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Résumé

Résumé

Dans cette thèse, nous étudions les solutions des équations Hamilton-Jacobi. Plus pré-
cisément, nous comparons la solution de viscosité, obtenue comme limite de solutions
de l’équation perturbée par un petit terme de diffusion, et la solution minmax, définie
géométriquement à partir d’une fonction génératrice quadratique à l’infini. Dans la littéra-
ture, il y a des cas bien connus où les deux coïncident, par exemple lorsque le hamiltonien
est convexe ou concave, le minmax pouvant alors être réduit à un min ou un max. Mais
les solutions minmax et de viscosité diffèrent en général. Nous construisons des “minmax
itérés” en répétant pas à pas la procédure de minmax et démontrons que, quand la taille
du pas tend vers zéro, les minmax itérés tendent vers la solution de viscosité. Dans une
deuxième partie, nous étudions les lois de conservation en dimension un d’espace par le
méthode de “front tracking”. Nous montrons que dans le cas où la donnée initiale est
convexe, la solution de viscosité et le minmax sont égaux. Et comme application, nous
décrivons sur des exemples la manière dont sont construites les singularités de la solution
de viscosité. Pour finir, nous montrons que la notion de minmax n’est pas aussi évidente
qu’il y paraît.

Mots-clefs

Équation de Hamilton-Jacobi, solution de viscosité, famille génératrice, minmax, minmax
itéré, front d’onde

Viscosity solutions of Hamilton-Jacobi equation and
iterated minmax

Abstract

In this thesis, we study the solutions of Hamilton-Jacobi equations. We will compare
the viscosity solution and the minmax solution, with the latter defined by a geometric
method. In the literature, there are well-known cases where these two solutions coincide:
if the Hamiltonian is convex or concave with respect to the momentum variable, the
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minmax can be reduced to min or max. The minmax and viscosity solutions are different
in general. We will construct “iterated minmax” by iterating the minmax step by step
and prove that, as the size of steps go to zero, the iterated minmax converge to the
viscosity solution. In particular, we study the equations of conservation laws in dimension
one, where, by the “front tracking” method, we shall see that in the case where the initial
function is convex, the viscosity solution and the minmax are equal. And as an application,
we use the limiting iterated process to describe the singularities of the viscosity solution.
In the end, we show that the notion of minmax is not so obvious.

Keywords

Hamilton-Jacobi equation, viscosity solution, generating familly, minmax, iterated min-
max, wave front
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Introduction

Cette thèse concerne l’étude du problème de Cauchy

(H-J)

{

∂tu(t, x) +H(t, x, ∂xu) = 0,

u(0, x) = v(x)

pour l’équation de Hamilton-Jacobi. La solution de viscosité dans la théorie analytique
des équations aux dérivées partielles sera approchée par une méthode géométrique.

Solution de viscosité

Même si v est C∞, le problème (H-J) n’a pas en général de solution globale C1. Cela
conduit à chercher des solutions faibles, par exemple les fonctions qui vérifient l’équation
presque partout. Cependant, cette notion ne suffit pas à assurer l’unicité. L’exigence
d’unicité d’une solution ayant (éventuellement) un sens physique demande d’imposer une
condition supplémentaire sur les singularités des solution faibles. Parmi les efforts faits
dans ce sens, la notion générale de solutions de viscosité introduite en 1981 par M.G. Cran-
dall et P.L. Lions a montré sa valeur pour établir l’existence, l’unicité et la stabilité au
sens le plus général. De nombreux travaux ont contribué à faire mûrir cette théorie du
côté analytique.

Solution géométrique et variationelle

Le problème (H-J) a une unique solution “multiforme” globale, définie par la méthode
des caractéristiques: on considère l’équation comme une hypersurface dans le cotangent
T ∗(R×M). La réunion des caractéristiques de cette hypersurface issues de la sous-variété
isotrope initiale définie par la dérivée de v est une sous-variété lagrangienne contenue dans
cette hypersuface : c’est la solution géométrique de (H-J), c’est-à-dire le “graphe de la
dérivée” de la solution multiforme. Lorsque (par exemple) le hamiltonien H est à support
compact, cette sous-variété lagrangienne est l’image de la section nulle du cotangent par
temps 1 d’une isotopie hamiltonienne et elle admet une famille génératrice quadratique à
l’infini (FGQI).

On peut sélectionner une section de la projection d’une telle sous-variété L sur la base
R × M (“graph selector”) en prenant le minmax d’une FGQI par rapport aux variables
supplémentaires; il résulte d’un théorème de Viterbo et Théret que cette section ne dépend
que de L et non de la FGQI choisie (ni donc de le problème (H-J) dont L est solution
géométrique). Elle a été proposée comme une construction géométrique de solution faible
pour les équation (H-J) non convexes par M. Chaperon [21], suivi de T. Joukovskaïa,
A. Ottolenghi, C. Viterbo, F. Cardin, [45, 63, 64, 65, 12]. Récemment, elle apparaît dans
les travaux de M.-C. Arnaud, P. Bernard, J. Santos [2, 11, 10] sur la théorie de KAM faible.
D’autre part, par sa nature géométrique, elle devient un outil de la topologie symplectique,
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développé par C.Viterbo [62]. Elle apparaît aussi comme un lien entre la topologie sym-
plectique et la théorie d’Aubry-Mather chez G. Paternain, L. Polterovich, et K. Siburg [53].

Le contenu de cette thèse est organisé comme suit:

Dans le chapitre 1, nous présentons la théorie générale des FGQI. Des formules ex-
plicites sont donnés en utilisant les fonctions génératrices obtenues par la méthode de
“géodésiques brisées” discrétisant la fonctionnelle d’action du calcul variationnel pour la
ramener de la dimension infinie à la dimension finie. L’existence de FGQI est discutée dans
le cas où la variété n’est pas compacte. Le minmax est introduit en language homologique.
Puis nous étendons ces objets de classe C2 au cas Lipschitzien, en vue de l’application aux
minmax itérés. Nous obtenons ainsi un sélecteur généralisé donné par le minmax.

Dans le chapitre 2, nous comparons les solutions de viscosité et minmax de l’équation
de Hamilton-Jacobi. Nous traitons à nouveau les cas convexes classiques par le minmax,
qui est en fait ici réduit au min. Ce sont des cas où la solution minmax et la solution
de viscosité coïncident. Le fait qu’elles soient solutions de viscosité vient de ce qu’elles
possèdent la “propriété de semi-groupe” par rapport au temps: nous démontrons en effet
que si les solutions minmax possèdent cette propriété, ce sont les solutions de viscosité
(Proposition 2.44).

Puis nous introduisons le minmax itéré dans le cas où le minmax ne définit pas un
“semi-groupe”. Nous démontrons que la limite du minmax itéré est la solution de vis-
cosité. Il s’avère que le sélecteur minmax se comporte comme un “générateur” définie par
P.E. Souganidis dans [58], et notre procédure s’inscrit dans ses schèmes d’approximation
générales aux solutions de viscosités . La vertu de l’approximation par minmax itérées ,
c’est qu’en raison de sa propriété géométrique, elle pourrait nous fournir une description
géométrique de la solution de viscosité. Après, en particulier, nous étudions l’équation
des lois de conservation de dimension un, où, par le méthode de “front tracking”, Nous
montrons que dans le cas où la donnée initiale est convexe, la solution de viscosité et le
minmax sont égaux.

Dans la dernière partie nous utilisons notre résultat pour décrire sur des exemples la
formation des singularités des solutions de viscosité des lois de conservation. Quand il y
a raréfaction, la passage à la limite dans les minmax itérés nous explique d’où vient la
partie de la solution de viscosité qui n’est pas contenue dans la solution géométrique: elle
vient de la partie “verticale” de la différentielle de Clarke ∂u, qui décrit la singularité de
la différentielle du à chaque pas des minmax itérés. C’est aussi une explication du fait
que le minmax ne possède pas la propriété de semi-groupe. Ce phénomène ne peut pas
se produire dans les cas convexes, où la dérivée ordinaire du suffit à rendre compte de tout.

Dans le chapitre 3, nous nous intéressons au sélecteur minmax lui-même, en particulier
aux questions suivantes:

1. Est-ce que le minmax et son analogue maxmin sont égaux?

2. Est-ce qu’il y a un seul “minmax”? Plus précisement, est-ce que le minmax dépend
du choix des coefficients de l’homologie qui le définit?

Nous montrons que minmax et maxmin sont égaux s’ils sont définis par l’homologie à
coefficients dans un corps. Cependant, un contre-exemple donné par F. Laudenbach nous
dit que ceci cesse d’être vrai si les coefficients appartiennent à un anneau quelconque et
que, dans le cas d’un corps, le minmax-maxmin dépend du choix du corps.



Chapter 1

Generating families and minmax
selector

We will first give a brief survey of the classical theory, for a closed manifold M , of gener-
ating families for Lagrangian submanifolds L ⊂ T ∗M and hereafter the minmax selector
which serve to extract a section from the Lagrangian. Then we pass to the model case
M = Rd where we will generalize the classical notions, on the one hand, to fit the non-
compactness of manifolds, and on the other hand, to the Lipschitz case where we do not
have smooth Lagrangian submanifolds, but the notion of generating family and minmax
still hold for a similar objet.

1.1 General theory for closed manifolds

Definition 1.1. A generating family for a Lagrangian submanifold L ⊂ T ∗M is a C2

function S : M × Rk → R such that 0 is a regular value of the map (x, η) 7→ ∂S(x, η)/∂η
and

L =
{

(

x,
∂S

∂x
(x, η)

)

:
∂S

∂η
= 0

}

;

more precisely, the condition that 0 is a regular value implies that the critical locus ΣS :=
{(x, η)|∂ηS = 0} is a submanifold and that the map

iS : ΣS → T ∗M, (x, η) 7→ (x, ∂xS(x, η))

is an immersion; we require that iS be an embedding and, of course, iS(ΣS) = L.

A function S on M × Rk need not have critical points. However, it does have critical
points if we prescribe some behavior at infinity as in the following definition:

Definition 1.2. A generating family S : M × Rk → R is (exactly) quadratic at infinity if

S(x, η) = ψ(x, η) +Q(η)

where Q is a nondegenerate quadratic form and S = Q outside a compact set.

The existence of a GFQI is invariant under Hamiltonian isotopy 1:

1. Recall that an isotopy of T ∗M is a smooth path (gt)t∈[0,1] in the group of diffeomorphisms of T ∗M

onto itself. Such an isotopy is called symplectic when each gt preserves the canonical symplectic form ωM ;
by the Cartans’ formula LXωM = (dωM )X + d(ωM X), since dωM = 0, this amounts to saying that the
infinitesimal generator Xt = ( d

dt
gt) ◦ g−1

t of the isotopy is such that the interior product ωM Xt is a closed
1-form for all t. When this 1-form is exact, the vector fields Xt and the isotopy are called Hamiltonian.
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Theorem 1.3 (Sikorav [57]). Suppose L0 and L1 are two Lagrangian submanifolds of T ∗M
which are Hamiltonianly isotopic, and L0 admits a GFQI, then so does L1. In particular,
any Lagrangian manifold Hamiltonianly isotopic to the zero section 0T ∗M admits a GFQI.

Note that the generating families are not unique. Let S : M ×Rk → R be a generating
family of L, then one can obtain another family S̃ generating the same L by

(a) Fiberwise diffeomorphism : S̃(x, η) := S(x, ϕ(x, η)), where (x, η) 7→ (x, ϕ(x, η)) is
a fiberwise diffeomorphism.

(b) Adding a constant: S̃(x, η) := S(x, η) + C.
(c) Stabilization: S̃(x, η, ξ) := S(x, η) + q(ξ), where q is a nondegenerate quadratic

form.

Theorem 1.4 (Viterbo, Théret [60]). If a Lagrangian submanifold L ⊂ T ∗M is Hamil-
tonianly isotopic to the zero section 0T ∗M , then L admits a unique GFQI up to the above
operations.

Now given a Lagrangian submanifold L ⊂ T ∗M with a GFQI

S : M × Rk → R, S(x, η) = ψ(x, η) +Q(η)

consider the sub-level sets
Sax := {η : S(x, η) ≤ a},

the homotopy type of (Sax, S
−a
x ) does not depend on a when a is large enough, we may

write it as (S∞
x , S

−∞
x ). If the Morse index of Q is k∞, then

Hi(S∞
x , S

−∞
x ;Z2) = Hi(Q∞, Q−∞;Z2) ≃

{

Z2, i = k∞

0, otherwise

Definition 1.5. The minmax function is defined as

RS(x) := inf
[σ]=A

max
η∈σ

S(x, η)

where A is a generator of the homology group Hk∞
(S∞
x , S

−∞
x ;Z2). A relative cycle σ of

class A is called a descending cycle.

We can also introduce the maxmin function by considering the homology group defined
by upper level sets:

Hk′
∞

(X \ S−∞
x , X \ S∞

x ;Z2) ≃ Z2

where k′
∞ = k − k∞ and X = Rk is the fiber space.

Definition 1.6. The maxmin function is defined as

PS(x) := sup
[σ]=B

min
η∈σ

S(x, η)

where B is a generator of the homology group Hk′
∞

(X \ S−∞
x , X \ S∞

x ;Z2). A relative
cycle σ of class B is called an ascending cycle.

Remark 1.7. The minmax and maxmin are defined fiberwise for generating families.
We remark that they are well-defined for functions f : X → R “quadratic at infinity” in
the sense that the critical set of f is compact and (f∞, f−∞) has the homotopy type of
(Q∞, Q−∞) for a nondegenerate quadratic form Q. For example, the condition is satisfied
if the derivative of f −Q is bounded. This is a simple generalization of functions exactly
quadratic at infinity which requires f = Q outside a compact set.
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Remark 1.8. By the uniqueness theorem 1.4, for a given Lagrangian submanifold L, the
minmax and maxmin are independent of the GFQI, up to a constant.

Proposition 1.9. The minmax and the maxmin are equal, i.e. RS(x) = PS(x).

This is a particular case of Theorem 3.11 p. 71. The coefficients of the homology and
cohomology groups are taken in Z2, which is a field, a crucial point for the coincidence of
minmax and maxmin. They may indeed differ, for general functions quadratic at infinity,
when the coefficients are in Z (and they also depend on the fields), see Chapter 3.

Lemma 1.10. The minmax RS(x) is a critical value of the C2 map η 7→ S(x, η).

This is Proposition 3.7 p. 71. The minmax defines almost everywhere a section of the

projection T ∗M → M restricted to L (“graph selector”):

Theorem 1.11 (Sikorav, Chaperon [21, 53]). Suppose L ⊂ T ∗M admits a generating
family quadratic at infinity S, then RS is a Lipschitz function and there exists an open set
Ω ⊂ M with full measure such that for x ∈ Ω,

(x, dRS(x)) ∈ L.

1.2 The case M = Rd

In the rest of the chapter, we will take the manifold M to be Rd, in which case the
generating families are constructed explicitly. For a general manifold, one can embed it
into some Rd and use the trick of Chekanov [23, 13] to obtain generating families from
those in Rd.

1.2.1 Construction of generating functions and phases

Hypotheses and notation In the following, we equip Rk with the Euclidien ℓ2 norm |·|,
and matrices in Rk with the associated operator norm. We denote by Lip(f) the Lipschitz
constant of a function f and by π : T ∗Rd → Rd the canonical projection π(x, y) = x.

We denote by H : [0, T ] × T ∗Rd → R a C2 Hamiltonian satisfying

cH := sup |D2Ht(x, y)| < ∞ (1.1)

and by XHt the associated time-depending Hamiltonian vector field 2. By the general the-
ory of differential equations, as cH = maxt Lip(DHt) = maxt Lip(XHt), the Hamiltonian
transformation ϕs,tH obtained by integrating XHτ from τ = s to τ = t is a well-defined
diffeomorphism for all (s, t) ∈ [0, T ] and

Lip(ϕts − Id) ≤ ecH |t−s| − 1 :

see, e.g., Théorème 7.2.1 in [22]. For simplicity, we sometimes write ϕts = (Xt
s, Y

t
s ) := ϕs,tH

without mentioning H.
We will be mostly interested in the special case where H has compact support, and

consider the Lagrangian submanifolds of T ∗Rd which are Hamiltonianly isotopic to the
zero section:

L := {L = ϕ(dv), v ∈ C2 ∩ CLip(Rd), ϕ ∈ Hamc(T ∗Rd)};

2. We use the convention of sign that XH = (∂pH, −∂qH).
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here CLip(Rd) denotes the space of globally Lipschitz functions and

dv := {(x, dv(x)), x ∈ Rd} ⊂ T ∗Rd

Hamc(T ∗Rd) = {ϕ = ϕH , H ∈ C2
c ([0, 1] × T ∗Rd)} 3

where ϕH = ϕ0,1
H is the endpoint of the isotopy (“Hamiltonian flow”) defined by H.

Lemma 1.12. If
δH := c−1

H ln 2

then, for |s− t| < δH , the map

αts : (x, y) 7→
(

Xt
s(x, y), y

)

is a diffeomorphism.

Proof. As ecHδH = 2 by definition, we have Lip(αts−Id) ≤ Lip(ϕts−Id) < 1 for |t−s| < δH ;
it follows that αts is a diffeomorphism and that its inverse is Lipschitzian with

Lip
(

(αts)
−1)

= Lip
(

(

Id− (Id− αts)
)−1

)

≤
(

1 − Lip(αts − Id)
)−1

≤
(

1 − (ecH |t−s| − 1)
)−1 = (2 − ecH |t−s|)−1 :

see for example Théorème 6.1.2 in [22].

Definition 1.13. A diffeomorphism ϕ : T ∗Rd → T ∗Rd admits a generating function φ, if
φ : T ∗Rd → R is of class C2, such that ((x, y), (X,Y )) ∈ Graph(ϕ) if and only if

{

x = X + ∂yφ(X, y)

Y = y + ∂Xφ(X, y).

This can be interpreted as follows: the isomorphism

I : T ∗Rd × T ∗Rd → T ∗(T ∗Rd)

(x, y,X, Y ) 7→ (X, y, Y − y, x−X)

is symplectic if T ∗Rd is equipped with the standard symplectic form ω = dx ∧ dy and
T ∗Rd × T ∗Rd with the symplectic form (−ω) ⊕ ω = dX ∧ dY − dx ∧ dy; this symplectic
isomorphism I sends the diagonal of the space T ∗Rd × T ∗Rd to the zero section of the
cotangent space T ∗(T ∗Rd) and Graph(ϕ) to Graph(dφ).

Hence, if it exists, the generating function φ is unique up to the addition of a constant.

Proposition 1.14. For |t− s| < δH , ϕts admits the generating function

φts(X, y) =
∫ t

s

(

(Y τ
s − y)Ẋτ

s −H(τ,Xτ
s , Y

τ
s )

)

dτ (1.2)

where (Xτ
s (X, y), Y τ

s (X, y)) = ϕτs ◦ (αts)
−1(X, y) and the dot denotes the derivative with

respect to τ .

Proof. If λ = ydx denotes the Liouville form of T ∗Rd and Vτ the Hamiltonian vector field
of Hτ , we have ω = −dλ, hence (dλ)Vτ = −ωVτ = −dHτ and therefore

d

dτ
(ϕτs)

∗λ = (ϕτs)
∗LVτλ = (ϕts)

∗(

(dλ)Vτ + d(λVτ )
)

= (ϕτs)
∗d(λVτ −Hτ ),
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yielding

Y t
s dX

t
s = (ϕts)

∗λ = λ+
∫ t

s

d

dτ
(ϕτs)

∗λ dτ = λ+ d

∫ t

s
(ϕτs)

∗(λVτ −Hτ ) dτ

= y dx+ d

∫ t

s

(

Y τ
s Ẋ

τ
s −H(τ,Xτ

s , Y
τ
s )

)

dτ = y dx+ d
(

y(Xt
s − x)

)

+ dφts,

that is dφts = (Y t
s − y)dXt

s + (x−Xt
s)dy where Xt

s ≡ X.

Remark 1.15. The fact that ϕts admits a generating function follows from Lemma 1.12:
indeed, ϕts is symplectic if and only if the 1-form (Y t

s − y)dXt
s + (x−Xt

s)dy is closed, i.e.
exact. The novelty in Proposition 1.14 is the formula for φts.

