetic. Results on such long timescales are
necessarily different from one integration to another, even when considering only the
round-off errors. Hence, these trajectories should be considered only as possible out-
comes in that region of initial conditions, and they cannot be used to study the validity
of the integrators.
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Figure C.7 – Long-term numerical integration using four types of integrators (written on the right).
The elements represented are barycentric. The colour code represents the time-step used: it is equal
to 100 yrs (magenta), 32 yrs (blue), 10 yrs (green) and 3 yrs (red). In the conventional coordinates
the step is realised in the real time t (two top rows), whereas in the KS coordinates it is realised in
the fictitious time τ (two bottom rows). In the two top rows, the green curve is hidden below the
red one. In the two bottom rows, the semi-major axis of the magenta curve diffuses in the interval
±100 AU (out of the graphs), and the blue one in ±10 AU. The computing time of these integrations
were: ABA3 : (16, 50, 151, 463) min, ABAC3 : (18, 56, 178, 538) min, KS -ABA3 : (14, 42, 127, 383) min
and KS -ABAC3 : (15, 49, 149, 453) min. In the conventional coordinates, the Hamiltonian value was
computed (thus the overall higher durations than in the KS ones). For a given step size, its conservation
is roughly equivalent for the four integrators.
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Figure C.8 – Same as Fig. C.7 but with an initial perihelion distance equal to 80 AU. The orbit is
closer to the chaotic zone but the real trajectory is still quasi-integrable (as shown by a long but very
accurate integration using the non-symplectic integrator by Rein and Spiegel, 2015). In the two top
rows, the green curve is hidden below the red one. The computing times are very similar as in Fig. C.7.
In the two top rows, the semi-major axis of the magenta curve diffuses in the interval ±4 AU (out of
the graphs). In the two bottom rows, the semi-major axis of the magenta curve diffuses in the interval
±800 AU, and the blue one in ±25 AU.
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Figure C.9 – Same as Fig. C.7 but with an initial perihelion distance equal to 65 AU. The real
trajectory diffuses slowly similarly as the red and green trajectories given by ABA3 and ABAC3 (as
shown by a very long but very accurate integration using the non-symplectic integrator by Rein and
Spiegel, 2015). In the two bottom rows, the semi-major axis of the magenta curve diffuses in the
interval ±400 AU (out of the plot).
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Figure C.10 – Same as Fig. C.7 but with an initial perihelion distance equal to 50 AU. We recall
the colour code according to the time-step: 100 yrs (magenta), 32 yrs (blue), 10 yrs (green) and 3 yrs
(red). The trajectory obtained from the non-symplectic integrator by Rein and Spiegel (2015) presents
the same rate of diffusion as all these orbits, but the behaviour of the inclination is best reproduced
by ABAC3.
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From these experimentations, the long-term evolution of distant bodies seems to be
best reproduced by the mixed-variable integrator ABAC3, for which we retain a time-
step of 10 years as optimum choice. This leads to long but not prohibitive computation
times for the whole sample (see Sect. C.4). Moreover, the fact that the orbits of Neptune
and Uranus are well resolved by the step size is probably necessary to properly account
for the possible captures into mean-motion resonances.

Nevertheless, the particularity of KS integrators to resolve more accurately the
passages at perihelion rather than at aphelion is an incredible advantage over sym-
plectic schemes using purely Cartesian coordinates (as for the decomposition A=kinetic
energy/εB=potential): indeed, the sharp variation of the Cartesian coordinates at peri-
helion for highly eccentric orbits are badly reproduced if the time-step is large, leading
to large errors even in the non-perturbed case. However, this does not hold for mixed-
variable symplectic schemes as the one presented in Sect. C.5.2, since the two-body
component is solved analytically. Moreover, since the fictitious time τ is proportional
to

√
a E, the use of the KS integrator requires implicitly that the semi-major axis of

the orbit does not change much during the integration. For instance, if a decreases a
lot along the integration, the constant step of τ becomes a very large portion of the
whole orbit, leading to inaccurate results. Since the region of the Solar System studied
here is particularly subject to chaotic diffusion, the KS coordinates prove to be rather
unsuitable.