The isomorphism I provides a global symplectic tubular neighbourhood of the diagonal
in T ∗Rd×T ∗Rd for the symplectic form (−ω)⊕ω. By Weinstein’s (local) symplectic tubular
neighborhood theorem, for each symplectic manifold (M,ω), one can identify similarly a
neighborhood of the identity in Hamc(M) with a neighborhood of zero in the space of
exact 1-forms on M . What will be missing in this general case is the existence of a
“generating function” for any ϕ ∈ Hamc(M), obtained as follows if M = T ∗Rd:

Lemma 1.16. For the generating function φts defined in (1.2), we have

∂sφ
t
s(X, y) = H(s, x, y), ∂tφ

t
s(X, y) = −H(t,X, Y )

where (X,Y ) = ϕts(x, y).

Proof. Derive (1.2) on both sides, we have

∂sφ
t
s(X, y) = H(s, x, y) +

∫ t

s

( d

ds
Y τ
s

d

dτ
Xτ
s + (Y τ

s − y)
d

ds

d

dτ
Xτ
s +

d

dτ
Y τ
s

d

ds
Xτ
s −

d

dτ
Xτ
s

d

ds
Y τ
s

)

dτ

= H(s, x, y) +
∫ t

s
(Y τ
s − y)

d

ds

d

dτ
Xτ
s dτ + Y τ

s

d

ds
Xτ
s |ts −

∫ t

s
Y τ
s

d

dτ

d

ds
Xτ
s dτ

= H(s, x, y)

where we have used ∂1Hτ (Xτ
s , Y

τ
s ) = −Ẏ τ

s , ∂2Hτ (Xτ
s , Y

τ
s ) = Ẋτ

s , and Xt
s ≡ X. Similarly,

we have
∂tφ

t
s(X, y) = −H(t,X, Y )

Proposition 1.17 (Composition formula 1 [19, 20]). If φ1 and φ2 are generating functions
for two diffeomorphisms ϕ1, ϕ2 : T ∗Rd → T ∗Rd respectively, then ϕ2 ◦ ϕ1 admits the
generating function 4

φ(x2, y0; (x1, y1)) = φ1(x1, y0) + φ2(x2, y1) + (x2 − x1)(y1 − y0)

in the sense that
(

(x0, y0), (x2, y2)
)

∈ Graph(ϕ2 ◦ϕ1) if and only if there exists z = (x1, y1)
such that















x0 = x2 + ∂y0φ(x2, y0; z)

y2 = y0 + ∂x2φ(x2, y0; z)

0 = ∂zφ(x2, y0; z).

4. Better called generating phase or generating family.
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More precisely, 0 is a regular value of ∂zφ and the map

(x2, y0; z) 7→
(

(

x2 + ∂y0φ(x2, y0; z), y0
)

,
(

x2, y0 + ∂x2φ(x2, y0; z)
)

is a diffeomorphism of the submanifold Σφ := ∂zφ
−1(0) onto Graph(ϕ2 ◦ ϕ1).

The proof is easy. Proposition 1.17 is a generalization [18] of the so-called broken
geodesics method: in the situation of Proposition 1.14, if ϕi = ϕtiti−1

with 0 ≤ ti−ti−1 < δH
for i = 1, 2, the equation ∂zφ(x2, y0; z) = 0 means that the arc [t1, t2] ∋ t 7→ ϕtt1 ◦

(αt2t1)−1(x2, y1) begins at the endpoint of the arc [t0, t1] ∋ t 7→ ϕtt0 ◦ (αt1t0)−1(x1, y0).

xx1

y1

y0

∂zφ = 0

Figure 1.1: connecting of characteristics

Proposition 1.18 (Composition formula 2 [57]). If a Lagrangian submanifold L0 ⊂ T ∗Rd

admits a generating family S0 : Rd × Rk → R, then for |t − s| < δH , the Lagrangian
submanifold ϕts(L0) has the generating family

S(x, (ξ, x0, y0)) = S0(x0, ξ) + φts(x, y0) + xy0 − x0y0 (1.3)

Again, the proof is straightforward.

Corollary 1.19. For each subdivision 0 ≤ s = t0 < t1 · · · < tN = t ≤ T satisfying
|ti − ti+1| < δH , if φ

ti,ti+1

H is the generating function of ϕ
ti,ti+1

H defined in Proposition 1.14,
we have the following for each C2 function v : Rd → R:

i) A generating family S : Rd × (T ∗Rd)N → R of the Lagrangian submanifold ϕs,tH (dv)
is

S(x, η) = v(x0) +
∑

0≤i<N

φ
ti,ti+1

H (xi+1, yi) +
∑

0≤i<N

(xi+1 − xi)yi, (1.4)

where xN := x, η =
(

(xi, yi)
)

0≤i<N
.

ii) One defines a C2 family S : [s, t] × Rd × (T ∗Rd)N → R such that each Sτ := S(τ, ·)
is a generating family for ϕs,τH (dv) as follows: let τj = s+ (τ − s) tj−s

t−s ,

S(τ, x, η) = v(x0) +
∑

0≤i<N

φ
τi,τi+1

H (xi+1, yi) +
∑

0≤i<N

(xi+1 − xi)yi (1.5)
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iii) For each critical point η of S(τ, x; ·), the corresponding critical value is

Sτ (x; η) = v(x0) +
∫ τ

s

(

Y σ
s Ẋ

σ
s −H

(

σ,Xσ
s , Y

σ
s

)

)

dσ,

where Xσ
s := Xσ

s

(

x0, dv(x0)
)

and Y σ
s := Y σ

s

(

x0, dv(x0)
)

. Hence, the critical values
of S(τ, x; ·) are the real numbers

v
(

Xs
τ (z)

)

+
∫ τ

s

(

Y σ
τ (z)Ẋσ

τ (z) −H
(

σ,Xσ
τ (z), Y σ

τ (z)
)

)

dσ (1.6)

with z := (x, y), y ∈ π−1(x) ∩ ϕs,τH (dv).

Proof. i) As the Hamiltonian flow is a “two-parameter groupoid”, we have that

ϕs,tH = ϕt0,tNH = ϕ
tN−1,tN
H ◦ · · · ◦ ϕt0,t1H ;

hence, if |ti+1−ti| < δH for all i, it follows from the composition formula in Proposition 1.18
that formula (1.4) does define a generating family for ϕs,tH (dv).

ii) is clear.
iii) is proved by inspection (and very important).

1.2.2 Generating functions (families) quadratic at infinity

In Proposition 1.17, when ϕ1 and ϕ2 have compact support 5, so do 6 φ1 and φ2; if we
make the change of variables ξ := x2 − x1, η := y1 − y0, the generating phase φ writes
ψ(x2, y0; ξ, η) := φ1(x2 − ξ, y0) + φ2(x2, y0 + η) + ηξ, which is again a generating phase of
ϕ2 ◦ ϕ1; the difference ψ(x2, y0; ξ, η) − ηξ does not have compact support in general but
its differential is bounded, which makes it quadratic at infinity in a sense good enough for
most applications [19, 20].

We now give a weaker definition of “quadratic at infinity”, which will include such
cases and take into account the non compactness of the base manifold.

Definition 1.20. A family S : M × Rk → R is called (almost) quadratic at infinity if
there exists a nondegenerate quadratic form Q : Rk → R such that, for any compact
subset K ⊂ M , the restriction S|K×Rk , modulo a fiberwise diffeomorphism, equals Q off
a compact set.

The next Propostion gives a criterion for a family to be ( almost )quadratic at infinity,
it extends the result in [64, 60].

Proposition 1.21. Suppose a family S : Rd × Rk → R is of the form

S(x, η) = ψ(x, η) +Q(η) := ℓ(x, η) + ψ1(x, η) +Q(η)

where Q(η) = 1
2η

TBη is a nondegenerate quadratic form, ℓ is a C2 function such that ∂ηℓ
is bounded in K × Rk for each compact K ⊂ Rd, and ψ1 is C2 with

c := sup |∂2
ηψ1(x, η)| < |B−1|−1. (1.7)

Then S is quadratic at infinity.

5. Meaning that they equal the identity off a compact subset.
6. In the usual sense, up to the addition of a constant.
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Proof. Given any compact set K ⊂ Rd, we restrict ourselves to x ∈ K. Consider a smooth
function θ : R+ → [0, 1] with θ = 1 on [0, a], θ = 0 on [a′,∞), and 0 ≤ θ′(s) ≤ s−1ǫ, where
ǫ > 0 will be chosen small enough. If

SK(x, η) = ψK(x, η) +Q(η) := θ(|η|)ψ(x, η) +Q(η), x ∈ K,

we claim that S|K×Rk and SK will be equivalent by a fiberwise diffeomorphism: setting
St := tS + (1 − t)SK , i.e.

St(x, η) =
(

t+ (1 − t)θ(|η|)
)

ψ(x, η) +Q(η)

for 0 ≤ t ≤ 1, we will find a fiberwise isotopy Φt(x, η) = (x, φt(x, η)) such that

St ◦ Φt = SK for all t ∈ [0, 1] (∗)

and therefore S ◦ Φ1 = SK , as required.
If (0, Xt) denotes the infinitesimal generator of Φt, then (∗) is equivalent to

∂ηSt(x, η) ·Xt(x, η) +
(

1 − θ(|η|)
)

ψ(x, η) = 0 for all t ∈ [0, 1]; (∗∗)

note that for |η| ≤ a, as S = SK = St, we can take Φt = Id, i.e. Xt = 0.
Our hypotheses imply that there are constants b1(K), b2(K), b3(K) ≥ 0 such that

|ψ(x, η)| = |ψ(x, 0) + ∂ηψ1(x, 0)η +
∫ 1

0 (1 − t)∂2
ηψ1(x, tη)η2 dt+

∫ 1
0 ∂ηℓ(x, tη)η dt|

≤ b1 + b2|η| + c
2 |η|2

|∂ηψ(x, η)| = |∂ηψ1(x, 0) +
∫ 1

0 ∂
2
ηψ1(x, tη)η dt+ ∂ηℓ(x, η)|

≤ b3 + c|η|,

hence

|∂η(St −Q)(x, η)| =
∣

∣

∣∂η
(

(

t+ (1 − t)θ(|η|)
)

ψ(x, η)
)∣

∣

∣

≤ |∂ηψ(x, η)| + |ψ(x, η)∂ηθ(|η|)|

≤ b3 + c|η| + ǫ
|η|(b1 + b2|η| + c

2 |η|2)

≤ ( b1
|η| + b2)ǫ+ b3 + (1 + ǫ

2)c|η|.

As |DQ(η)| = |Bη| ≥ |B−1|−1|η|, this yields

|∂ηSt(x, η)| ≥ |DQ| − |∂η(St −Q)| ≥
(

|B−1|−1 − (1 + ǫ
2)c

)

|η| − ( b1
|η| − b2)ǫ− b3;

by (1.7), we have |B−1|−1 − (1 + ǫ
2)c > 0 for ǫ > 0 small enough; if this is the case, for

0 < c′ < |B−1|−1 − (1 + ǫ
2)c, we have

(

|B−1|−1 − (1 + ǫ
2)c

)

|η| − ( b1
|η| − b2)ǫ− b3 ≥ c′|η| when

|η| is large enough. Given such a constant c′, if we now take a large enough and let

Xt(x, η) =







(θ−1)ψ(x,η)
|∂ηSt(x,η)|2

∂ηSt(x, η) for |η| ≥ a,

0 otherwise,

it satisfies (∗∗) and is integrable since there are positive constants d1, d2 such that

|Xt(x, η)| ≤ |ψ(x,η)|
|∂ηSt(x,η)| ≤

b1+b2|η|+ c
2

|η|2

c′|η| ≤ d1 + d2|η|

for |η| ≥ a.
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Remark 1.22. If S is a generating family for a Lagrangian submanifold L, then SK
generates L|K = {(x, p) ∈ L|x ∈ K} since there is no critical points for SK outside |η| ≤ a
if we choose a large enough.

Note that a necessary condition for L to admit a GFQI in our new sense is that, for
any K, the intersection L ∩ π−1(K) be compact and nonempty: indeed, a function on Rk

equal to a nondegenerate quadratic form off a compact set must have critical points.

It follows that there does not always exist a GFQI for L = ϕs,tH (dv) ifH is not compactly
supported, even when it satisfies (1.1) and v has as little growth at infinity as possible:

Example 1.23. If the Hamiltonian H ∈ C2([0, T ]×T ∗R) is given by H(t, x, y) = x2 +y2,
then ϕ0,t

H (x, y) = (x cos 2t− y sin 2t, y cos 2t+ x sin 2t); if v = 0, it follows that

L := ϕ
0,π/4
H (dv) = {0} × R

has empty intersection with π−1(x) = {x} × R for x 6= 0 and noncompact intersection
with π−1(0), which prevents L from admitting a GFQI.

When (1.1) is satisfied, however, the Lagrangian L = ϕs,tH (dv) does admit a GFQI for
small |s− t|. Indeed, as ϕs,tH is close to the identity, the generating function φs,tH is “small”
compared to the quadratic form, hence Proposition 1.21 applies:

Corollary 1.24. If (1.1) is satisfied then, for each Lipschitzian C2 function v : Rd → R,
there exists a constant α such that for |t− s| < α,

S(x;x0, y0) = v(x0) + φs,tH (x, y0) + xy0 − x0y0

is a GFQI for L = ϕs,tH (dv).

Proof. This follows from Proposition 1.21 with Q(x0, y0) := −x0y0, ℓ(x;x0, y0) := v(x0) +
xy0 and ψ1 := φs,tH . Indeed, Since |Q−1| = |Q| = 1, it is enough to prove that |D2φs,tH | < 1
for |s− t| < α. Now, as

∂Xφ
s,t
H ◦ αts(x, y) = Y t

s (x, y) − y, ∂yφ
s,t
H ◦ αts(x, y) = x−Xt

s(x, y),

we have

|D2φs,tH | ≤ Lip
(

(αts)
−1

)

Lip(ϕs,tH − Id) ≤
ecH |t−s| − 1
2 − ecH |t−s|

, (1.8)

hence we can take α = c−1
H log (3/2).

Remark 1.25. It is essential that v be Lipschitzian: indeed, if d = 1, H(t, x, y) = 1
2y

2

and v(x) = 1
3x

3, then ϕ0,t
H (x, y) = (x + ty, y) and therefore ϕ0,t

H (dv) = {(x + tx2, x2)},
whose image under the projection π is a half-line for t 6= 0.

Corollary 1.26. If H has compact support, the generating phases constructed in Corol-
lary 1.19 are quadratic at infinity when the C2 function v is Lipschitzian.

Proof. Each φ
ti,ti+1

H has compact support and therefore bounded derivatives. Hence we
can apply Lemma 1.21 with ψ1 = 0, ℓ(x; η) = v(x0) + xyN−1 +

∑

0≤i<N φ
ti,ti+1

H (xi+1, yi)
and Q(η) := −xN−1yN−1 +

∑

0≤i<N−1(xi+1 − xi)yi.

As the main ingredient in this construction is the Hamiltonian flow, what matters
essentially over a given compact subset of Rd is the region swept by the Hamiltonian
flow; this is the idea of what is called the property of finite propagation speed in [15],
Appendix A:
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Proposition 1.27 ([15]). Let [s, t] ⊂ [0, T ] and L = ϕs,tH (dv). If for any compact subset
K ⊂ Rd, the set

UK :=
⋃

τ∈[s,t]

{τ} ×
{

ϕs,τH

(

ϕt,sH
(

π−1(K)
)

∩ dv
)}

,

is compact, then L admits GFQI’s in the sense that each L|K := L∩π−1(K) has a GFQI.

Proof. For any K, let H̃ = χH, where χ is a compactly supported smooth function on
[0, T ]×T ∗Rd equal to 1 in a neighbourhood of UK . Then formula (1.4) with H := H̃ gives
a GFQI SH̃ for L|K = ϕs,tH

(

π−1(K) ∩ dv
)

.

Remark 1.28. One can also truncate v, as the effective region for v is π
(

ϕt,sH (π−1(K)
)

.
This may help to localize the minmax.

Condition (1.1) is not required here, provided H is C2 and such that ϕs,tH is defined for
all s, t ∈ [0, T ].

Lemma 1.29. If two families S and S′ are quadratic at infinity with |S − S′|C0 < ∞,
then the associated minimax functions satisfy

|RS(x) −RS′(x)| ≤ |S − S′|C0 .

Proof. If S ≤ S′, then by definition RS(x) ≤ RS′(x). Hence, in general, the inequality
S ≤ S′ + |S − S′|C0 yields RS(x) ≤ RS′(x) + |S − S′|C0 . We conclude by exchanging S
and S′.

Proposition 1.30 ([15]). Under the hypotheses of Proposition 1.27 and with the notation
of its proof, the Lagrangian submanifold L admits a minmax selector, given by

R(x) = inf maxSH̃(x, η), if x ∈ K ⊂ Rd

and independent of the truncation H̃ and the subdivision of [s, t] used to define SH̃ .

Proof. Let H̃ and H̃ ′ be two truncations for H on UK as in the proof of Proposition 1.27.
Let Hµ = µH̃ + (1 − µ)H̃ ′, µ ∈ [0, 1]; as the constant cHµ of (1.1) is uniformly bounded,
one can find a subdivision s = t0 < t1 · · · < tN = t satisfying |ti− ti+1| < δHµ for all µ (see
Lemma 1.12); if Sµ denotes the corresponding GFQI of L|K = L ∩ π−1(K) for 0 ≤ µ ≤ 1
then, by Lemma 1.29, as Sµ depends continuously on µ, so does the minmax RSµ(x) for
x ∈ π(L).

On the other hand, RSµ(x) is a critical value of the map η 7→ Sµ(x, η), and, by (1.6),
the set of all such critical values is independent of µ and the subdivision, and depends only
on UK ; as it has measure zero by Sard’s Theorem, RSµ(x) is constant for µ ∈ [0, 1].

The fact that the critical value RS(x) itself does not depend on the subdivision is
established in Lemma 2.6.

Example 1.31. If the base manifold M = Td, taking its universal covering Rd, we can
consider v : Rd → R a periodic function and H : R × T ∗Rd → R periodic in x. Then
in order that L = ϕs,tH (dv) admits a GFQI, it is enough to require that the flow ϕs,τH is
well-defined for τ ∈ [s, t]. Indeed, since dv is compact,

⋃

τ∈[s,t]{τ} × ϕs,τH (dv) is compact,
hence the condition of finite propagation speed is satisfied automatically.

Proposition 1.32. Suppose H satisfies (1.1) and

CH := sup
|∂xH(t, x, y)|

1 + |y|
< ∞ ; (1.9)

then, for v ∈ C2 ∩ CLip(Rd), the submanifold L = ϕs,tH (dv) admits GFQI’s in the sense of
Proposition 1.27.
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Proof. With the notation of Proposition 1.27, let
(

x(τ), y(τ)
)

:= ϕτs

(

x(s), dv
(

x(s)
)

)

for

τ ∈ [s, t]. As

y(τ) = y(s) −
∫ τ

s
∂xH(σ, x(σ), y(σ))dσ, y(s) = dv

(

x(s)
)

,

it follows from (1.9) that the function f(τ) :=
∫ τ
s |y(τ)|dτ satisfies

f ′(τ) = |y(τ)| ≤
∣

∣dv
(

x(s)
)
∣

∣ + CH
(

τ − s+ f(τ)
)

≤ Lip(v) + CH
(

t− s+ f(τ)
)

. (1.10)

If CH = 0, this writes |y(τ)| ≤ Lip(v); otherwise, (1.10) can be written as

d

dτ
(f(τ)e−CHτ ) ≤ e−CHτ

(

Lip(v) + CH(t− s)
)

,

hence

f(τ) ≤
(

Lip(v) + CH(t− s)
)1 − eCH(s−τ)

CH
≤

(

Lip(v) + CH(t− s)
)1 − eCH(s−t)

CH
;

therefore, by (1.10), the set of all |y(τ)| with τ ∈ [s, t] and
(

x(s), y(s)
)

∈ dv is bounded.
It follows that

|∂yHτ (x(τ), y(τ))| = |∂y(H(0, y(τ)) +
∫ 1

0
∂x∂yHτ (ux(τ), y(τ))x(τ) du)| ≤ c+ cH |x(τ)|,

and the same argument as before shows that the set of all

x(τ) = x(t) −
∫ t

τ
∂yHτ (x(τ), y(τ))dτ

with τ ∈ [s, t] and x(t) ∈ K is bounded.

Remark 1.33. One can also use the hypotheses

|∂yH| ≤ C ′
H(1 + |x|), |∂xH| ≤ CH(1 + |y|),

a classical condition for the existence and uniqueness of viscosity solutions in Rd, see [29].

1.3 Generalized generating families and minmax in the Lip-
schitz cases

Already if d = 1, H(t, x, y) = 1
2y

2 and v(x) = arctan x, the Lagrangian submanifold

ϕ0,t
H (dv) =

{(

x+ t
1+x2 ,

1
1+x2

)

: x ∈ R
}

is not the graph of a function for t > 0 large enough,

and the minimax of its generating phase St(x;x0, y0) = arctan x0 + t
2y

2
0 + (x−x0)y0 is not

a C1 function, though it is locally Lipschitzian (see Proposition 1.40 herafter).
Hence, in order to to iterate the minmax procedure, one is led to defining the minmax

when the Cauchy datum is a Lipschitzian function. We will use Clarke’s generalization of
the derivatives of C1 functions in the Lipschitz setting [27], see Appendix A.

Proposition 1.34. Under the hypothesis (1.1) and with the notation of Corollary 1.19,
if v is only locally Lipschitzian, the family S given by (1.4) generates L = ϕs,tH (∂v) in the
sense that

L =
{(

x, ∂xS(x; η)
)∣

∣0 ∈ ∂ηS(x; η)
}

. (1.11)
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Proof. The equation 0 ∈ ∂ηS(x; η) means that y0 ∈ ∂v(x0) and yi+1 = ∂xi+1φ
ti,ti+1

H (xi+1, yi),
xi = ∂yi

φ
ti,ti+1

H (xi+1, yi) for 0 ≤ i < N ,where x := xN et η = (xi, yi)0≤i<N .

However, this definition of a generating family is not invariant by fiberwise diffeomor-
phism, even by the following very simple (and useful) one:

(

x; (xi)0≤i<N , (yi)0≤i<N

)

7→
(

x, (xi+1 − xi, yi)0≤i<N

)

=:
(

x, (ξi, yi)0≤i<N

)

;

indeed, it transforms the family S given by (1.4) into

S′(x; (ξi, yi)0≤i<N

)

:= v
(

x−
∑

ξi
)

+
∑

0≤i<N

φ
ti,ti+1

H

(

x−
∑

i<j<N

ξj , yi
)

+
∑

0≤i<N

ξiyi ,

for which ∂xS
′
(

x; (ξi, yi)0≤i<N

)

is not a point, but the subset

∂v
(

x−
∑

ξi
)

+
∑

0≤i<N

∂1φ
ti,ti+1

H

(

x−
∑

i<j<N

ξj , yi
)

.

As often, this difficulty is overcome by finding the right definition 7

Definition 1.35. A Lipschitz family S : Rd × Rk → R is called a generating family for
L ⊂ T ∗Rd when

L = {(x, y) ∈ T ∗Rd|∃η ∈ Rk : (y, 0) ∈ ∂S(x, η)}.

Lemma 1.36. This definition of a generating family is invariant by fiberwise C1 diffeo-
morphisms.

Proof. If Φ(x, η′) =
(

x, φ(x, η′)
)

is a fiberwise diffeomorphism of Rd×Rk, and S′ := S ◦ Φ,
then the chain rule (see Appendix-A, Lemma A.16) yields

∂S′(x, η′) =
{(

y + ζ ∂
∂xφ(x, η′), ζ ∂

∂η′φ(x, η′)
)

∣

∣

∣(y, ζ) ∈ ∂S
(

x, φ(x, η′)
)

}

;

as η′ 7→ φ(x, η′) is a diffeomorphism, it does follow that the two conditions

∃η ∈ Rk : (y, 0) ∈ ∂S(x, η) and ∃η′ ∈ Rk : (y, 0) ∈ ∂S′(x, η′)

are equivalent.

Remark 1.37. For the generating family S defined by (1.4) or (1.5), it generates L in
the sense of (1.11) since ∂S(x, η) = ∂xS(x, η) × ∂ηS(x, η). See Example A.6.

We are now ready to consider GFQI’s for the elements of

L̃ := {L = ϕ(∂v), v ∈ CLip(Rd), ϕ ∈ Hamc(T ∗Rd)} :

Proposition 1.38. If H : [0, T ] × T ∗Rd → R is C2 and has compact support then, for
each v ∈ CLip(Rd), the generating family of L = ϕs,tH (∂v) ∈ L̃ given by (1.4), namely

S(x; η) = v(x0) +
∑

0≤i<N

φ
ti,ti+1

H (xi+1, yi) +
∑

0≤i<N

(xi+1 − xi)yi,

7. But this example exhibits one of the features of the Clarke derivative: the relation (y, 0) ∈ ∂S′(x, η)
is definitely not equivalent to y ∈ ∂xS′(x, η), 0 ∈ ∂ξi

S′(x, η) and 0 ∈ ∂yi
S′(x, η).
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where xN := x, η :=
(

(xi, yi)
)

0≤i<N
, is “ quadratic at infinity” in the following sense: let

Q(η) := −xN−1yN−1 +
∑

0≤i<N−1

(xi+1 − xi)yi,

the Lipschitz constant of each S(x, ·) − Q : (T ∗Rd)N → R is bounded, uniformly with
respect to x on each compact subset of Rd.

Hence, for each compact K ⊂ Rk, if θ ∈ C∞
c (Rd, [0, 1]) equals 1 in a neighbourhood of

0, there exists a positive constant aK such that the function

SK(x; η) = ψK(x; η) +Q(η), where ψK(x; η) := θ
(

η
aK

)

(

S(x, η) −Q(η)
)

, x ∈ K (1.12)

is a GFQI of LK := L ∩ π−1(K).

Proof. Denote ψ(x, η) = S(x, η) −Q(η), and Q(η) = 1
2η

TBη. For a fixed compact subset
K, let c = maxx∈K Lip(ψ(x, ·)), and assume that |Dθ| ≤ 1. By Lemma A.18,

∂ηSK(x, η) = ∂η(θ(
η

aK
)ψ(x, η) +Q(η))

⊂
1
aK

Dθ(
η

aK
)ψ(x, η) + θ(

η

aK
)∂ηψ(x, η) +DQ(η),

By Proposition A.8, we have

|ψ(x, η)| ≤ |ψ(x, 0)| + |ψ(x, η) − ψ(x, 0)| ≤ b+ c|η|

where b := maxx∈K |ψ(x, 0)|. Hence,

|
1
aK

Dθ(
η

aK
)ψ(x, η) + θ(

η

aK
)∂ηψ(x, η)| ≤

1
aK

(b+ c|η|) + c ≤
1
2

|B−1|−1|η| < |DQ(η)|

when |η| ≥ bK , for some bK with aK , bK large enough. In addition, we can choose aK , bK
such that for |η| ≤ bK , θ( η

aK
) = 1. Thus SK = S for |η| ≤ bK and there are no critical

points of S,SK outside {|η| ≤ bK}, from which LK = {(x, ∂xSK(x, η))|0 ∈ ∂ηSK(x, η)}.

In the sequel, unless otherwise specified, we consider families S of the form (1.4) or
(1.5) and families SK of the form (1.12). The advantage is that the S better generates
L in the more geometric sense (1.11), and it helps to express the properties of minmax
RS(x) in a clear and similar way as in the C2 case.

To study the minmax function RS for such S, we use the extension of classical results
in critical point theory to locally Lipschitz functions described in Appendix A.

Proposition 1.39. The minmax RS(x) is well-defined and it is a critical value 8 of the
map η 7→ S(x, η). For each compact subset K of Rd and each truncation SK of S of the
form (1.12) generating LK , we have that RS(x) = RSK

(x) for x ∈ K.

Proof. By Proposition 1.38, f(η) := S(x, η) = ψ(η) + Q(η) with ψ Lipschitzian and Q
a nondegenerate quadratic form. Hence, f satisfies the P.S. condition (see Appendix A,
Example A.11). If c = RS(x) were not a critical value, the flow ϕtV of Theorem A.14 in
Appendix A would deform the descending cycles in f c+ǫ into descending cycles in f c−ǫ,
hence the contradiction c = inf maxσ f ≤ c− ǫ.

To see that RS |K = RSK
, just notice that every descending cycle σ of S(x, ·) or SK(x, ·),

x ∈ K, can be deformed into a common descending cycle σ′ with maxS
(

x, σ′(·)
)

=
maxSK

(

x, σ′(·)
)

by using the gradient flow of Q, suitably truncated.

8. Appendix A, Definition A.10.
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Proposition 1.40. The minmax RS(x) is a locally Lipschitz function.

Proof. Let K ⊂ Rd be compact. By Proposition 1.39, we have that RS |K = RSK
, where

SK : K×Rk → R writes S(x, η) = ψK(x, η)+Q(η) with Q a nondegenerate quadratic form
and ψK a compactly supported Lipschitz function. Given x, x′ ∈ K, for all ǫ > 0, there
exists a descending cycle σ̄ such that maxη∈σ̄ SK(x, η) ≤ RS(x) + ǫ; if maxη∈σ̄ SK(x′, η) is
reached at η̄, then

RS(x′) −RS(x) ≤ SK(x′, η̄) − SK(x, η̄) + ǫ = ψK(x′, η̄) − ψK(x, η̄) + ǫ

≤ Lip(ψK)|x− x′| + ǫ.

If we let ǫ → 0 and exchange x and x′, we obtain

|RS(x) −RS(x′)| ≤ Lip(ψK)|x− x′|,

which proves our result.

Proposition 1.41. The sets C(x) = {η | 0 ∈ ∂ηS(x, η), S(x, η) = RS(x)} are compact 9

and the set-valued map (“correspondence”) x 7→ C(x) is upper semi-continuous: for every
convergent sequence (xk, ηk) → (x, η) with ηk ∈ C(xk), one has η ∈ C(x). In other words,
the graph C = {(x, η) | η ∈ C(x)} of the correspondence is closed.

Proof. Let (xk, ηk) → (x, η) with ηk ∈ C(xk); for S defined by (1.4), we have ∂S =
∂xS × ∂ηS. Now ∂S : (x, η) 7→ ∂xS × ∂ηS is upper semi-continuous (Appendix A,
Proposition A.7), the limit

(

∂xS(x, η), 0
)

of the sequence
(

∂xS(xk, ηk), 0
)

∈ ∂S(xk, ηk)
belongs to ∂S(x, η), hence 0 ∈ ∂ηS(x, η); as the continuity of S and RS implies that
S(xk, ηk) → S(x, η) and RS(xk) → RS(x), this proves η ∈ C(x).

Lemma 1.42. Given any δ > 0, there exists an ǫ > 0 such that

RS(x) = inf
σ∈Σǫ

max
σ∩Cδ(x)

S(x, η)

where Σǫ = {σ | maxσ S(x, η) ≤ RS(x)+ǫ} and Cδ(x) = Bδ(C(x)) denotes the δ-neighborhood
of the critical set C(x).

Proof. This is a direct consequence of the deformation lemma (Appendix A, Theorem A.15)
for Sx := S(x, ·): for δ > 0, and c = RS(x), there exist ǫ > 0 and V such that
ϕ1
V (Sc+ǫx \ Cδ(x)) ⊂ Sc−ǫx . In particular, we remark that for σ ∈ Σǫ, the intersection

σ∩Cδ(x) is non vide, otherwise, the flow ϕ1
V may take σ to a descending cycle σ′ = ϕ1

V (σ)
such that maxη∈σ′ Sx(η) ≤ RS(x) − ǫ, contradiction with the definition of minmax.

Remark 1.43. When S is C2, the Sx’s are generically Morse functions: indeed, Sx is
Morse if and only if x is a regular value of the projection π : L → M, (x, p) 7→ x, whose
regular values, by Sard’s theorem and the compactness of Crit(Sx), form an open set of full
measure. In this case, Scx is indeed a deformation retract of Sc+ǫx for ǫ > 0 small enough,
hence inf max deserves its name “minmax”, that is, there exists a descending cycle σ such
that, RS(x) = maxσ S(x, η) = maxσ∩C(x) S(x, η).

Proposition 1.44. The generalized derivative of RS satisfies

∂RS(x) ⊂ co{∂xS(x, η) | η ∈ C(x)} (1.13)

9. See Appendix A, Example A.11 and Proposition A.12.
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Proof. First, we claim that, if RS is differentiable at x̄, then

dRS(x̄) ⊂ co{∂xS(x̄, η) | η ∈ C(x̄)} (1.14)

Take δ and ǫ for x̄ as in Lemma 1.42. Consider K = B1(x̄), and SK obtained in Lemma
1.21, one can choose a ̺ ∈ (0, 1) such that for x ∈ B̺(x̄),

|SK(x, ·) − SK(x̄, ·)|C0 ≤ ǫ/4.

Now let y ∈ Rd and λ < 0 be small such that xλ := x̄ + λy ∈ B̺(x̄) and λ2 < ǫ/4.
Then by Lemma 1.42, for each xλ, there is a descending cycle σλ such that

max
σλ

S(xλ, η) ≤ RS(xλ) + λ2

then
max
σλ

S(x̄, η) ≤ max
σλ

S(xλ, η) +
ǫ

4
≤ RS(xλ) +

ǫ

2
≤ RS(x̄) +

3ǫ
4

and
RS(x̄) ≤ max

σλ∩Cδ(x̄)
S(x̄, η) = S(x̄, ηλ), for some ηλ ∈ σλ ∩ Cδ(x̄).

Hence we have

λ−1[RS(xλ) −RS(x̄)] ≤ λ−1[S(xλ, ηλ) − S(x̄, ηλ)] − λ (1.15)

= 〈∂xS(x′
λ, ηλ), y〉 − λ, (1.16)

where the last equality is given by the mean value theorem for some x′
λ in the line segment

between x̄ and xλ.
Take the lim sup of both sides in the above inequality and let δ → 0, we get

〈dRS(x̄), y〉 ≤ max
η∈C(x̄)

〈∂xS(x̄, η), y〉, ∀y ∈ Rd

Note that this implies that dRS(x̄) belongs to the sub-derivative of the convex function
f(y) := maxη∈C(x̄)〈∂xS(x̄, η), y〉 at v = 0, 10 for which one can easily calculate

∂f(0) = co{∂xS(x̄, η) : η ∈ C(x̄)}.

Thus we get (1.14). In general,

∂RS(x) = co{ lim
x′→x

dRS(x′)} ⊂ co{co lim
x′→x

{∂xS(x′, η′), η′ ∈ C(x′)}}

⊂ co{∂xS(x, η), η ∈ C(x)}

by the upper-semi continuity of x 7→ C(x) and the continuity of ∂xS.

The formula (1.13) gives us somehow a generalized graph selector, while for a classical
graph selector, we require that for almost every x,

dRS(x) = ∂xS(x, η), for some η ∈ C(x)

from which (x, dRS(x)) ∈ L.

Example 1.45. If S is a GFQI of L = ϕ(dv) ∈ L for v ∈ C2, then Sx := S(x, ·) is an
excellent Morse function for almost every x, in which cases C(x) consists of a single point,
hence ∂RS(x) = ∂xS(x, η) for a unique η, proving that RS is a true graph selector for L.

Question 1.46. Is the minmax RS also a true graph selector for L ∈ L̃.

Question 1.47. Is it true that, when RS is differentiable at x, one has
(

x, dRS(x)
)

∈ L?
Here L ∈ L or even L̃.

10. Recall that, for a convex function f , the sub-derivative at a point x is the set of ξ such that
f(y) − f(x) ≥ 〈ξ, y − x〉,∀y





Chapter 2

Viscosity solutions and minmax
solutions of Hamilton-Jacobi
equations

We consider the Cauchy problem for the Hamilton-Jacobi equation:

{

∂tu+H(t, x, ∂xu) = 0 for t ∈ (0, T ]

u(0, x) = v(x) x ∈ Rd
(H-J)

where H ∈ C2([0, T ] × T ∗Rd) and v ∈ CLip(Rd) satisfy the condition of finite propagation
speed. Unless otherwise specified, we assume that H has compact support (as a function
on [0, T ] × T ∗Td when H and v are periodic).

2.1 Geometric solution and its minmax selector

From the geometric point of view of Lie and other mathematicians of the nineteenth cen-
tury, a time-dependent first order partial differential equation F

(

t, x, z, ∂z∂t ,
∂z
∂x

)

= 0 in d
space variables is the hypersurface E := {F (t, x, z, e, p) = 0} in the jet bundle J1(R×Rd)
endowed with the standard contact structure α := dz − edt − pdx = 0. A C1 function
u : R×Rd → R, is a solution if and only if its 1-jet j1u = {(t, x, u(t, x), ∂tu(t, x), ∂xu(t, x))}
is contained in {F = 0}; note that j1u is a Legendrian submanifold of J1(R × Rd), i.e.
a d + 1-dimensional integral submanifold of the contact structure. In general, it is not
possible to find such a global solution; the classical theory introduces generalized solu-
tions called geometric solutions, which are the Legendrian submanifolds contained in E;
at regular points, they are the d+ 1-dimensional integral submanifolds of the hyperplane
field on E given by the intersection of the tangent plane and the contact plane. For the
general theory, see [5, 4].

Being interested equations that do not depend on the values of the unknown function,
we work in the cotangent bundle T ∗(R × Rd) instead of the jet bundle. More precisely,
under the hypotheses of (H-J), let

H(t, x, e, p) =: e+H(t, x, p), (t, x, e, p) ∈ T ∗(R × Rd)

and at the moment suppose that the initial function v is C2.
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Definition 2.1. Let ϕsH denote the Hamiltonian flow of H, which preserves the levels of
H, and let

Γv =
{(

0, x,−H
(

0, x, dv(x)
)

, dv(x)
)}

;

then, the geometric solution of the Cauchy problem (H-J) is

LH,v :=
⋃

s∈[0,T ]

ϕsH(Γv).

It is a Lagrangian submanifold containing the initial isotropic submanifold Γv and con-
tained in the hypersurface

H−1(0) = {(t, x, e, p)|e+H(t, x, p) = 0} ⊂ T ∗(R × Rd).

As every Lagrangian submanifold L of T ∗(R×Rd) contained in H−1(0) is locally invariant
by ϕsH, this geometric solution is in some sense maximal.

Writing T ∗(R × Rd) as T ∗R × T ∗Rd, we have XH = (1,−∂tH,XH), and

LH,v =
{(

t,−H
(

t, ϕtH(dv)
)

, ϕtH(dv)
)

, t ∈ [0, T ]
}

where ϕtH := ϕ0,t
H is the Hamiltonian isotopy generated by H.

Lemma 2.2. Formula (1.5) defines a GFQI

S : [0, T ] × Rd × R2l → R

of LH,v.

Proof. For simplicity, we may assume that T ∈ (0, δH), hence that

S : [0, T ] × Rd × R2d → R, S(t, x, x0, y0) = v(x0) + xy0 + φtH(x, y0) − x0y0.

Let (x0, y0) ∈ ΣS , then

(∂tS(t, x, x0, y0), ∂xS(t, x, x0, y0)) = (∂tφtH(x, y0), ∂xφtH(x, y0)) = (−H(t, x, y(t)), y(t)),

where (x, y(t)) = ϕtH(x0, y0) with y0 = dv(x0).
Hence

{(t, x, ∂tS(t, x, x0, y0), ∂xS(t, x, x0, y0))|(x0, y0) ∈ ΣS} = LH,v

If there exists a C1 function u : [0, T ] × Rd → R such that

L = LH,v = {(t, x, ∂xu(t, x), ∂xu(t, x))} ⊂ T ∗([0, T ] × Rd)

we say that L is a 1-graph in T ∗([0, T ] × Rd). In this case, u is a global solution of the
Cauchy problem of (H-J) equation. In general, L may be the graph of the derivatives of
a multi-valued function.

Definition 2.3. A caustic point for the geometric solution L is a point (t, x) ∈ [0, T ] ×Rd

at which the projection π : L → [0, T ] × Rd, (x, p) 7→ x is singular.
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The caustic points are the obstacles preventing L from being (locally) a 1-graph. In-
deed, if (t, x) is a regular value of the map π : L → [0, T ]×Rd, then by the inverse mapping
theorem, there is a diffeomorphism f from a neighborhood of (t, x) to a neighbourhood of
a in L for each a ∈ π−1(t, x); thus, near a, the submanifold L is the graph of the function
f (composed with the inclusion L →֒ T ∗([0, T ] × Rd)) and therefore, being Lagrangian,
the graph of the derivative of a function—which is a local solution of the equation.

Definition 2.4. The big wave front of the geometric solution L is defined as

F̃ :=
{

(

t, x, S(t, x; η)
)

∣

∣

∂S
∂η (t, x; η) = 0

}

⊂ J0(R × Rd)

and we call the restriction of F̃ at each time t a wave front, denoted by F ⊂ J0(Rd).
The big wave front F̃ is independent of the choice of the GFQI of L, up to a vertical

translation. Indeed L, as an exact Lagrangian submanifold, can be lifted to a Legendrian
submanifold of J1(R × Rd), unique up to vertical translation, and the big wave front is
the projection of this Legendrian submanifold from J1(R × Rd) to J0(R × Rd).