C.5.5 Notes on other methods

Some other integration algorithms were also experimented, as the generalisation of the
hybrid method of Chambers (1999) to the whole Solar System. In a few words, it
consists in applying a gauge to the Hamiltonian functions A and εB, such that some
“amount” of εB can be transferred to A when needed. In practice, this is realised by
redefining the splitting (C.44) as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A =
1

2
X2 − μtot

|x| + T + (1− κ)

(
μtot

|x| − μ

|x− x�| −
N∑
i=1

μi

|x− xi|

)

εB = κ

(
μtot

|x| − μ

|x− x�| −
N∑
i=1

μi

|x− xi|

) (C.84)

where κ is a C2 function of the coordinates, taking values between 0 and 1. This allows to
ensure that εB remains at all time a small quantity compared to A, but still conserving
the overall symplecticity of the integrator. Whenever some amount of εB is transferred
to A, the latter becomes non integrable, so the sub-steps of the symplectic scheme are
realised using another numerical integrator (as the Bulirsch-Stoer). Please note that
the function κ should be absolutely flat when the perturbation is small enough (that
is where it is equal to 1), such that its partial derivatives with respect to the position
are zero, making the Hamiltonian A integrable again analytically. That method was
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initially designed by Chambers (1999) to deal with close encounters, but our idea was
to apply it more generally when the barycentric distance of the body gets smaller than
a given quantity. Our results were not fully satisfactory: even if in some cases, good
accuracies were achieved using very large time-steps (50 or 100 years), the computing
times were only moderately lower than for the standard mixed-variable integrator with
a step of 10 years. Moreover, the fact that none of the planetary orbits are resolved
beyond some distance threshold (where κ = 1) could yield to the same problem as the
KS coordinates, discussed above.

C.6 Hardy’s discrete integration

Hardy’s integration method is a particular application of the Newton-Cotes formulas
(Press et al., 2007). It consists in an integration by parts in which polynomial inter-
polations are realised. The value obtained for each part is thus computed analytically.
In Hardy’s method, the intervals are made of seven points, so the polynomial used are
of order 6. The method is thus exact for the integration of polynomials of order � 6.

Let us consider a function f(t) tabulated on [a, b] by N + 1 equidistant points
{tk, fk}k=0,1..N separated by an interval Δt. We impose that N is a multiple of 6, so
that:

∫ b

a

f(t) dt =

N/6−1∑
n=0

∫ t6n+6

t6n

f(t) dt =

N/6−1∑
n=0

∫ t6n+6

t6n

P
(n)
6 (t) dt+O

(
M

[
Δt

6

]9)
(C.85)

in which P
(n)
6 (t) is the polynomial of order 6 obtained by the interpolation of f(t) at the

points {t6n, t6n+1, ..., t6n+6} and M is the upper bound of f (8)(t) on [a, b]. See Isaacson
and Keller (1966) for more details. Using Lagrange’s interpolation, the computation of

the coefficients of P
(n)
6 (t) is straightforward. It leads to the following expression of the

sub-integral:∫ t6n+6

t6n

P
(n)
6 (t) dt =

Δt

140

(
41f6n + 216f6n+1 + 27f6n+2 + 272f6n+3

+ 27f6n+4 + 216f6n+5 + 41f6n+6

) (C.86)

We finally get the value of the whole integral between a and b by the summation over n.

C.7 Maximisation by quadratic interpolation

Starting from a first guess, we look for the exact position of the maximum of a real
function g(x). The first step consists in bracketing the maximum, that is to find a
triplet of points {a, b, c} such that b ∈ ]a, c[ with g(b) larger than both g(a) and g(c).
In that case, g(x) has necessarily a maximum on ]a, c[, provided, of course, that it does



C.7. MAXIMISATION BY QUADRATIC INTERPOLATION 265

not diverge on this interval. Once such points {a, b, c} are known, the function g(x) is
approximated by the (unique) polynomial of order 2 which has the same values as g in
a, b and c. In this way, the abscissa of the maximum is easy to compute:

xmax = b+
1

2

[
g(a)− g(b)

]
(c− b)2 − [

g(c)− g(b)
]
(a− b)2[

g(a)− g(b)
]
(c− b)− [

g(c)− g(b)
]
(a− b)

(C.87)