An equivalent but more economic way to describe the geometric solution is to identify
each ϕsH(Γv) with {s} × ϕsH(dv) by the inverse of the map (t, x, p) 7→ (t, x,−H(t, x, p), p).
In this way, we also call the union

LH,v :=
⋃

t∈[0,T ]

{t} × ϕtH(dv) ⊂ R × T ∗Rd

a geometric solution.

t

p

xdv

T ∗M

v

t

x

z
J0M

LH,v F̃

If we look at the projection of the characteristics, that is, the image of the graph of
the solutions

{(

t, ϕtH(x0, p0)
)}

t∈[0,T ]
, (x0, p0) ∈ T ∗Rd, of Hamilton’s equations under the

projection
π : [0, T ] × T ∗Rd → R × Rd, (t, x, p) 7→ (t, x).

then L is not a 1-graph when the corresponding characteristics intersect under the projec-
tion. Without ambiguity, we will simply say that the characteristics intersect.

Now, as before, we consider more generally the Lipschitz case. Given v ∈ CLip(Rd), set

Γv =
{(

0, x,−H(0, x, p), p
)

: p ∈ ∂v(x)
}

and similarly

LH,v =
⋃

s∈[0,T ]

ϕsH(Γv) =
{(

t,−H
(

t, ϕtH(x, p)
)

, ϕtH(x, p)
)

: p ∈ ∂v(x), t ∈ [0, T ]
}

LH,v =
⋃

t∈[0,T ]

{t} × ϕtH(∂v) :=
⋃

t∈[0,T ]

{t} × {ϕtH(x, p) : p ∈ ∂v(x)}



32 Chapter 2. Viscosity and minmax solutions of H-J equations

where ∂ is Clarke’s generalized derivative. We call LH,v or LH,v generalized geometric
solutions. They are also generated by the GFQI given by formula (1.5) on page 18.
Similarly, we can define the generalized wave fronts and big wave front.

Definition 2.5. For any time 0 ≤ s < t ≤ T , we define the minimax operator 1

Rs,τH : CLip(Rd) → CLip(Rd), τ ∈ [s, t]

for the (H-J) equation as

Rs,τH v(x) = inf max
η

S(τ, x, η)

where S : [s, t] × Rd × Rk → R is given by (1.5).

For completeness, without referring to the uniqueness theorem for GFQI’s, we give a
proof that the minmax is well-defined independently of the subdivisions.

Lemma 2.6. The minmax RS(x) = inf maxS(x, η) given by (1.4) or (1.5) is independent
of the subdivision of time in the construction of S.

Proof. First assume t − s < δH ; given τ ∈ (s, t), consider the family of subdivisions
ζµ := {s ≤ s+ µ(τ − s) < t}; then,

Sµ(x;x0, y0, x1, y1) = v(x0)+φ
s,s+µ(τ−s)
H (x1, y0)+(x1−x0)y0+φ

s+µ(τ−s),t
H (x, y1)+(x2−x1)y1 ,

where x2 := x, is the generating family defined by (1.4) and associated to ζµ, µ ∈ (0, 1].
The function Sµ is continuous in µ and the minmax RSµ(x) is the critical value of the
map η 7→ Sµ(x; η) with η := (x0, y0, x1, y1). By 1.6, the set of all such critical values is
independent of µ; as it has measure zero by Sard’s Theorem, RSµ is constant for µ ∈ [0, 1].
In particular, letting x′

1 := x1 − x0 and y′
0 = y0 − y1, we get

S0(x;x0, y0, x1, y1) = S0(x; (x0, y1, x
′
1, y

′
0)) = v(x0) + φs,tH (x2, y1) + (x2 − x0)y1 + x′

1y
′
0.

It is obtained by adding the quadratic form x′
1y

′
0 to

S(x;x0, y1) = v(x0) + φs,tH (x2, y1) + (x2 − x0)y1,

which is the generating family related to ζ0. We conclude that RS(x) = RS0(x) = RS1(x).

In general, given any two subdivisions ζ ′, ζ ′′ of [s, t] with 2 |ζ ′|, |ζ ′| < δH , denote by
ζ = ζ ′ ∪ ζ ′′ = {s = t0 < · · · < tn = t} the subdivision obtained by collecting the points in
ζ ′ and ζ ′′. If tj is not contained in ζ ′, we consider the family of subdivisions

ζµ(j) = {t0 < tj−1 ≤ tj−1 + µ(tj − tj−1) < tj+1 < · · · tn}, µ ∈ [0, 1]

The same argument as before shows that the minmax relative to ζ0(j) and ζ1(j) are the
same. Continuing this procedure, we get that the minmax relative to ζ ′ and ζ are the
same, and the same holds for ζ ′′ and ζ. Therefore the minmax with respect to ζ ′ and ζ ′′

are the same.

Proposition 2.7 ([18]). If v ∈ C2 ∩ CLip(Rd), then R0,t
H v(x) verifies the (H-J) equation

almost everywhere.

1. The inclusion R
s,τ
H

(

CLip(Rd)
)

⊂ CLip(Rd) is proven in Proposition 2.47 p. 44.

2. For a subdivision ζ = {t0 < · · · < tn}, we let |ζ| := maxi |ti+1 − ti|.
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Proof. This is a direct consequence of the fact that S is a GFQI of LH,v and the minmax
is a graph selector in this case.

In general, for a Lipschitzian initial function, we do not know whether the minmax
verifies the equation almost everywhere or not. But in view of the estimation of generalized
derivatives in Proposition 1.44, we still call Rs,tH v(x) the (generalized) minmax solution of
the Cauchy problem of (H-J) equation.

Lemma 2.8. If v is C2 with bounded second derivative, then there exists a ǫ > 0 such
that for t ∈ [0, ǫ), the minmax R0,t

H v(x) is C2.

Proof. We will show that, there exists a ǫ > 0, such that for t ∈ (0, ǫ), the characteristics
beginning from the graph dv do not intersect. More precisely, with the notation introduced
in Subsection 1.2.1, the map ft : x0 7→ Xt

0

(

x0, dv(x0)
)

is a diffeomorphism. Indeed, for t
small enough,

Lip(ft − Id) ≤ Lip(αt0 − Id)(1 + Lip dv) ≤ (ecH t − 1)(1 + Lip dv) < 1

where αt0 and cH are defined in Lemma 1.12. This in turn means that the projection map
L = ϕtH(dv) → Rd, (x, p) 7→ x is a diffeomorphism, hence L = {x, dR0,t

H v(x)}, from which

we obtain that R0,t
H v(x) is C2.

2.2 Viscosity solution of (H-J) equation

As we have seen in the previous section, there are in general no global classical C1 solutions
of the Cauchy problem (H-J), due to the crossing of characteristics. The only solutions that
exist are “weak solutions” in the sense of distributions, for example functions verifying the
equation almost everywhere. However, such solutions are not unique. Different attempts
have been made, adding conditions on weak solutions to ensure uniqueness and, of course,
some physical meaning. Roughly, there are two directions in which the pioneers worked:
for conservation laws, there are entropy conditions, such as Oleinik’s in dimension one
[48], and Kruz̈kov’s for general dimensions [47]; for equations with convex Hamiltonian
(or initial functions), there are the explicit solution constructed by Hopf formula [41] for
conservation laws and the Lax-Oleinik formula for general Hamiltonians, which are widely
used in weak KAM theory, see for example [33].

In the 1980’s, M. G. Crandall, L. C. Evans, and P. L. Lions introduced the notion of
“viscosity solution” for general nonlinear first order partial differential equations [50, 28].
Viscosity solutions need not be differentiable anywhere, which makes their relationship
with the classical crossing of characteristics unclear. However, they possess very general
existence, uniqueness and stability properties and, in a large class of “good” cases, they
coincide with the weak solutions introduced before them.

Definition 2.9. A function u ∈ C0
(

(0, T ) × Rd
)

is called a viscosity subsolution (resp.
supersolution) of

∂tu+H(t, x, ∂xu) = 0

when it has the following property: for every ψ ∈ C1
(

(0, T ) × Rd
)

and every point (t, x)
at which u− ψ attains a local maximum (resp. minimum), one has

∂tψ +H(t, x, ∂xψ) ≤ 0, (resp. ≥ 0).

The function u is a viscosity solution if it is both a viscosity subsolution and supersolution.
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Remarks As their derivatives do not appear in the definition, the test functions ψ can
be assumed to satisfy ψ ≥ u (resp. ψ ≤ u) near (t, x), with equality at (t, x).

One can replace C1 test functions ψ by C∞ test functions in the definition: indeed, if
one does so and u − ψ has, e.g., a maximum at (t0, x0) for some C1 function ψ then, by
adding to ψ a nonnegative smooth function vanishing only at (t0, x0), one can assume that
the maximum is strict; if we approximate ψ by C∞ functions ψn in the C1 topology then, in
a fixed compact neighbourhood U of (t0, x0), the function u−ψn reaches its maximum at a
point (tn, yn) interior to U for large enough n, hence ∂tψn(tn, xn)+H

(

tn, yn, dψn(yn)
)

≤ 0;
as (tn, yn) → (t0, x0) when n → ∞, this does yield ∂tψ(t0, x0) + H

(

t0, x0, dψ(x0)
)

≤ 0.
Obviously, a classical C1 solution is a viscosity solution. Indeed, we have

Lemma 2.10. A viscosity solution verifies the equation wherever it is differentiable.

Proof. Just observe that, if ψ − u reaches a local minimum (resp. maximum) at a point
(t, x) where u is differentiable, then dψ(t, x) = du(t, x) and use the definition.

A more intrinsic way to define viscosity solutions is to introduce the notion of lower
and upper differentials. Let M denote a general manifold.

Definition 2.11. Let u : M → R be a function; for each x0 ∈ M , the set of lower
differentials of u at x0 ∈ M is (in any chart)

D−u(x0) :=

{

p ∈ T ∗
x0
M : lim inf

x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≥ 0

}

Similarly, the set of upper differentials of u at x0 is

D+u(x0) :=

{

p ∈ T ∗
x0
M : lim sup

x→x0

u(x) − u(x0) − p(x− x0)

‖x− x0‖
≤ 0

}

.

For example, if M = R and u(x) = |x|, then D−u(x0) = [−1, 1] and D+u(x0) = ∅.

A reference for the following results is [8].

Lemma 2.12 ([8]). i) If ψ : M → R is differentiable at x and such that ψ ≤ u (resp.
ψ ≥ u) with equality at x, then dψ(x) ∈ D−u(x) (resp.D+u(x)).

ii) For each p ∈ D−u(x) (resp.D+u(x)), there exists ψ ∈ C1(M,R) such that dψ(x) = p
and ψ ≤ u (resp. ψ ≥ u) in a neighborhood of x, with equality at x.

Remark 2.13. In (ii), it is not always possible to find a function of class Ck with k > 1.
A counterexample can be given as follows: let u : R → R, u = |x|α with α ∈ (1, 2), if ψ+

is a function such that ψ+ ≥ u and ψ+(0) = u(0) = 0, then we have ψ′
+(0) = 0, and

ψ′′
+(0) = lim

x→0
2
ψ+(x)

x2
≥ lim

x→0
|x|α−2 = +∞.

That is, ψ+ can not be C2 at 0.

Lemma 2.14 ([8]). i) Both D+u(x) and D−u(x) are closed convex subsets of T ∗
xM ;

ii) The subsets D±u(x) are both non-empty if and only if u is differentiable at x, in
which case

D+u(x) = D−u(x) = {du(x)}.

iii) One has D+u(x) ∪D−u(x) ⊆ ∂u(x).
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Remark 2.15. When u is convex, D−u(x) = ∂u(x) is the sub-derivative of u in classical
convex analysis.

The following result is a corollary of Lemma 2.12:

Proposition 2.16. A function u ∈ C0
(

(0, T ) × Rd
)

is a viscosity subsolution (resp.
supersolution) of the (H-J) equation if and only if, for all (t, x) ∈ (0, T ) × Rd and
(e, p) ∈ D+u(t, x) (resp. (e, p) ∈ D−u(t, x)),

e+H(t, x, p) ≤ 0 (resp. ≥ 0).

Remark 2.17. It follows that the notion of a viscosity solution is local.

The existence of viscosity solutions is ensured by the so-called “vanishing viscosity
method” at the origin of the name “viscosity”. The approach is to consider the approximate
problem

(HJǫ)

{

∂tu
ǫ +H(t, x, ∂xu

ǫ) = ǫ∆uǫ

uǫ(0, x) = v(x)

for ǫ > 0. This quasilinear parabolic Cauchy problem turns out to have a smooth solution
uǫ, as the viscosity term ǫ∆ regularizes the Hamilton-Jacobi equation. In practice, the
family {uǫ}ǫ>0 is uniformly bounded and equicontinuous on compact subsets of R × Rd.
Consequently, by the Arzela-Ascoli Theorem, every sequence ǫn of positive numbers con-
verging to 0 has a subsequence ǫnk

such that uǫnk converges to a limit function u.

Proposition 2.18 ([28]). Such a limit u is a viscosity solution of the (H-J) problem.

Uniqueness follows at once from the following estimate:

Proposition 2.19 ([29]). If u1 and u2 are viscosity solutions of the Hamilton-Jacobi
equation, then

sup
x∈Rd

(

u1(t, x) − u2(t, x)
)+

≤ sup
x∈Rd

(

u1(0, x) − u2(0, x)
)+
.

This proposition gives more than uniqueness: it provides a monotonicity property for
viscosity solutions with respect to the initial condition: if u1(0, ·) ≤ u2(0, ·), then u1 ≤ u2.

Theorem 2.20 (Stability,[28]). Suppose that the sequences of functions Hn : R×T ∗Rd →
R and un : R+ × Rd → R converge uniformly on compact subsets to H and u respectively.
If each un is a viscosity solution of

∂tu
n +Hn(t, x, ∂xu

n) = 0,

then u is a viscosity solution of

∂tu+H(t, x, ∂xu) = 0.

Theorem 2.21 ([29]). If v ∈ CLip(Rd)) and H ∈ C2
c ([0, T ] × T ∗Rd), then there exists a

unique viscosity solution of the Cauchy problem of the Hamilton-Jacobi equation. More-
over, this solution is globally Lipschitz.

A notable feature of the viscosity solution, is that it is Markovian, meaning that, if

J ts : CLip(Rd) → CLip(Rd)

denotes the viscosity solution operator (for a fixed Hamiltonian) which to v associates the
time t of the solution equal to v at time s, then the “two-parameter groupoid” property

J tτ = J ts ◦ Jsτ

is satisfied. This follows easily from uniqueness.
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2.3 The convex case: Lax-Oleinik semi-groups and viscosity
solutions

As mentioned before, the viscosity solutions of Hamilton-Jacobi equations whose Hamil-
tonian is convex in p have been well studied. This section is a brief survey of the convex
theory in terms of generating families, a finite dimensional version of the action functional.
See [20, 45, 12, 9, 33]. We consider the following model case:

1. H(t, x, p) ∈ C2([0, T ]×T ∗Rd) is strictly convex in p; more precisely, ∂2
ppH is uniformly

positively definite, meaning that ∂2
ppH(t, x, p)ξ2 ≥ c|ξ|2 for some positive constant c.

2. Ht(x, p) = 1
2 |p|2 off a compact subset.

3. The initial datum v is Lipschitzian.

Remark 2.22. • The functions H and v verify the condition of finite propagation
speed. Indeed, it is easy to see that they satisfy the conditions in Proposition 1.32.

• If the base manifold is Td, and H is a Tonelli Hamiltonian (i.e., satisfies 1.) then,
for any Lipschitz initial function v, U :=

⋃

t∈[0,T ]{t} × ϕ0,t
H (∂v) is compact and we

can modify H without changing U so that 2. is satisfied.

With the notation of subsection 1.2.1 p. 15, the following construction of generating
families is taken from [20], section 2.3.

Lemma 2.23 ([20]). There exists a constant ǫH > 0 such that for any 0 < |s − t| < ǫH ,
the map

βts : (x, y) → (x,Xt
s)

is a diffeomorphism.

Definition 2.24. A diffeomorphism ϕ : T ∗Rd → T ∗Rd admits a classical generating
function ψ, if ψ :

(

Rd
)2

→ R is C1, such that
(

(x, y), (X,Y )
)

∈ Graph(ϕ) if and only if
{

Y = ∂Xψ(X,x)
y = −∂xψ(X,x).

Lemma 2.25. For 0 < |t − s| < ǫH , the transformation ϕts = (Xt
s, Y

t
s ) of H admits the

classical generating function

ψts(X
t
s, x) =

∫ t

s

(

Y τ
s Ẋ

τ
s −H(τ,Xτ

s , Y
τ
s )

)

dτ,

which satisfies ψts(X,x) = 1
2(t−s) |X − x|2 for large enough |X − x|.

Proof. As proved in Lemma 1.14,

dψ = Y t
s dX

t
s − ydx,

so ψts is a classical generating function by Lemma 2.23. Moreover, since Ht(x, y) = 1
2 |y|2

outside a compact subset K, as

X − x = Xt
s − x =

∫ t

s
∂yH(τ,Xτ

s , Y
τ
s )dτ,

for |X−x| large enough, we must have H(s, x, y) = |y|2/2, hence ϕts(x, y) =
(

x+(t−s)y♯, y
)

and ψts(X,x) = 1
2(t−s) |X − x|2.
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Remark 2.26. The relation between the generating functions φts and ψts is that:

φts(X, y) = ψts(X,x) − y(X − x)

where (X,x) is obtained from (X, y) via the diffeomorphism βts ◦ αst :

(X, y)
αs

t−→ (x, y)
βt

s−→ (x,X).

The following result, essentially due to Hamilton, shows that our convexity asumption on
H divides by two the number of fiber variables needed in generating families:

Lemma 2.27 (Composition formula 3,[20]). If ψ1 and ψ2 are classical generating functions
for two diffeomorphisms ϕ1, ϕ2 : T ∗Rd → T ∗Rd respectively, then ϕ2 ◦ ϕ1 admits the
classical generating family

ψ(x2, x0;x1) = ψ1(x1, x0) + ψ2(x2, x1)

in the sense that ((x0, y0), (x2, y2)) ∈ Graph(ϕ2 ◦ ϕ1) iff there exists x1 such that















y2 = ∂x2ψ(x2, x0;x1)

y0 = −∂x0ψ(x2, x0;x1)

0 = ∂x1ψ(x2, x0;x1)

Lemma 2.28 ([45]). For any 0 < s < t ≤ T , the subset L = ϕts(∂v) has the generating
family given by

F ts(x; (xi)0≤i≤j) = v(x0) + Ψt
s(x, (xi)) := v(x0) +

∑

0≤i≤j

ψτi+1
τi

(xi+1, xi) (2.1)

where xj+1 := x and {s = τ0 < τ1 < · · · < τj+1 = t} is a subdivision of [s, t] such that
|τi − τi+1| < ǫH , 0 ≤ i ≤ j. Up to diffeomorphism, F ts is quadratic of index 0 at infinity.

Proof. As in the composition formula, it is easy to verify that F ts is a generating family.
We claim that it is equivalent to a generating family quadratic at infinity with a quadratic
form of Morse index zero. By the change of variables ξi = xi+1 − xi, 0 ≤ i ≤ j, we get the
generating family

F̃ ts(x; (ξi)0≤i≤j) := v(x−
∑

0≤k≤j

ξk) +
∑

0≤i≤j

ψτi+1
τi

(x−
∑

i+1≤k≤j

ξk, x−
∑

i≤k≤j

ξk)

and, for |ξi|, 0 ≤ i ≤ j large enough, we have

F̃ ts(x, (ξi)0≤i<j) := v(x−
∑

0≤i≤j

ξk) +
∑

0≤i≤j

1

2(τi+1 − τi)
|ξi|

2

where the second term is a nondegenerate quadratic form of Morse index zero.

Notation. To simplify, we let F := F ts the function defined by (2.1), and RF denotes
the minmax function.

Lemma 2.29. The minmax is reduced to min, i.e.

RF (x) = min
η
F (x, η).



38 Chapter 2. Viscosity and minmax solutions of H-J equations

Proof. As Q is of Morse index zero, the descending cycles are points.

Corollary 2.30. For S and F defined by (1.5) and (2.1) respectively, we have

inf maxS(x, (xi, yi)) = minF (x, (xi)).

Proof. In view of Lemma 2.29, for the case where v is C2, we can conclude by the unique-
ness theorem of GFQI (ref. Theorem 1.4) since both S and F generates the same La-
grangian submanifold L = ϕ(dv). In general, for v Lipschitz, we can apply the continuity
dependence of the minmax selector on the generating family (ref. Lemma 1.29).

Hence, we are ready to define:

Definition 2.31. The min operator for the (H-J) equation is defined by

Rts : CLip(Rd) → CLip(Rd), Rtsv(x) = min
(xi)

F ts(x; (xi)).

Note that Rts is defined independently of the choice of subdivisions of [s, t].

Lemma 2.32. If η̄ is a point realizing the minimum RF (x) = minη F (x, η), then we have
∂xF (x, η̄) ∈ D+RF (x). When RF is differentiable at x, it follows that dRF (x) = ∂xF (x, η̄)
and, moreover, η̄ is unique.

Proof. Since RF is the minimum of F , we have RF (x′) ≤ F (x′, η̄) for x′ 6= x, hence x
is a local minimum point for F (x′, η̄) − RF (x′), hence ∂xF (x, η̄) ∈ D+RF (x) by Lemma
2.12. When RF is differentiable, the uniqueness of η̄ follows: indeed, if η̄ = (x̄i)0≤i≤j

the relation dRF (x) = ∂xF (x, η̄) writes y := dRF (x) = ∂1ψ
τj+1
τj (x, x̄j), which determines

x̄j = π2 ◦ β
τj
τj+1(x, y); if j = 0, this proves uniqueness; otherwise, as F (x, η̄) is minimal

and differentiable with respect to xj , we have ∂xj
F (x, η̄) = 0, i.e. ȳj := −∂2ψ

τj+1
τj (x, x̄j) =

∂1ψ
τj
τj−1(x̄j , x̄j−1), which determines x̄j−1 = π2 ◦ β

τj−1
τj (x̄j , ȳj), etc.

Lemma 2.33. We have

∂RF (x) = co{∂xF (x, η) : η ∈ C(x)} = D+RF (x)

where C(x) = {η : RF (x) = F (x, η)}. Moreover, if RF (x) is differentiable at x, then it is
C1 at x with respect to the set of those points at which it is differentiable.

Proof. The last assertion is Remark A.2 in Appendix A. As D+RF (x) ⊂ ∂RF (x) and
D+RF (x) is a convex set, we have

co{∂xF (x, η) : η ∈ C(x)} ⊂ D+RF (x) ⊂ ∂RF (x).

For the reverse inclusion, we use the fact that dRF (x) = ∂xF (x, η) when RF is differ-
entiable at x and F (x, η) = RF (x): as ∂RF (x) is the convex hull of the set of limits of
convergent sequences dRF (xn) with lim xn = x, it is the convex hull of the set of limits of
convergent sequences ∂xF (xn, ηn) with lim xn = x and F (xn, ηn) = RF (xn); since ∂xF is
continuous, this does yield ∂RF (x) ⊂ co{∂xF (x, η) : η ∈ C(x)}.

As a consequence, we know that the min function Rt0v(x) does define a graph selector
for the geometric solution ϕt0(∂v), even for Lipschitz initial functions. Hence Rt0v(x)
satisfies the (H-J) equation almost everywhere. In this sense, we will call it a min solution,
or min solution operator.
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Example 2.34. Let H = H(p), with ∂2
ppH ≥ cI for some c > 0. Its flow is ϕt(x, y) =

(x+ tH ′(y), y), hence has a classical generating function

ψt(X,x) = t(yH ′(y) −H(y)), withH ′(y) =
X − x

t

= tmax
p

(

p
X − x

t
−H(p)

)

= tH∗(
X − x

t
)

where H∗ is the Legendre tranformation of H. Then we get the min function

Rt0v(x) = min
x0

(

v(x0) − tH∗(
x− x0

t
)
)

, t > 0

which is the Hopf formula.

Proposition 2.35. The min solution operator is a semigroup 3 with respect to time, that
is,

Rt0v(x) = Rts ◦Rs0v(x), 0 ≤ s ≤ t

Proof.

Rts ◦Rs0v(x) = min
(xi)

(

Rs0v(x0) + Ψt
s(x, (xi))

)

= min
(xi)

(

min
(x′

j
)
(v(x′

0) + Ψs
0(x0, (x

′
j))) + Ψt

s(x, (xi))
)

= min
(xi),(x′

j
)

(

v(x′
0) + Ψt

0(x, (xi), (x
′
j))

)

= Rt0v(x)

where the last equality is due to the fact that the min is independent of the subdivision.

The semi-group property in the convex case has the following stronger geometric in-
terpretation:

Proposition 2.36. For t > 0, and any s ∈ (0, t), we have

dRt0v ⊂ ϕts(dR
s
0v).

Proof. A priori, by Lemma 2.32 we have dRt0v ⊂ ϕts(∂R
s
0v). By the semi-group property

of both the operator R and the flow ϕ, it is enough to consider 0 < t− s < ǫH . Fixing x,
suppose x1 is a minimizing point for

Rt0v(x) = min
x′

1

(

Rs0v(x′
1) + ψts(x, x

′
1)

)

and x0 a minimizing point for

Rs0v(x1) = min
x′

0

(

v(x′
0) + ψs0(x1, x

′
0)

)

.

Take
f+(y) := v(x0) + ψs0(y, x0), f−(y) := Rt0v(x) − ψts(x, y)

then f± is C1 and f− ≤ Rs0v ≤ f+ with equality at y = x1, hence Rs0v is differentiable at
x1 and

dRs0v(x1) = df±(x1) = ∂1ψ
s
0(x1, x0) = −∂2ψ

t
s(x, x1).

3. Or rather a“two-parameter groupoid”.
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By the definition of classical generating function, we have

(

x, ∂1ψ
t
s(x, x1)

)

= ϕts
(

x1,−∂2ψ
t
s(x, x1)

)

= ϕts
(

x1, dR
s
0(x1)

)

, (2.2)

In particular, if Rt0v is differentiable at x,

(

x, dRt0v(x)
)

=
(

x, ∂1ψ
t
s(x, x1)

)

= ϕts
(

x1, dR
s
0(x1)

)

where the second equality follows from the definition of classical generating function.
Now let (x, p) = lim

(

xn, dRt0v(xn)
)

; if one sets (xn1 , p
n
1 ) := ϕst

(

xn, dRt0v(xn)
)

and
(x1, p1) = lim(xn1 , p

n
1 ), then

Rt0v(xn) = Rs0v(xn1 ) + ψts(x
n, xn1 ),

hence
Rt0v(x) = Rs0v(x1) + ψts(x, x1).

Now that x1 is a minimizing point of Rt0v(x), applying the same argument as before, we
get (x, p) = ϕts(x1, dR

s
0v(x1)).

Corollary 2.37. For any t > 0 and s ∈ (0, t),

Mt(v) := {(x, p)|p = ∂xF
t
0(x, η), F t0(x, η) = Rt0v(x)} ⊂ ϕts(dR

s
0v).

Proof. We first remark that Mt(v) is independent of the subdivisions used to define
F t0(x, η). We have proved the claim for |t − s| < ǫH in Proposition 2.36, see (2.2). The
general case where the generating family F t0 has more fiber variables can be proved simi-
larly.

Remark 2.38. 1. For s > 0, the min solution operator can be defined for bounded
uniformly continuous v and Rs0v(x) turns out to be Lipschitzian and semi-concave.

2. Proposition 2.36 tells us that the differential of the min solution at time t, a pri-
ori extracted from the geometric solution ϕts(∂vs) (by Lemma 2.33), indeed lies in
ϕts(dvs). Roughly speaking, this means that the “vertical part” in the generalized
derivatives ∂ does not interfere.

3. The min solution operator Rt0 is a finite dimensional “discretization” of the Lax-
Oleinik semigroup (groupoid) in weak KAM theory, defined by

T tsv(x) = inf
γ(t)=x

{

v(γ(s)) +
∫ t
s L(t, γ(t), γ̇(t))dt

}

where L is the Legendre tranform of H with respect to the p variable, and the inf is
taken over all absolutely continuous paths γ : [s, t] → Rd.

Theorem 2.39 (T. Joukovskaia [45]). The min solution Rt0v(x) is the viscosity solution
of the Cauchy problem (H-J).

Joukovskaia’s proof relies on a special characterization of viscosity solutions, valid only
for convex Hamiltonians. In the next section, we will give a new proof making sense in
more general settings.

In the rest of the section, we will give a slight generalization of Theorem 2.39 from
convex Hamiltonians to the convex-concave type Hamiltonians. The minmax in this case
has been treated in [12]. Let us consider the Cauchy problem (H-J) with

(SP ) H(t, x, p) = H1(t, x1, p1) +H2(t, x2, p2), v(x) = v1(x1) + v2(x2)
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where (x, p) = (x1, x2, p1, p2) ∈ T ∗Rd, and H1 and H2 are strictly convex and concave
in p respectively. We may assume that each vi is globally Lipschitz and Hi verifies the
condition of finite propagation speed.

Lemma 2.40. Suppose S(x, ξ) and S′(y, η) are two GFQI, then

inf max
(ξ,η)

(

S(x, ξ) + S′(y, η)
)

= inf max
ξ
S(x, ξ) + inf max

η
S′(y, η)

Proof. Recall the definition of minmax:

inf maxS(x, ξ) = inf
[σ]∈A

max
ξ∈|σ|

S(x, ξ)

where A is a generator of the homology group Hk∞
(S∞
x , S

−∞
x ;Z2) with k∞ the Morse

index of the nondegenerate quadratic form related to S. Similarly we denote A′ and k′
∞

the generator and Morse index related to S′. Write

S̃(x, y, ξ, η) := S(x, ξ) + S′(y, η)

Note that we have a homotopy equvalence

(S̃∞
x,y, S̃

−∞
x,y ) = (S∞

x , S
−∞
x ) × (S

′∞
y , S

′−∞
y )

By Künneth formula, since the homology groups for other degrees except k∞ and k′
∞ are

all 0, we have

Hk∞+k′
∞

(S̃∞
x,y, S̃

−∞
x,y ) ≃ Hk∞

(S∞
x , S

−∞
x ) ⊗Hk′

∞
(S

′∞
y , S

′−∞
y )

Thus
inf max S̃ = inf

[σ̃]=A⊗A′
max

(ξ,η)∈|σ̃|
S̃ ≤ inf

[σ]=A
max
ξ∈|σ|

S + inf
[σ′]=A′

max
η∈|σ′|

S′

since for any descending cycles σ, σ′ such that [σ] = A and [σ′] = A′, their product σ⊗ σ′

verifies [σ ⊗ σ′] = A⊗A′.
By the same argument, we have

sup min S̃ ≥ sup minS + sup minS′

using the fact that minmax and maxmin are equal, we get the conclusion

inf max S̃ = inf maxS + inf maxS′

Lemma 2.41. Suppose that H and v satisfy (SP ), then

RtHv(x) =
2

∑

i=1

RtHi
vi(xi).

Proof. Let S(H,v) denote the GFQI related to (H, v), i.e. the GFQI of the Lagrangian

submanifold ϕ0,t
H (∂v), then we get a GFQI of ϕ0,t

H (∂v)

S(H,v)(t, x, ξ) =
2

∑

i=1

S(Hi,vi)(t, xi, ξi)

where x = (x1, x2), and ξ = (ξ1, ξ2) .
It follows from Lemma 2.40 that the minmax is of splitting form.



42 Chapter 2. Viscosity and minmax solutions of H-J equations

Let J be the viscosity solution operator for the (H-J) equation.

Lemma 2.42. Suppose that H and v satisfy (SP ), then

J tHv(x) =
2

∑

i=1

J tHi
vi(xi)

Proof. Note that by the stability of viscosity solutions, it is sufficient to prove the state-
ment in the case where each Hi and vi are smooth. We take the vanishing viscosity
argument. Let uǫi(t, xi) be the respective solutions of

{

∂tu
ǫ
i +Hi(t, xi, ∂xi

uǫi) = ǫ∆uǫi
uǫi(0, x) = vi(x)

, i = 1, 2.

It is known that thus regularized solutions converge to the viscosity solution, that is,
uǫi(t, xi) → J tHi

vi(xi) with uniform convergence on compact subsets as ǫ → 0. On the

other hand, uǫ(t, x) :=
∑2
i=1 u

ǫ
i(t, xi) is the solution of

{

∂tu
ǫ +H(t, x, ∂xu

ǫ) = ǫ∆uǫ,

uǫ(0, x) = v(x).
(2.3)

Since uǫ(t, x) converges to u(t, x) :=
∑2
i=1 J

t
Hi
vi(xi) as ǫ → 0, we get that u(t, x) is the

viscosity solution J tHv(x).

Proposition 2.43. Suppose that H and v satisfy (SP ), then the minmax solution RtHv(x)
is the viscosity solution of the (H-J) equation.

Proof. Since each Hi is convex or concave in pi, we get from Theorem 2.39 that the
minmax, which, in these cases, reduced to min or max, coincide with the viscosity solution,
that is RtHi

vi(xi) = J tHi
vi(xi), hence we can conclude by applying Lemma 2.41 and Lemma

2.42.

2.4 Iterated minmax and viscosity solution

In contrast with the case of convex Hamiltonians, where the minmax is reduced to a min
and provides the viscosity solution, for general non-convex Hamiltonians, the minmax and
the viscosity solution may differ: see [63, 65, 12] for counterexamples, and also [24] for
a very nice geometric illustration of the fact that the viscosity solution is not necessarily
contained in the geometric solution.

Particularly, in [63], the author pointed out without proof that the minmax does not
provide a semi-group as a consequence of not being viscosity. We will make this point
clear by showing that the semi-group property is a sufficient condition for the minmax to
be viscosity.

Proposition 2.44. Given v, the minmax R0,t
H v(x) is the viscosity solution of the Cauchy

problem (H-J) if it has the semigroup property with respect to time, that is,

R0,t
H v(x) = Rs,tH ◦R0,s

H v(x), 0 ≤ s < t ≤ T .
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Proof. Suppose Rt0v(x) := R0,t
H v(x) possesses the semi-group property, we first show that

Rt0v(x) is a viscosity subsolution. For any (t, x), let ψ be a C2 function such that ψ(s, y) =:
ψs(y) ≥ Rs0v(y), with equality at (t, x). It is enough to consider ψ in a neighborhood of
(t, x), where it has bounded second derivative. Then

ψt(x) = Rtτ ◦Rτ0v(x) ≤ Rtτψτ (x). (2.4)

By Lemma 2.8, for t − τ > 0 small enough, the characteristics originating from dψτ do
not intersect: let (xt, yt) = ϕtτ (xτ , ∂xψτ (xτ )), where ϕ denotes the Hamiltonian flow of
H, then the map p : (xτ , ∂xψτ (xτ )) 7→ xt is a diffeomorphism. Therefore Rtτψτ (x) is a
classical C2 solution of the (H-J) equation. Hence

Rtτψτ (x) = ψτ (x) −
∫ t

τ
H(s, x, ∂xR

s
τψτ (x))ds (2.5)

Moreover, since (x, ∂xR
t
τψτ (x)) = ϕtτ ◦ p−1(x), we get that ∂xR

t
τψτ (x) is continuous in τ .

Subtract (2.5) into (2.4), move ψt(x) to the RHS, divide both side by t − τ and let
τ → t, we get

0 ≤ −∂tψt(x) −H(t, x, ∂xψt(x))

from which we get a subsolution by definition. Similarly, we can prove that Rt0v(x) is a
viscosity supersolution.

As a direct consequence, we get Theorem 2.39 since the min solutions forms a semi-
group (Proposition 2.35).

We remark that Proposition 2.44 does not essentially depend on the variational for-
mulation of the minmax. The following more general statement, containing the minmax
as a special case. See for example [9] Prop. 20 and [35] Theorem 5.1.

Proposition 2.45 ([9],[35]). Suppose an operator T ts : CLip(Rd) → CLip(Rd) satisfies the
following properties:

1. Semi-group: T ts ◦ T sτ = T tτ ;

2. Monotonicity: v ≥ v′ ⇒ T tτv ≥ T tτv
′,

3. Compatibility with the (H-J) equation: if v is a C2 function with bounded derivatives,
then there exists an ǫ > 0 such that T tsv is a C2 solution of the (H-J) equation for
|t− s| < ǫ.

then T t0 is the viscosity solution operator of the (H-J) equation.

Remark 2.46. The presence of rarefaction in the equations of conservation laws in di-
mension one, where the Hamiltonian H depends only on p, serves as simple examples for
the difference between minmax and viscosity solutions, see Example 2.82.

To compensate the defect of the minmax for not being a semi-group, an idea due to
M. Chaperon is to replace the “minmax” by some “iterated minmax”. Roughly speaking,
an iterated minmax is obtained by dividing a given time interval into small pieces and
take the minmax step by step. This is a priori a discrete semi-group with respect to the
points of the subdivision. We are going to show that, as the steps of the subdivision go to
zero, the iterated minmax will converge to a real semi-group, and therefore to the viscosity
solution.

In the following, we denote the Lipschitz constant of a global Lipschitz function f by
‖∂f‖ and | · |K denotes the maximum norm on a compact set K.
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Lemma 2.47. Assuming H ∈ C2
c ([0, T ] ×T ∗Rd) and v ∈ CLip(Rd), we have the following

estimations:
1)Rs,tH defines an operator from CLip(Rd) to CLip(Rd), and

‖∂(Rs,tH v)‖ ≤ ‖∂v‖ + ‖∂xH‖|t− s|

2) For any 0 ≤ s < ti ≤ T , i = 1, 2,

|Rs,t1H v(x) −Rs,t2H v(x)| ≤ |t1 − t2| max
t∈[t1,t2]

|H(t, x, ·)|Y

where Y = {y : |y| ≤ ‖∂v‖ + ‖∂xH‖ maxi |ti − s|}.

3) Let H0 and H1 be two Hamiltonians, then

|Rs,tH0v −Rs,tH1v|C0 ≤ |t− s| max
τ∈[s,t],y∈Y ′

|(H0 −H1)(τ, ·, y)|C0

where Y ′ = {y : |y| ≤ ‖∂v‖ + maxi ‖∂xH
i‖|t− s|}.

4) If v0, v1 ∈ CLip(Rd) and K is a compact set in Rd, then there exists a bounded
subset K̃ ⊂ Rd which depends on K × [0, T ] and the constants ‖∂vi‖, such that

|Rs,tH v
0 −Rs,tH v

1|K ≤ |v0 − v1|K̃ . (2.6)

Proof. The proof is based on Proposition 1.44 with some variation on the original variable
x, which can be either t ∈ [0, T ], or x ∈ Rd or some parameter λ for the generating family
constructed as below.

For simplicity, we may first assume that |t− s| < δH so that

Ss,t(x, x0, y0) = v(x0) + φs,tH (x, y0) + xy0 − x0y0

Let (x(τ), y(τ)) denote the Hamiltonian flow, and C(x) be the critical set defined in
Proposition 1.44.

1) For (x0, y0) ∈ C(x), we have

∂xS
s,t(x, x0, y0) = ∂xφ

s,t
H (x, y0) + y0 = y(t)

where

y(t) = y0 −
∫ t

s
∂xH(τ, x(τ), y(τ))dτ, y0 ∈ ∂v(x0)

Hence by (1.13),
∂Rs,tH v(x) ⊂ co{y(t), y0 ∈ ∂v(x0)}

thus
‖∂(Rs,tH v)‖ ≤ ‖∂v‖ + ‖∂xH‖|t− s|.

2) For (x0, y0) ∈ C(x), by Lemma 1.16, we have

∂tS
s,t(x, x0, y0) = ∂tφ

s,t
H (x, y0) = −H(t, x, y(t))

Hence
∂tR

s,t
H v(x) ⊂ co{−H(t, x, y(t)), y0 ∈ ∂v(x0)}

from which
|Rs,t1H v(x) −Rs,t2H v(x)| ≤ |t1 − t2| max

t∈[t1,t2],y∈Y
|H(t, x, y)|
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where Y = {y : |y| ≤ ‖∂v‖ + ‖∂xH‖ maxi |ti − s|}.

3) Let Hλ = (1 − λ)H0 + λH1, λ ∈ [0, 1], and let Ss,tλ be the corresponding generating
families. Fix λ, for (x0, y0) in the critical set Cλ(x) corresponding to Hλ,

∂λS
s,t
λ (x, x0, y0) = ∂λφ

s,t
Hλ(x, x0, y0) =

∫ t

s
(H0 −H1)(τ, xλ(τ), yλ(τ))dτ.

where the proof of the second equality is similar to that of Lemma 1.16. Hence

∂λR
s,t
Hλv(x) ⊂ co{

∫ t

s
(H0 −H1)(τ, xλ(τ), yλ(τ))dτ, y0 ∈ ∂v(x0)}

from which

|Rs,tH0v(x) −Rs,tH1v(x)| ≤
∫ 1

0

∫ t

s
|H0 −H1|(τ, xλ(τ), yλ(τ))dτdλ

≤ |t− s| max
τ∈[s,t],y∈Y ′

|(H0 −H1)(τ, ·, y)|C0

where Y ′ = {|y| : |y| ≤ ‖∂v‖ + maxi ‖∂xH
i‖|t− s|}.