A correct choice for {a, b, c} ensures that it is indeed a maximum (not a minimum), and
that the denominator is not zero (the three points are not aligned). Then, the procedure
can be iterated: if xmax ∈ ]b, c[ or xmax ∈ ]a, b[ respectively, the value of b becomes the
new a or the new c, and xmax becomes the new central point b. The iterations can
be stopped when |c − a| is smaller than the required precision. Be careful, though,
that the precision is limited by the shape of the function in the neighbourhood of its
maximum. Indeed, even if the value of the maximum g(xmax) is obtained at machine
precision, this is never the case of its abscissa xmax (for instance, think of a function
very “flat” around xmax). An estimate of the limit of precision can be obtained by a
Taylor expansion of g around its maximum:

g(x) ≈ g(xmax) +
(x− xmax)

2

2
g′′(xmax) (C.88)

in which here, xmax is the true position of the maximum. Writing ε the machine
precision, the convergence is obtained when the new position x is such that:∣∣∣∣g(x)− g(xmax)

g(xmax)

∣∣∣∣ < ε (C.89)

The maximum precision reachable for the position of the maximum is then:

(x− xmax)
2

2
|g′′(xmax)| < ε |g(xmax)| ⇐⇒ |x− xmax| <

√
2 ε |g(xmax)|
|g′′(xmax)| = εx (C.90)

In our case, we aim at maximising the amplitude function A(ν) = 〈f, eiνt〉 for which a
first guess is given by a Fast Fourier Transform (Sect. A.1.1). The FFT gives a very
rough representation of A(ν), so the initial bracketing should be realised with some care
(see Fig. C.11). The precision reachable can be estimated using (C.90) and supposing
that the maxima of A(ν) are separated enough to consider that it behaves locally as a
one-term function. Indeed, using the Hanning window, Eq. A.8 rewrites:

g(ν) = |A(ν)| =
∣∣∣∣∣ A1 π

2

π2 − [(ν1 − ν)T/2
]2 sin

[
(ν1 − ν)T/2

]
(ν1 − ν)T/2

∣∣∣∣∣ (C.91)

By computing the derivatives of g expressed at its maximum ν1, we finally get:

εν =

√
24 ε

(1− 6/π2)T 2
=

ν0
π

√
6 ε

1− 6/π2
≈ 1.245 ν0

√
ε (C.92)
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Since the frequencies are not always well separated, the peaks can appear slightly larger
so one should take a safety margin (for instance 2 ν0

√
ε ). In practice, the maximum

precision is reached when the three points used for the quadratic interpolation become
horizontally aligned at the working precision, leading to a zero denominator in (C.87).
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Figure C.11 – Bracketing of the maximum of the amplitude function A(ν) starting from a FFT: a)
bad bracketing because g(b) < g(a); b) suitable bracketing.
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L. Floŕıa. A Simple Derivation of the Hyperbolic Delaunay Variables. Astronomical
Journal, 110, August 1995.



BIBLIOGRAPHY 269
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J. Laskar, C. Froeschlé, and A. Celletti. The measure of chaos by the numerical analysis
of the fundamental frequencies. Application to the standard mapping. Physica D, 56,
May 1992.
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Secular theories and orbital dynamics beyond Neptune The dynamical struc-
ture of the trans-Neptunian region is still far from being fully understood, especially
concerning high-perihelion objects. The major part of this work is focussed on the de-
velopment of secular models, used to describe the orbital dynamics of trans-Neptunian
objects both in the non-resonant and resonant cases. One-degree-of-freedom systems
can be obtained, which allows to represent any trajectory by a level curve of the
Hamiltonian. Such a formalism is very efficient to explore the parameter space. It
reveals pathways to high perihelion distances, as well as “trapping mechanisms”, able
to maintain the objects on very distant orbits for billions of years. The application
of the resonant secular model to the known objects is also very informative, since it
shows graphically which observed orbits require a complex scenario (as the planetary
migration or an external perturber), and which ones can be explained by the influence
of the known planets.

The last part of this work is devoted to the extension of the non-resonant secular
model to the case of an external massive perturber. If it has a substantial eccentricity
and/or inclination, it introduces one or two more degrees of freedom in the system,
so the secular dynamics is non integrable in general. In that case, the analysis can
be realised by Poincaré sections, which allows to distinguish the chaotic regions of the
phase space from the regular ones.