4) Let vλ = (1 − λ)v0 + λv1, λ ∈ [0, 1] and Ss,tλ denotes the corresponding generating

families, then ∂λS
s,t
λ (x, x0, y0) = v1(x0) − v0(x0),

∂λR
s,t
H v

λ(x) ⊂ co{v1(x0) − v0(x0) : (x0, y0) ∈ Cλ(x)}

with Cλ(x) ⊂ {(x0, y0) : |x0| ≤ |x| + T‖∂y(H|{y∈Y })‖}, Y := {y : |y| ≤ ‖∂v‖ + T‖∂xH‖}.

If we take K̃ = {x0 : |x0| ≤ |x|K + T‖∂y(H|{y∈Y })‖}, we obtain

|Rs,tH v
0 −Rs,tH v

1|K ≤ |v0 − v1|K̃

In general, the above results follow from the fact that the critical set C(x) defines the
Hamiltonian flow (x(τ), y(τ))s≤τ≤t for any 0 ≤ s < t ≤ T .

Remark 2.48. The estimates in the proposition, more subtle than needed, precisely reveal
that being with finite propagation speed is enough to define the minmax function.

Now given any compact subset K ⊂ Rd, we consider (t, x) ∈ [0, T ] ×K.
Given a subdivision ζn = {0 = t0 < t1 < · · · < tn = T} of [0, T ], for each s ∈ [0, T ], we

associate to it a number m(ζn, s), depending on ζn :

m(ζn, s) := i, if ti ≤ s < ti+1.

For simplicity, fixing a subdivision, we may abbreviate m(ζn, s) as m(n, s).

Definition 2.49. The iterated minmax solution operator for the (H-J) equation with
respect to a subdivision ζn is defined as follows: for 0 ≤ s′ < s ≤ T ,

Rs
′,s
H,ζn

:= R
tm(n,s),s

H ◦ · · · ◦R
s′,tm(n,s′)+1

H .

When the Hamiltonian H is fixed , we may abbreviate our notation Rs,tH as Rts, and the
iterated minmax as

Rss′,n := Rstm(n,s)
◦ . . . R

tm(n,s′)+1

s′ . (2.7)

for which we call it a n-step minmax, with a subdivision indicated.
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Define the length of ζn by |ζn| := maxi |ti − ti+1|. Suppose that{ζn}n is a sequence of
subdivisions of [0, T ] such that |ζn| tends to zero as n goes to infinity, and {Rs0,nv(x)}n
be the corresponding sequence of iterated minmax solutions for an initial function v ∈
CLip(Rd).

Lemma 2.50. The sequence of functions un(s, x) := Rs0,nv(x) is equi-Lipschitz and uni-
formly bounded for (s, x) ∈ [0, T ] ×K.

Proof. By Lemma 2.47, one can verify that

‖∂(Rs0,nv)‖ ≤ ‖∂v‖ + T‖∂xH‖,

|Rs0,nv −Rt0,nv|K ≤ |H|K|s− t|, s, t ∈ [0, T ].

where K := {(t, x, y) : t ∈ [0, T ], x ∈ K, |y| ≤ ‖∂v‖ + T‖∂xH‖}.

In particular, taking t = 0, we get

|Rs0,nv|K ≤ |v|K + T |H|K, s ∈ [0, T ]

It follows immediately from the Arzela-Ascoli Theorem that {Rs0,nv(x)}n has uniformly
convergent subsequences on [0, T ]×K. Fixing a convergent subsequence {Rs0,nk

v(x)}k, we
write its limit as

R̄s0v(x) := lim
k→∞

Rs0,nk
v(x).

Remember that R̄s0v(x) depends a priori on the specified subsequence of subdivisions
{ζnk

}k, which itself depends on the given initial function v and the given subdivisions
{ζn}n. We define the related limit operator for Rss′,nk

with respect to the fixed subsequence

of subdivisions {ζnk
}k: for any time 0 ≤ s′ < s ≤ T ,

R̄ss′ := lim
k→∞

Rss′,nk
, if the limit exists

Lemma 2.51. We have

R̄s0v(x) = lim
k→∞

Rss′,nk
◦ R̄s

′

0 v(x) = R̄ss′ ◦ R̄s
′

0 v(x), ∀ 0 ≤ s′ < s ≤ T. (2.8)

Proof. For brevity, we omit the subindex k of nk.

We first claim that

R̄s0v(x) = lim
n→∞

R
tm(n,s)

0,n v(x) (2.9)

Indeed,

|Rs0,nv(x) −R
tm(n,s)

0,n v(x)| = |Rstm(n,s)
◦R

tm(n,s)

0,n v(x) −R
tm(n,s)

0,n v(x)|

≤ |H|K(s− tm(n,s)) ≤ |H|K|ζn| → 0, n → ∞.

Assume that the uniform convergence of {R
tm(n,s)

0 v(x)}n on a bit larger set K̃ × [0, T ]
where K̃ ⊃ K as defined in 4) of Lemma 2.47. Then for any ǫ > 0, there exists N large
enough such that for any i, j > N ,

|R
tm(i,s)

0,i v −R
tm(j,s)

0,j v|K̃ < ǫ, ∀s ∈ [0, T ]
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Hence

|R
tm(i,s)

tm(i,s′),i
◦R

tm(j,s′)

0,j v −R
tm(i,s)

0,i v|K = |R
tm(i,s)

tm(i,s′),i
◦R

tm(j,s′)

0,j v −R
tm(i,s)

tm(i,s′),i
◦R

tm(i,s′)

0,i v|K

≤ |R
tm(j,s′)

0,j v −R
tm(i,s′)

0,i v|K̃ < ǫ.

Let j go to infinity, we get

|R
tm(i,s)

tm(i,s′),i
◦ R̄s

′

0 v −R
tm(i,s)

0,i v|K < ǫ, i > N

Thus
R̄s0v(x) = lim

i→∞
R
tm(i,s)

tm(i,s′),i
◦ R̄s

′

0 v(x).

We conclude by verifying the following, which is similar to (2.9),

lim
i→∞

Rss′,i ◦ R̄s
′

0 v(x) = lim
i→∞

R
tm(i,s)

tm(i,s′),i
◦ R̄s

′

0 v(x).

Proposition 2.52. R̄s0v(x) is the viscosity solution of the (H-J) problem.

Proof. We first show that it is a viscosity subsolution. For any (t, x), suppose ψ a C2

function defined in a neighborhood of (t, x), having bounded second derivative and such
that ψ(s, y) =: ψs(y) ≥ R̄s0v(y), with equality at (t, x),

ψt(x) = R̄t0v(x) = lim
k→∞

Rtτ,nk
◦ R̄τ0v(x) ≤ lim

k→∞
Rtτ,nk

ψτ (x) = Rtτψτ (x) (2.10)

the last equality holds for t − τ small enough, where the characteristics originating from
dψτ do not intersect, hence the iterated minmax is nothing but the 1-step minmax which
is the classical C2 solution. We conclude by applying the same argument in Proposition
2.44: we have

Rtτψτ (x) = ψτ (x) −
∫ t

τ
H(s, x, ∂xRsτψτ (x))ds (2.11)

Subtract (2.11) into (2.10), move ψt(x) to the RHS, divide both side by t− τ and let
τ → t, we get

0 ≤ −∂tψt(x) −H(t, x, ∂xψt(x))

from which we get a subsolution by definition. The proof that R̄s0v(x) is a supersolution
is similar.

For given H and v, we say that the limit of iterated minmax solutions exists in [s, t], if
for any sequence of subdivision {ζn}n∈N of [s, t] such that |ζn| → 0 as n → ∞, the related
sequence of iterated minmax solutions {Rs,τH,ζn

v(x)}n∈N, (τ, x) ∈ [s, t] × Rd converges uni-
formly on compact subsets to a limit which is independent of the choice of subdivisions,
then, without ambiguity, we denote this limit also by R̄s,τH v(x). As before, in the case
where H is specified once and for all, we may write the iterated minmax solution and its
limit by Rτs,nv(x) and R̄τsv(x) respectively.

We can now prove our main Theorem

Theorem 2.53. Suppose H ∈ C2
c ([0, T ] × T ∗Rd) and v ∈ CLip(Rd), then for the Cauchy

problem of the Hamilton-Jacobi equation
{

∂tu+H(t, x, ∂xu) = 0, t ∈ (0, T ]
u(x, 0) = v(x), x ∈ Rd.

the limit of iterated minmax solutions exists and coincides with the viscosity solution.
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Proof. For any compact subset K and (t, x) ∈ [0, T ] × K, and given any sequence of
subdivisions {ζn}n, setting un(t, x) = Rt0,ζn

v(x), we have proved in Proposition 2.52 that
any convergent subsequence of {un}n converges uniformly on [0, T ] × K to the viscosity
solution. Now, by Lemma 2.50 and the Arzela-Ascoli theorem, the sequence of functions
un takes its values in a compact subset of C0([0, T ]×K), hence it converges to the viscosity
solution.

It turns out that the minmax selector behaves like a “generator” defined in by P.E.
Souganidis in [58], and our limiting iterated minmax procedure fits into his general approx-
imation schemes. The virtue of the iterated minmax approximation, due to its geometric
property, is that it may provide us a geometric description of the viscosity solution.

As an application of the limiting iterated minmax method, let us consider the nonho-
mogeneous (H-J) equation

{

∂tu+H(∂xu) = G(t, x), t ∈ (0, T ]

u(0, x) = v(x), x ∈ Rd.
(2.12)

We may assume that H : Rd → R and G : [0, T ] × Rd → R are C2 with compact
supports. Our aim is to construct solutions of (2.12) from solutions of the homogeneous
(H-J) equation:

∂tu+H(∂xu) = 0, u(0, x) = v(x). (2.13)

Let E(t, s) : CLip(Rd) → CLip(Rd) denote the operator defined by

E(t, s)v(x) = v(x) + (t− s)G(s, x),

and J(t, s) : CLip(Rd) → CLip(Rd) denote the viscosity solution operator for

∂tu+H(∂xu) = 0, u(s, x) = v(x)

Theorem 2.54 ([44]). Suppose that G ∈ C1([0, T ] × Rd). Given a subdivision ζN = {0 =
t0 < t1 < · · · < tN = T} of [0, T ], let

uN (t, x) = J(t, ti−1)E(ti, ti−1)u(ti−1, ·)(x) + (t− ti)G(ti−1, x), for t ∈ [ti−1, ti]

and u(0, x) = v(x). Then

|ū(t, ·) − uN (t, ·)| ≤ K|ζN |, t ∈ [0, T ]

where ū(t, x) is the viscosity solution of (2.12).

The Theorem was given in [44] for more general H. In the following, we will try to
prove it using Theorem 2.53 and more properties of the minmax solutions. We denote by
RG(t, s), R(t, s) : CLip(Rd) → CLip(Rd) the minmax solution operators for

∂tu+H(∂xu) = G(t, x), u(s, x) = v(x) (2.14)

∂tu+H(∂xu) = 0, u(s, x) = v(x) (2.15)

respectively.



2.4. Iterated minmax and viscosity solution 49

Lemma 2.55. Suppose that w ∈ C1([0, T ] ×Rd), and v ∈ CLip(Rd), then for any 0 ≤ s <
t ≤ T ,

u(τ, x) := R(τ, s)v(x) − w(τ, x), τ ∈ [s, t]

is the minmax solution for the (H-J) equation

{

∂τu+H(∂xu+ ∂xw) = −∂τw, τ ∈ (s, t]
u(s, x) = v(x) − w(s, x).

(2.16)

Proof. First suppose v and w are C2, and denote ws := w(s, ·). Let Lu be the geometric
solution of (2.16), by definition, it is the Lagrangian submanifold in T ∗(R × Rd) which
contains the initial submanifold

Γ(us) = {(s, x,−H(∂xv) − ∂τws, ∂xv − ∂xws)}

and is contained in the hypersurface

{(τ, x, e, p)|e+ ∂τw +H(p+ ∂xw) = 0}

Denote Lw = {(τ, x, ∂τw, ∂xw)} the 1-graph corresponding to w. Let

Lu♯Lw := {(τ, x, e+ ∂τw, p+ ∂xw), (τ, x, e, p) ∈ Lu}

Then Lu♯Lw is also a Lagrangian submanifold in T ∗(R × Rd), and

Γ(v) = {(s, x,−H(∂xv), ∂xv)} ⊂ Lu♯Lw ⊂ {(τ, x, e′, p′)|e′ +H(p′) = 0}

Hence Lu♯Lw is the geometric solution of

{

∂τu+H(∂xu) = 0,
u(s, x) = v(x).

(2.17)

Note that w(t, x) is a generating family of Lw, if S(τ, x, η) is a GFQI of Lu, then

(S♯w)(τ, x, η) := S(τ, x, η) + w(τ, x)

is a GFQI for Lu♯Lw. Since the minmax does not depend on the choice GFQI, we get

R(τ, s)v(x) := inf max(S♯w)(τ, x, η) = inf maxS(τ, x, η) + w(τ, x)

Hence,
u(τ, x) := inf maxS(τ, x, η) = R(s, τ)v(x) − w(τ, x)

is the minmax solution of (2.16).
The result for v ∈ CLip and w ∈ C1 follows directly from the stability of minmax.

Lemma 2.56. Suppose that G ∈ C2
c ([0, T ] × Rd), and v, v′ ∈ CLip(Rd). For any 0 ≤ s <

t ≤ T , let
u(τ, x) = R(τ, s)E(t, s)v(x) + (τ − t)G(s, x), τ ∈ [s, t]

then
|u(τ, ·) −RG(τ, s)v′|C0 ≤ |v − v′|C0 + C|t− s||τ − s|, τ ∈ [s, t]

where C is a constant depending on H and G.
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Proof. By Lemma 2.55, u(τ, x) is the minmax solution of

{

∂τu+H(∂xu+ (t− τ)∂xG(s, x)) = G(s, x), τ ∈ (s, t]
u(s, x) = v(x).

(2.18)

Then, using the estimates 4) and 3) in Lemma 2.47 for v, v′ and H0(τ, x, y) := H(y) −
G(τ, x), H1(τ, x, y) := H(y + (t− τ)∂xG(s, x)) −G(s, x), we get

|u(τ, x) −RG(τ, s)v′(x)|

≤ |v − v′|C0 + |τ − s| max
τ∈[s,t]

|H(y) −G(τ, x) − (H(y + (t− τ)∂xG(s, x)) −G(s, x))|C0

≤ |v − v′|C0 + |τ − s| max
τ∈[s,t]

(‖∂xH‖‖∂xG‖|τ − t| + ‖∂tG‖|τ − s|)

≤ |v − v′|C0 + C|t− s||τ − s|.

where C = max{‖∂xH‖‖∂xG‖, ‖∂tG‖}.

Now given a sequence of subdivisions of [0, T ], let RGk (t, 0)v denote the related k-step
iterated minmax solutions for the (H-J) equation (2.12), and R̄G(t, 0)v be the limit of some
convergence subsequence of {RGk (t, 0)v(x)}k. Let Rk(t, s) be the related k-step iterated
minmax solution operator for the equation (2.15), and

R̄(t, s) : CLip(Rd) → CLip(Rd)

denote the limit operator of {Rk(t, s)}k which, by Theorem 2.53, is the viscosity solution
operator J(s, t) of the homogeneous equation.

For simplicity, given any N ∈ N, we take the subdivision of [0, T ] which divides it into
N equal pieces, denoting ti = (i/N)T , 0 ≤ i ≤ N . Then

uN (t, x) = R̄(t, ti−1)E(ti, ti−1)uN (ti−1, ·)(x) + (t− ti)G(ti−1, x), for t ∈ [ti−1, ti].

with uN (0, x) = v(x).

Proposition 2.57. Suppose that G ∈ C2
c ([0, T ] × Rd) and v ∈ CLip(Rd), then

|uN (t, ·) − R̄G(t, 0)v|C0 ≤
C

N
.

Proof. Let {t0 < t̄ < t1} be any 2-step subdivision of [t0, t1], and R2(t, t0), RG2 (t, t0) the
corresponding 2-step minmax operator. Define

u2(t, x) = R2(t, t0)E(t1, t0)v(x) + (t− t1)G(t0, x)

By Lemma 2.56, we have, for t ∈ [0, t̄],

|u2(t, ·) −RG(t, 0)v|C0 ≤ C|t− t0||t0 − t1|

In particular,

|u2(t̄, ·) −RG(t̄, 0)v|C0 ≤ C|t̄− t0||t0 − t1|.

For t ∈ [t̄, t1],

u2(t, x) = R(t, t̄)R(t̄, t0)E(t1, t0)v(x) + (t− t1)G(t0, x)
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by Lemma 2.55, it is the minmax solution of
{

∂tu+H(∂xu+ (t1 − t)∂xG(t0, x)) = G(t0, x), t ∈ (t̄, t1]

u(t̄, x) = R(t̄, t0)E(t1, t0)v(x) + (t̄− t1)G(t0, x) = u2(t̄, x)

Similar to Lemma 2.56, we can get

|u2(t, ·) −RG(t, t̄)RG(t̄, t0)v|C0 ≤ |u2(t̄, ·) −RG(t̄, t0)v|C0 + C|t− t̄||t0 − t1|

≤ C(|t̄− t0| + |t̄− t|)|t0 − t1|

≤ C|t− t0||t0 − t1|, t ∈ [t̄, t1]

Thus we have proved,

|u2(t, ·) −RG2 (t, t0)v|C0 ≤ C|t− t0||t0 − t1|, t ∈ [t0, t1]

By the same arguments, we can show that, for any k-step subdivision of [t0, t1],

|uk(t, ·) −RGk (t, t0)v|C0 ≤ C|t− t0||t0 − t1|, t ∈ [t0, t1]

where uk(t, x) := Rk(t, t0)E(t1, t0)v(x) + (t − t1)G(t0, x). Hence taking the limit with
respect to the convergent subsequence of {RGk (t, 0)v}k, we get

|uN (t, ·) − R̄G(t, t0)v|C0 ≤ C|t− t0||t0 − t1|, t ∈ [t0, t1]

In particular, we have

|uN (t1, ·) − R̄G(t1, t0)v|C0 ≤ C|t1 − t0|2 =
C

N2

For t ∈ [t1, t2],

|uN (t, ·) − R̄G(t, t0)v|C0 = |R̄(t, t1)E(t2, t1)uN (t1, ·)(x) + (t− t2)G(t1, x) − R̄G(t, t1)R̄G(t1, t0)v|C0

≤ |uN (t1, ·) − R̄G(t1, t0)v|C0 + C|t− t1||t1 − t2|

≤
C

N2
+

C

N2
= 2

C

N2
,

By induction, we conclude

|uN (t, ·) − R̄G(t, t0)v|C0 ≤
C

N
, t ∈ [0, T ]

Thus Theorem 2.54 is proved using again Theorem 2.53 which ensures that the limit
of iterated minmax R̄G(t, 0)v(x) is viscosity.

2.5 Equations of conservation law in dimension one

Consider the Cauchy problem of Hamiltonian-Jacobi equations, which are related to equa-
tions of conservation law, in dimension one:

(CL)

{

∂tu+H(∂xu) = 0, t ∈ (0, T ]
u(0, x) = v(x), x ∈ R

In the following, we assume that v : R → R is globally Lipschitz, and H : R → R is
locally Lipschitz. This allows defining the minmax solution operator by first truncating
H outside a neighborhood of K := {y : |y| ≤ Lip v} so that H has compact support (recall
that the minmax so obtained is independant of the truncation). In the sequel, H denotes
the truncated Hamiltonian.
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Lemma 2.58. The minmax solution operator Rs,tH : CLip(R) → CLip(R) for the (CL)
equation is defined by

Rs,tH v(x) := inf
σ

max
(x0,y0)∈σ

(

v(x0) − (t− s)H(y0) + (x− x0)y0

)

,

Proof. First suppose that H ∈ C2, then the Hamiltonian flow of H is:

ϕs,t(x0, y0) = (x0 + (t− s)H ′(y0), y0)

It admits a generating function φs,t(x, y0) = −(t − s)H(y0), thus a generating family
ϕs,t(∂v) is given by

S(x, x0, y0) = v(x0) − (t− s)H(y0) + (x− x0)y0

In general when H is Lipschitz, S is also well-defined, and so is the minmax.

It is worth noticing that since H does not depend on t, the minmax operator Rs,tH could
be written as Rt−sH , which depends only on the length of passing time t− s.

For H depending only on p, the estimates for the minmax operator in Lemma 2.47 can
be simplified. In particular, we remark that the Lipschitz constant of the minmax solution
is always bounded by that of the initial function. We summarize them in the following.

Proposition 2.59. Assume that H : R → R is locally Lipschitz and v ∈ CLip(R),

1) The Lipschitz constant satisfies ‖∂(Rs,tH v)‖ ≤ ‖∂v‖;

2) For t1, t2 ≥ 0,

|Rs,t1H v(x) −Rs,t2H v(x)| ≤ |t1 − t2||H|{|p|≤‖∂v‖}.

3) Let H0 and H1 be two Hamiltonians, then

|Rs,tH0v −Rs,tH1v|C0 ≤ |t− s||H0 −H1|{|p|≤‖∂v‖}.

4) If v0, v1 ∈ CLip(R) and K is a compact set in R, then

|Rs,tH v
0 −Rs,tH v

1|K ≤ |v0 − v1|K̃ .

Lemma 2.60. Suppose that t > 0, and O ⊂ R is an open subset. If for every ǫ > 0,
there exists s ∈ (0, ǫ) such that Rτs ◦ Rs0v(x) is a viscosity solution of the (CL) equation
for (τ, x) ∈ (s, t) × O, then Rτ0v(x) is also a viscosity solution for (τ, x) ∈ (0, t) × O.

Proof. We will apply the standard argument for the stability of viscosity solutions. Let
sn > 0 be a sequence of decreasing numbers such that sn → 0, denote

un(τ, x) := Rτsn
◦Rsn

0 v(x), (τ, x) ∈ Osn := (sn, t) × O

and u(τ, x) := Rτ0v(x).
Given any ȳ := (τ̄ , x̄) ∈ O0, let ψ ∈ C1(Oτ̄ /2) and u − ψ attain a local maximum at

(τ̄ , x̄). Take ψ̃ ∈ C1(Oτ̄/2) such that 0 ≤ ψ̃ < 1 if (τ, x) =: y 6= ȳ and ψ̃(ȳ) = 1. Then

u − (ψ − ψ̃) attains a strict local maximum at ȳ. For n large enough, un is well-defined
in Oτ̄/2, and by 4) in Proposition 2.59, un → u on Oτ̄/2, thus there exists yn ∈ Oτ̄ /2 such
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that un − (ψ − ψ̃) attains a local maximum at yn and yn → ȳ. By assumption, un are
viscosity solutions, hence

∂t(ψ − ψ̃)(yn) +H(∂x(ψ − ψ̃)(yn)) ≤ 0

and we conclude that
∂tψ(ȳ) +H(∂xψ(ȳ)) ≤ 0

since dψ̃(ȳ) = (∂tψ̃, ∂xψ̃)(ȳ) = 0. Thus we have proved that u is a viscosity subsolution.
Similarly, we can prove that it is a viscosity supersolution, hence a viscosity solution.

2.5.1 Hopf formula for convex initial functions

We recall that, if the Hamiltonian H(p) is convex or concave, the viscosity solution is
given by the so-called Hopf formula ( ref. Example 2.34). In the literature, there is also
another version of Hopf formula related to convex or concave initial functions.

In the following, we say f : R → R is a convex function if

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), λ ∈ [0, 1].

We dot not require f to be C2 with positively definite Hessian (i.e. strictly convex).
Denote

f∗ : R → R = R ∪ {+∞}, f∗(x) := sup
y

(xy − f(y))

the convex conjugate of any extended function f : R → R not necessarily convex. This
is a generalization of the Legendre transform which is usually defined for strictly convex
functions.

Remark 2.61. The convention of adding +∞ to the image domain of f∗ reduces the task
of discussing dom(f∗) = {x : f∗(x) < ∞}. Indeed, if f is a Lipschitz function, one can
show that

dom(f∗) = {y : ∃x, y ∈ ∂f(x)}

See for example [61]. In particular, if f is globally Lipschitz, then dom(f∗) ⊂ {y : |y| ≤
Lip(f)}. On the contrary, in the classical Legendre transform, dom(f∗) = Rd.

Given H ∈ C(R), for any convex initial function v ∈ CLip(R), the Hopf formula for
the (CL) equation is

u(t, x) = (v∗ + tH)∗(x) = max
y0

(xy0 − (v∗(y0) + tH(y0)))

Proposition 2.62 (Proposition 1,[49]). If v is convex, the Hopf formula defines a function
which coincides with the viscosity solution of the (CL) equation .

As before, we denote the viscosity solution by J t0v(x), hence

J t0v(x) = max
y0

(xy0 − (v∗(y0) + tH(y0)))

Remark 2.63. One can also define the concave conjugate for extended functions f : R →
R ∪ {−∞} by

f∗(x) = inf
y

(xy − f(y)).

It possesses properties similar to those of the convex conjugate. Especially, f∗∗ = f⌢ is
the upper concave envelop provided f is upper semi-continuous.
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Lemma 2.64 ([61]). Let v : R → R be a convex Lipschitz function, and v∗ : R → R be its
convex conjugate, then

y ∈ ∂v(x) ⇐⇒ v∗(y) = xy − v(x) ⇐⇒ x ∈ ∂v∗(y).

Proof. Since v is convex, its generalized derivative ∂v(x) is the usual sub derivative,

∂v(x) = {y : ∀x′, v(x′) ≥ v(x) + y(x′ − x)}

= {y : ∀x′, xy − v(x) ≥ x′y − v(x′)}.

We conclude by the definition of the convex conjugate v∗(y) = maxx′ x′y− v(x′). Replace
v by v∗ in the above argument, we get that x ∈ ∂v∗(y) if and only if v(x) = xy−v∗(y).

Recall that the wavefront of v is defined by

F t = F t(v) := {(x, St(x, x0, y0))|y0 ∈ ∂v(x0), x ∈ x0 + t∂H(y0)}.

Lemma 2.65. If v is a convex Lipschitz function, we have the relation

Rt0v(x) ≤ max{u : (x, u) ∈ F t(v)} ≤ J t0v(x).

Proof. Recall that a generating family for the minmax is given by

St(x, x0, y0) = v(x0) + xy0 − tH(y0) − x0y0

= (v(x0) − x0y0) + xy0 − tH(y0).

By lemma 2.64
y0 ∈ ∂v(x0) ⇔ v∗(y0) = x0y0 − v(x0),

hence
F t(v) ⊂ {(x, u) : u = xy0 − v∗(y0) − x0y0}.

The second inequatlity then follows from the Hopf formula.
Since the minmax is a critical value for the map (x0, y0) 7→ St(x, x0, y0), the graph of

Rt0(v) is contained in F t(v), hence the first inequality.

In the following, we will show in a concrete way that the minmax and the viscosity
solution for a convex initial function are indeed the same.

Let us consider the (linear) Riemann problem, which has initial functions of the form

v(x) =

{

p−x, x ≤ 0,

p+x, x ≥ 0.

There are two possibilities: if p− < p+, then v is convex; if p− > p+, v is concave. We
take for example the convex case. Note that v∗ = 0 in dom(v∗) = [p−, p+]. Let

Hv(p) =

{

H(p), p ∈ dom(v∗),

∞, otherwise.

Denote the lower convex envelope of Hv by H⌣
v ,

H⌣
v (p) = H∗∗

v (p) =

{

(H|dom(v∗))
∗∗(p), p ∈ dom(v∗),

∞, otherwise,

where
(H|dom(v∗))

∗∗(p) = sup{h(p)|h ≤ H, h convex on dom(v∗)}

is the lower convex envelop of H on dom(v∗).
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Lemma 2.66. For the Riemann problem with convex initial value v, we have

J t0v(x) = J0,t
H⌣

v
v(x) = (tH⌣

v )∗(x).

Proof.

J t0v(x) = (v∗ + tH)∗(x) = max
y0∈dom(v∗)

(xy0 − v∗(y0) − tH(y0))

= max
y0∈dom(v∗)

(xy0 − tH(y0)) = max
y0

(xy0 − tHv(y0))

= (tHv)
∗(x) = tH∗

v (
x

t
) = tH∗∗∗

v (
x

t
)

= (tH∗∗
v )∗(x) = (tH⌣

v )∗(x)

Now we can give an explicit description of the viscosity solution of the Riemann prob-
lem, with piecewise linear Hamiltonian H.

By breakpoints of a piecewise linear function, we refer to the points where the function
is not C1.

Lemma 2.67 ([30]). For the Riemann problem with H piecewise linear such that (H|[p−,p+])
⌣

(resp. the concave envelop (H|[p+,p−])
⌢) in has m breakpoints in (p−, p+) (resp.(p+, p−)),

then the viscosity solution J t0v(x) has m + 1 shocks 4 with constant speed originated from
the origin.

Proof. We take the case where p− < p+ for example. Let p1 < p2 < · · · < pm denote the
break points of (H|[p−,p+])

⌣ in (p−, p+), and p0 = p−, pm+1 = p+. Set

si =
H(pi+1) −H(pi)

pi+1 − pi
, 0 ≤ i ≤ m

Since H⌣ is convex, we have si < si+1.

J t0v(x) = max
y0∈[p−,p+]

(xy0 − tH⌣(y0)) = max
0≤i≤m

max
y0∈[pi,pi+1]

(x− tsi)y0 + t(sipi −H(pi))

An easy calculation gives us that

J t0v(x) =















xp0 − tH(p0), x ≤ ts0

xpi+1 − tH(pi+1), x ∈ [tsi, tsi+1], 0 ≤ i ≤ m− 1

xpm+1 − tH(pm+1), x ≥ tsm

Hence J t0v(x) has m+ 1 shocks χi(t) = tsi.

Remark 2.68. We remark that, by the use of convex (resp. concave) envelope of H, it
follows directly that, at each shock χi(t) of the viscosity solution J t0v(x), with the jump
of derivatives pi, pi+1, the graph of H between pi and pi+1 lies above (resp. below) the
segment joining (pi, H(pi)) and (pi+1, H(pi+1)). This is called the entropy condition for
viscosity solutions, see Theorem 2.76 in the next section.

4. See the beginning of the section 2.5.2 for a precise definition of shock.
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Now we are willing to investigate the minmax solution under the same hypotheses. We
first give a profile for the wave front. Recall that the generating family is given by

St(x, x0, y0) = v(x0) + xy0 − tH(y0) − x0y0

and the wave front at time t is

F t = F t(v) := {(x, St(x, x0, y0))|y0 ∈ ∂v(x0), x ∈ x0 + t∂H(y0)}

For any subset A ⊂ R, define

F t
A := F t|{x0∈A} = {(x, St(x, x0, y0)) ∈ F t, x0 ∈ A}

We claim that the wave front F t for ϕtH(∂v) with v and H piecewise linear (with finite
pieces) is formed by pieces of straight line segments. Indeed,

1) F t
+ := F t

{x0>0} and F t
− := F t

{x0<0} are two lines with slope p+ and p− respectively.

Take the case x0 < 0 for example, one has y0 = v′(x0) = p−, and

F t
x0

= {z(x0, y) = (x0 + ty, v(x0) + t(yp− −H(p−))) : y ∈ ∂H(p−)}.

then for any x0, x
′
0 < 0, y, y′ ∈ ∂H(p−), the chord connecting z(x0, y) and z(x′

0, y
′) is of

slope p− .

2) Without loss of generality, we assume that p− = p′
0 < · · · < p′

k = p+ (or p+ = p′
0 <

· · · < p′
k = p−)are the breakpoints of H between p− and p+. Then F t

0 = F t|{x0=0} consists
of k line segments with slope p′

i which corresponds to the breakpoint p′
i. This can be seen

from the formula

F t
0 = {z(y, p) = (ty, t(yp−H(p))) : p ∈ [p+, p−], y ∈ ∂H(p)}.

If p+, p− are not breakpoints of H, then F t
0 loses two line segments of slopes p+ and p−,

but the whole wave front F t does not change in the presence of the two segments F t
− and

F t
+.

Lemma 2.69. For the Riemann problem with piecewise linear Hamiltonian, if the graph
of H between p− and p+ lies above (resp. below) the segment joining (p−, H(p−)) and
(p+, H(p+)) assuming p− < p+ (resp. p− > p+), then F t

0 lies below (resp. above) the
graph of the viscosity solution J t0v(x) in the wave front.

Proof. We will prove the case where p− < p+, while the other is similar. Remark that
the hypothesis is equivalent to saying that (H|[p−,p+])

⌣ have no breakpoint in (p−, p+).
For convenience, we may assume that p± are not breakpoints of H. The viscosity solution
J t0v(x) has a shock χ(t) which F t

− and F t
+ intersect,

χ(t) =
H(p−) −H(p+)

p− − p+
t = x−(t) + tH ′(p−) = x+(t) + tH ′(p+)

for some x−(t) < 0 and x+(t) > 0. By the description of the formation of F t before, it is
sufficient to show that, at x = χ(t), F t

0 lies below (χ(t), p−x−(t) + t(p−H
′(p−) −H(p−))).

The points in F t
0 are given by (ty, t(yp − H(p))) with y ∈ ∂H(p) and p breakpoint of H

in (p−, p+). Let ty = χ(t) = x−(t) + tH ′(p−),

t(yp−H(p)) − (p−x−(t) + t(p−H
′(p−) −H(p−)))

= t(yp−H(p)) − t(yp−H(p−))

= t(p− p−)(y −
H(p) −H(p−)

p− p−
) ≤ 0
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where the inequality comes from y = H(p−)−H(p+)
p−−p+

and the hypothesis on the graph of H.

Hence the F t
0 lies below the graph of J t0v(x). In particular, they can intersect only at

χ(t).

Example 2.70. The following two figures illustrate the wave front relate to the cases
where (H|[p−,p+])

⌣ has one breakpoint (Figure 2.1) and no breakpoint in (p−, p+) (Figure
2.2) respectively. The viscosity solutions are the maximum in the wave front.

H

p′
4

p+p
−

p′
2

p′
3p′

1

p′
0

p′
0 p′

1 p′
2 p′

3 p′
4

H⌣

p1

V1 V2

F t

Figure 2.1: wave front

H

H⌣

F t

p
− p+

Figure 2.2: wave front

Definition 2.71. We say that a ∈ R admits a descending (resp.ascending) cycle if there
is a descending (resp.ascending) cycle σ along which a is the maximum (resp.minimum)
of the generating function S.

Lemma 2.72. If a ∈ R admits at the same time a descending cycle and an ascending
cycle, then a is both the minmax and maxmin value.

Proof. By definition, it is easy to see that inf maxS ≤ a ≤ sup minS. The inverse
inequality follows from the fact that a descending cycle and an ascending cycle must
intersect.

Proposition 2.73. For the Riemann problem with piecewise linear Hamiltonian, the min-
max solution Rt0v(x) coincides with the viscosity solution.
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Proof. We first remark that for an arbitrary initial function, the minmax and the viscosity
solution may differ immediately.

Consider the Riemann problem with initial value v(x) = p−x, x ≤ 0, v(x) = p+x, x >
0, with p− < p+. It is sufficient to prove that Rt0v(x) is piecewise linear and has m + 1

shocks χi(t) = tsi, 0 ≤ i ≤ m, where si = H(pi+1)−H(pi)
pi+1−pi

, with p− = p0 < · · · < pm+1 = p+

the breakpoints of the convex envelope (H|[p−,p+])
⌣.

For a fixed time t, let Vi, 0 ≤ i ≤ m, be the intersection point of the line segments
corresponding to pi and pi+1 in the wave front F t

Vi = (tsi, t(sipi −H(pi))) = (tsi, t(sipi+1 −H(pi+1))).

We want to show that the minmax Rt0v(x) is selected from FT with the segments
ViVi+1, 0 ≤ i ≤ m− 1,

ViVi+1 = {(ts, t(spi+1 −H(pi+1))) : sbetween si and si+1}.

Fix any i, 0 ≤ i ≤ m− 1, denote csi := t(spi+1 −H(pi+1)). We claim that (ts, csi ) admits
a descending simplex, i.e. there exists a descending simplex σsi such that

max
z0∈σs

i

St(ts, z0) = csi .

Write explicitly

St(ts, z0) − csi = p+x0 − tH(y0) + (ts− x0)y0 − t(spi+1 −H(pi+1))

= x0(p+ − y0) + tAi+1,s(y0), if x0 ≥ 0.

St(ts, z0) − csi = x0(p− − y0) + tAi+1,s(y0), if x0 ≤ 0.

where

Ai+1,s(y0) :=







(y0 − pi+1)
(

s− H(y0)−H(pi+1)
y0−pi+1

)

, for y0 6= pi+1,

0, otherwise.

By the convexity of (H|[p−,p+])
⌣, we get

Ai+1,s(y0) ≤ 0, y0 ∈ [p−, p+], sbetween si and si+1.

Note that the minmax and maxmin depend on the Hamiltonian H only on the compact
set [p−, p+]. For each fixed i, we can modify H outside [p−, p+] by requiring

H(y0) −H(pi+1)

y0 − pi+1
=







H(p−)−H(pi+1)
p−−pi+1

, y0 ≤ p−

H(p+)−H(pi+1)
p+−pi+1

, y0 ≥ p+

so that

Ai+1,s(y0) ≤ 0, ∀y0 ∈ R

We construct a descending simplex σsi = (x0(y0), y0) as follows:

x0(y0) =







tAi+1,s(y0)
y0−p−

+ θ(y0), y0 ∈ [pi+1,∞),
tAi+1,s(y0)
y0−p+

− θ(y0), y0 ∈ (−∞, pi+1]
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where θ : R → R is a non negative continuous function, with

θ(y0) =

{

0, y0 ∈ [p−, p+]

|y0|, |y0| ≥ C

with C > 0 a large constant. One sees that σsi is a descending simplex since the first term
in x0(y0) is bounded, thus

lim
|y0|→∞

|y0|−1((x0(y0), y0) − (y0, y0)) = 0

Furthermore,

bsi (y0) := St(ts, (x0(y0), y0)) − csi = 0, if y0 ∈ [p−, p+]

For y0 ∈ (p+,∞), the first term in x0(y0) is negative, one can verify that bsi (y0) is negative
both in the cases where x0(y0) ≤ 0 and x0(y0) ≥ 0. Similarly, we can show that bsi (y0) ≤ 0
for y0 ∈ (−∞, p−). Therefore csi admits σsi as a descending simplex.

On the other hand, replacing θ by −θ will give us an ascending simplex for csi , i.e.
bsi (y0) ≥ 0, with equality for y0 ∈ [p−, p+]. Hence csi is at the same time a minmax and
maxmin value by Lemma 2.72.

For the case where p− > p+, that is, when v is concave, we should take the concave
envelop (H|[p+,p+])

⌢ and the proof is similar.

Now suppose that v is piecewise linear continuous (with finite pieces). Thanks to
its local nature 5 and semi-group property, one can construct the corresponding viscosity
solution by viewing v as a combination of local Riemann initial data and chasing the
interactions between the shocks of the corresponding local Riemann problems. This is the
so-called front tracking method, which was first proposed by C.Dafermos ([30]).It consists
in the following inductive procedure: every time there are collisions between the shocks,
that is, the shocks of different local Riemann problems meet, we restart by considering
the result state as a new initial function and propagate until the next time of collision.
In the presence of finite propagating speed of characteristics, the number of shocks of the
consequent solution will never blow up (ref. Lemma 2.6,[40]).

Proposition 2.74. Assume that v(x) is a convex piecewise linear continuous function
with a finite number of discontinuities of dv(x), and H is a piecewise linear continuous
function with a finite number of breakpoints in {|p| ≤ ‖∂v‖}. Then the minmax Rt0v(x)
coincides with the viscosity solution.

Proof. It is enough prove that for any s > 0 small enough, Rts ◦ Rs0v(x) is the viscosity
solution for any t > s, then by Lemma 2.60, Rt0v(x) is the viscosity solution. Let s > 0
be small enough such that Rs0v(x) = Js0v(x). This is possible since for s > 0 small, we
can get Rs0v(x) and Js0v(x) as a combination of local Riemann problems 6 where they are
equal by Proposition 2.73. Denote by vs = Rs0v, G(t) = Gr(J t0v) the graph of J t0v and
F̊(t) = F t−s(vs) \G(t). According to lemma 2.65,

J t0v(x) = J tsvs(x) ≥ max{u : (x, u) ∈ F t−s(vs)},

5. By the definition of the viscosity solution, if {Ui}i is an open cover of (0, +∞) × R, and every
restriction u|Ui

is a viscosity solution, then u is a viscosity solution. In particular, for a piecewise C1

function u to be viscosity, it is enough that its shocks, that is, the places where it is not differentiable,
verify the condition to be viscosity.

6. The local property of the minmax means that the value Rt
0v(x) depends on the restriction of v to a

neighbourhood of the set {x0 : |x − x0| ≤ t‖∂H‖}.
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x1 x2 x5

T1

T2

χ1(t)

χ2(t)

χ3(t)

χ4(t)

χ5(t)

x

t

Figure 2.3: Front tracking (collision of shocks)

that is F̊(t) lies below G(t) for all t > s. We claim that, for t > s, G(t) ⊂ F t−s(vs)
and cl(F̊(t)) ∩ G(t) ⊂ I(t) where cl denotes the closure of a set, and I(t) := {Xi(t) :=
(χi(t), J

t
0(χi(t)))} with i runs through all the discontinuities of the derivatives of J t0v at

time t.
Let xi, 1 ≤ i ≤ n, be the breakpoints of vs; by the hypothesis of convexity of v, the

p±
i := v′

s(xi±) satisfy p−
i ≤ p+

i = p−
i+1 < p+

i+1. Let ui(s, t)(x) be the viscosity solution of
the local Riemann problem with initial value vi(x) = vs(x), xi−1 ≤ x ≤ xi+1. By Remark
2.68, (H|[p−

i
,p+

i
])
⌣ has no breakpoints in (p−

i , p
+
i ), thus each ui has a shock χi(t), and

consist of two lines with slope p±
i for t > s. For t ∈ (0, T1) where T1 is the first time there

are collisions of shocks, J t0v(x) = J tsvs(x) is given by ui(s, t)(x) for χi−1(t) ≤ x ≤ χi+1(t).
Hence G(t) ⊂ F t−s(vs) for t ∈ (s, T1].

If χj(t) and χj+1(t) be two adjacent shocks colliding at T1, that is,

χj(s) < χj+1(s), χ̇j(t) > χ̇j+1(t), andχj(t) < χj+1(t) for t ∈ (s, T1), χj(T1) = χj+1(T1).

Since

χ̇j+1(t) =
H(p+

j+1) −H(p−
j+1)

p+
j+1 − p−

j+1

< χ̇j =
H(p+

j ) −H(p−
j )

p+
j − p−

j

and (H|[pk
−
,pk

+])
⌣ has no breakpoints in (pk−, p

k
+), k = j, j + 1, we get that (H|

[pj
−
,pj+1

+ ]
)⌣

has no breakpoints in (pj−, p
j+1
+ ). Hence for t ∈ (T1, T2), x ∈ [χj−1(t), χj+1(t)], where

T2 is second time of collisions of shocks of J t0v(x), J t0v(x) is given by the left branch of
uj(s, t) and the right branch of uj+1(s, t), whose intersection generates a new shock χ̃(t),
while the original shocks χj and χj+1 disappear (see figure 2.4). Thus G(t) ⊂ F t−s(vs) for
t ∈ (T1, T2]. The cases where there are more than two shocks collide at the same time can
be argued similarly. In this way, we can prove that, for t > s, G(t) ⊂ F t−s(vs). We remark
that the number of elements in I(t) decrease whenever there is collision of shocks. The
claim that cl(F̊(t)) ∩G(t) ⊂ I(t) follows from the fact that every F t−s

χi(s)
(vs) lies below the

graph of uk(s, t) with possible intersection only at χi(t) and the line segments in F t−s
χi(s)

(vs)

has slopes between [p−
i , p

+
i ] thus can not intersect the graph of uk(s, t) for k 6= i by the

convexity of vs.
Let t0 = max{t : Rtsvs(x) = J t0(x), ∀x}. Using again the local property of the minmax

and viscosity solution, there exists some ǫ > 0 such that t0 > s + ǫ. If t0 < +∞, then
Rt0+
s vs = limt↓t0 R

t
svs contains a curve of positive length in cl(F̊(t0)) connecting some
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Xi(t0) and Xi′(t0). Indeed, since cl(F̊(t)) contains a finite number of line segments whose
slopes are fixed for all t, a curve connecting Xi(t) and X ′

i(t) can not deform continuously
to the line in G(t0) connecting Xi(t0) and X ′

i(t0) as t ↓ t0. Therefore Rt0s vs 6= Rt0+
s vs,

which contradicts the continuity of the minmax with respect to time. Thus we complete
the proof that Rtsvs(x) = J t0v(x) for any s > 0 small enough.

uj(s, t)uj(s, t)uj(s, t)

uj+1(s, t)

t = s t ∈ (s, T1) t = T1 t > T1

Figure 2.4

Theorem 2.75. If v is convex or concave and globally Lipschitz and H continuous, then
the minmax solution Rt0v(x) coincides with the viscosity solution of the (CL) equation .

Proof. For any compact subset K ⊂ R, fixed once for all, we can modify H and v so
that H vanishes outside a neighborhood of K := {|p| ≤ ‖∂v‖} and v is linear outside
K̃ = {|x0 − x| ≤ T‖∂H‖,∀x ∈ K}. For k ∈ N, take piecewise linear interpolations vk and
Hk for v and H such that

|v − vk|C0 ≤ 1/k, |H −Hk|C0 ≤ 1/k

From Proposition 2.74, for x ∈ K, we have RtHk
vk(x) = J tHk

vk(x). Hence by the
continuity property of the minmax and viscosity solution, we get that RtHv(x) = J tHv(x).

2.5.2 Singularities of viscosity solution

In this section, we will investigate the difference between the minmax and the viscosity
solution for nonconvex Hamiltonians and initial functions. We shall see how the limit of
minmax serves to describe the singularities of the viscosity solution.

Assume that O ⊂ (0,∞) × R is an open set, u ∈ C(O), and that there is a C1 curve
t → x = χ(t), t ∈ (t1, t2) dividing O into two open subsets O+ and O−, O = O+ ∪χ∪O−.
If u ∈ C(O) and u = u+ in O+ ∪ χ, u = u− in O− ∪ χ, where u± ∈ C1(O± ∪ χ),
u−|χ 6= u+|χ, we say that χ is a shock curve of u in the neighborhood O.

The viscosity solution of the (CL) equation in one space variable is characterized
equivalently by Oleinik’s entropy condition:

Theorem 2.76 (Entropy condition,[46]). Let u ∈ C(O) and u = u+ in O+ ∪ χ, u = u−

in O− ∪χ, where u± ∈ C1(O± ∪χ). Then u is the viscosity solution of the equation (CL)
in O if and only if:
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1. u± are classical solutions in O± respectively,

2. The graph of H lies below (resp. above) the line segment joining the points (p−
t , H(p−

t ))
and (p+

t , H(p+
t )) if p+

t < p−
t (resp. p−

t < p+
t ), where p±

t := ∂xu
±(t, χ(t)).

p
+

t
p

−

t

H(p)H(p)H(p) H(p)

p
−

t p
+

t

Figure 2.5: Entropy condition

In particular, we say that χ(t) strictly verifies the entropy condition if it verifies the
entropy condition and the line segment joining (p−

t , H(p−
t )) and (p+

t , H(p+
t )) is not tangent

to the graph of H.

Remark 2.77. 1. The entropy condition is a local nonlinear version of the linear Rie-
mann problem given in the above section, where we choose the convex or concave
envelop of H, depending on the convexity of the initial function, to construct the
viscosity solution.

2. Equivalently, the entropy condition can be described, for example, when p+
t < p−

t ,
as

H(w) −H(p−
t )

w − p−
t

≥
H(p+

t ) −H(p−
t )

p+
t − p−

t

(= χ̇(t)), (2.19)

or
H(w) −H(p+

t )

w − p+
t

≤
H(p+

t ) −H(p−
t )

p+
t − p−

t

(2.20)

for any w between p+
t and p−

t , The “=” between brackets refers to the Rankine-
Hugoniot condition which is a necessary condition for u to be a weak solution in
distribution sense.

The formation of singularities of the viscosity solution of the (CL) equation are well
studied, for example, in [46, 43]. If H and v are smooth, before a critical time t0 > 0,
the wave fronts are single-valued, and a classical smooth solution exists, given by the
wave fronts. Beyond t0, the viscosity solution has discontinuities in the derivatives. One
may assume that only finitely many shocks of the viscosity solution are generated under
some generic conditions on v and H, for example H having finitely many critical points
and inflection points. Then, in the spirit of front tracking method, one can continue the
viscosity solution further by constructing at subsequent time the solutions of all possible
local Riemann problems:

{

∂tu+H(∂xu) = 0, (t, x) ∈ (t̄, t̄+ ǫ) × (x̄− δ, x̄+ δ),

u(t̄, x) = v̄(x).
(2.21)
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where v̄ ∈ C∞((x̄− δ, x̄+ δ) \ {x̄}) ∩C((x̄− δ, x̄+ δ)) for ǫ, δ > 0 sufficiently small. Here v̄′

is assumed to be discontinuous only at the point x̄ across which the viscosity criterion is
satisfied; one also assume that F t

+ := F t
{x0>x̄}(v̄) and F t

− := F t
{x0<x̄}(v̄) are single-valued.

Denote u±(t, ·) the functions whose graphs define F t
±.

Following G.T.Kossioris in [46], the shock curves of the viscosity solutions are either
genuine shocks or contact discontinuities. The genuine shock curves are determined by the
intersection of F t

+ and F t
−. Due to the presence of inflection points of H, F t

± may have
no common point. In that case, the viscosity solution is constructed by jointing u+ and
u− with a rarefaction-wave type solution. There are rarefaction waves which are carried
by the characteristic lines originating tangentially from the contact discontinuity and not
the initial axis. See Figure 2.6.

Figure 2.6

Now let us investigate the relation of the minmax solution and the viscosity solution for
the local Riemann problem (2.21). If the shocks of the minmax Rt0v̄(x) satisfy the entropy
condition, then by Theorem 2.76, it is the viscosity solution. We will give a criterion for
this to happen. It is a local nonlinear version of Lemma 2.69.

If F t
+ and F t

− intersects, suppose that χ(t) = u±(t, x±
t ), where x+

t > x̄ and x−
t < x̄ for

t > 0 and denote p±
t := ∂xu

±(t, χ(t)). We say that the C1 curve χ(t) (strictly) verifies the
entropy condition if (2) in Theorem 2.76 (strictly) holds.

Proposition 2.78. For the local Riemann problem (2.21), if the curve χ(t) given by the
intersection of F t

± strictly verifies the entropy condition, then Rt0v̄(x) coincides with the
viscosity solution.

Proof. It follows directly from Theorem 2.76 that the viscosity solution u is composed by
u± and that χ(t) is a shock of u. We assume that p+

0 < p−
0 , the other case being similar.

The wave front is F t = F t
± ∪ F t

x̄, where :

F t
x̄ = {z(p) =

(

x̄+ tH ′(p), v̄(x̄) + t(pH ′(p) −H(p))
)

, p ∈ [p+
0 , p

−
0 ]}. (2.22)

We claim that F t
x̄ does not interfere in the selection of the minmax solution Rt0v̄(x) for

(t, x) ∈ O := (0, ǫ)× (x̄−δ, x̄+δ), ǫ, δ > 0 sufficiently small. For this purpose, it is enough
to show that there is no point in F t

x̄ lying below the shock (χ(t), u(t, χ(t))), where

χ(t) = x±
t + tH ′(p±

t ),

u(t, χ(t)) = u±(0, x±
t ) + t(p±

t H
′(p±

t ) −H(p±
t ))
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Suppose t 7→ αt ∈ [p+
0 , p

−
0 ] is a C1 function of t such that

z(αt) = (x̄+ tH ′(αt), v(x̄) + t(αtH ′(αt) −H(αt))) ∈ F t
x̄ ∩ {x = χ(t)},

Define

A(t) = (u−(0, x−
t ) + t(p−

t H
′(p−

t ) −H(p−
t ))) − (u(0, x̄) + t(αtH ′(αt) −H(αt))).

then A(0) = 0. Note that ∂xu
−(0, x−

t ) = ∂xu
−(t, χ(t)) because they lie in the same

characteristics,

Ȧ(t) = p−
t ẋ

−
t + p−

t H
′(p−

t ) −H(p−
t ) − αtH

′(αt) +H(αt) + t(p−
t H

′′(p−
t )ṗ−

t − αtH
′′(αt)α̇t)

= p−
t (χ̇(t) −H ′(p−

t ) − tH ′′(p−
t )ṗ−

t ) + p−
t H

′(p−
t ) −H(p−

t ) − αtH
′(αt) +H(αt)

+t(p−
t H

′′(p−
t )ṗ−

t + αt(H ′(αt) − χ̇(t)))

= (p−
t − αt)(χ̇(t) −

H(αt) −H(p−
t )

αt − p−
t

).

If χ(t) strictly verifies the entropy condition, then we have α0 := limt>0,t→0 αt < p−
0 .

Indeed, if α0 = p−
0 , then

χ̇(0) := lim
t>0,t→0

χ̇(t) = lim
t>0,t→0

H ′(αt) + tH ′′(αt)α̇t = H ′(α0) = H ′(p−
0 )

which means that the shock χ does not strictly verify the entropy condition. Therefore,
for sufficiently small time t, we can assume that αt < p−

t , then by the entropy condition
(2.19), we get Ȧ(t) < 0, hence A(t) < 0. Now the only way to select a continuous section
in F t is choosing the two branches u± with the shock χ(t). Since the graph of the minmax
solution {(x,Rt0v̄(x))} is a continuous section in F t, we get

Rt0v̄(x) =

{

u+(t, x), (t, x) ∈ O+ ∪ χ

u−(t, x), (t, x) ∈ O− ∪ χ

Remark 2.79. With generic assumptions on H and v, the hypothesis of Proposition 2.78
is true for a small time after the first critical time t0, until another critical time tα > t0,
see [46, 43].

Example 2.80. If H is convex (resp. concave), then in the wave front F t, F t
x̄ always lie

above (resp. below) F t
±, hence the min (resp. max) solution is the viscosity solution. See

Figure 2.7.

H
Ft

x̄

x̄

v

Figure 2.7
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H
Ft

x̄

x̄

v

Figure 2.8

Example 2.81. If H is non convex, but the intersection χ(t) of F t
± strictly satisfies the

entropy condition, the configuration of the wave front are depicted in Figure 2.8.

Now we turn to the case that the minmax has a shock χ(t) which do not satisfy the
entropy condition. We will use the Theorem 2.53 to show that, the viscosity solution
will have contact type shock and the mysterious rarefaction waves are emitting from the
singularities of the minmax iterated step by step through the limiting process.

Let χ(t) be a C1 shock of Rt0v̄(x) of the local Riemann problem (2.21), and χ(t) violates
the entropy condition. In this case, χ(t) can not be the intersection of F t

±(v̄), otherwise
the minmax Rt0v̄(x) will form a semi-group with respect to t, and by Proposition 2.44, it
is viscosity.

Given a subdivision {ζn} of (0, ǫ), where ζn = {0 = t0 < t
(n)
1 < · · · < t

(n)
n = ǫ}, let

χn(t) be a continuous, piecewise C1 shock of the related iterated n-step minmax un(t, x) :=
Rt0,nv̄(x). Denote p±

t := ∂xun(t, χn(t)±) and ukn(x) = un(t(n)
k , x). By Lemma 2.60, for |ζn|

small enough, there is violation of the entropy condition for the iterated minmax: for

t ∈ (t(n)
k , t

(n)
k+1], χn(t) are constructed by the intersection of two branches of F t−t

(n)
k (ukn),

one of which comes from F
t−t

(n)
k

χn(t
(n)
k

)
(ukn). Assuming that this branch lies in the left of χn(t),

then

χn(t) = χn(t(n)
k ) + (t− t

(n)
k )H ′(p−

t ), t ∈ (t(n)
k , t

(n)
k+1]

where pt lies between p+

t
(n)
k

and p−

t
(n)
k

for t ∈ (t(n)
k , t

(n)
k+1]. Note that χn(t) satisfies the

Rankine-Hugoniot condition, hence

χ̇n(t(n)
k ) =

H(p+

t
(n)
k

) −H(p−

t
(n)
k

)

p+

t
(n)
k

− p−

t
(n)
k

= H ′(p−

t
(n)
k

), 0 ≤ k ≤ n− 1.

Thus the limit R̄t0v̄(x) of the sequence of iterated minmax {Rt0,nv̄(x)}n has a C1 shock
χ̄(t) satisfying

˙̄χ(t) =
H(p+

t ) −H(p−
t )

p+
t − p−

t

= H ′(p−
t ), 0 ≤ t ≤ ǫ. (2.23)

By Theorem 2.53, the limit R̄t0v̄(x) is the viscosity solution, hence the limiting iterated
minmax procedure explains how to form a contact type shock and what are the rarefaction
waves.

Different from the case in Proposition 2.78, if the singularity of v̄ satisfied the entropy
condition, but not strictly, that is, denoting p±

0 := v̄′(x̄±), the line joining (p+
0 , H(p+

0 )) and
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(p−
0 , H(p−

0 )) is tangent to the graph of H, then the construction of viscosity solution of the
local Riemann problem falls into different subcases depend on the analytic information
such as the sign of v̄′′(x), x 6= x̄, see [46, 43]. We will not perform here the technical
details but illustrate the formation of a contact shock in a concrete example.

First, we have some key rules to characterize F t
x̄ ((2.22)):

1. The cusps in F t
x̄ correspond to the inflection points of H; the number of branches

in F t
x̄

7 is the number of inflection points of H and the convexity of each branch of
F t
x̄ between two cusps coincide with that of H between two inflection points;

2. The slope of F t
x̄ at z(p) is p;

3. F t
x̄ and the two genuine branches u± are joined in a C1 smooth manner at the

extremities z(p±
0 ) with slope p±

0 .

Example 2.82 (Rarefaction). Consider

v(x) =

{

−x(x− 1), x ≤ 0

x(x− 1), x ≥ 0
, H(p) = −p3 + p2 + p

Look at a neighborhood of the singularity x = 0 of v.

H
p−

0p+
0

v

Figure 2.9

For t > s > 0 small, the geometric solution and wave fronts are depicted as follows in
Figure 2.10 and Figure 2.11.

F t(v) F t−s(Rs
0v)

F t
0(v)

F t−s
χ2(s)(R

s
0v)

Figure 2.10

7. A branch is a partially defined C1 curve.
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ϕt(∂v) ϕt−s(∂Rs
0v)

Figure 2.11

Figure 2.12

In the wave front F t(v), the two branches in blue are genuine branches, and the curve
in red is F t

0(v). The 1-step minmax Rt0v(x) takes the minimum in the wave front, and
the shock χ1(t) of Rt0v(x) is given by the intersection of F t

+ and a branch of F t
0(v). The

2-step minmax Rts ◦Rs0v(x) has a shock χ2(t) which, for t > s, is given by the intersection
of F t

+ and a branch of F t−s
χ2(s)(R

s
0v). By the limiting process of iterated minmax, we then

get a contact shock as explained above.

The viscosity solution is thus not contained in the geometric solution F t(v). See Figure
2.12.

We remark that, in general, for a local Riemann problem (2.21) where the entropy
condition is not required to be satisfied for the singularity of initial function v̄, even when
the two branches F t

±(v̄) separate, the minmax Rt0v̄(x) can still be the viscosity solution.
This is the case when v̄ is convex (e.g. Figure 2.1). A proper notion of the “genuine”
shock of the viscosity solution may be given by the intersection of two branches in F t(v̄) =
F t

± ∪ F t
x̄, where “genuine” means that it is generated by two incoming characteristic from

the initial axis. Summarizing, the type of the shocks of the viscosity solution is related to
the semi group property of the minmax: for the local Riemann problem, if the minmax
forms a semi-group, then it is the viscosity solution whence has genuine shocks; otherwise,
there are rarefaction waves born from the limiting process of iterated minmax, which form
a contact shock.





Chapter 3

Subtleties of the minmax selector

In the previous chapters, we have used the minmax (maxmin) as a graph selector to solve
the Hamilton-Jacobi equations. In this chapter, we will look at the minmax-maxmin for
its own sake, asking the following natural questions:

1. Is there only one “minmax”? More precisely, does the minmax depend on the coef-
ficients used to define it?

2. Are the minmax and maxmin the same?

3.1 Introduction

The minmax has been defined using homology or cohomology with various coefficient
rings, for example Z in [21, 62], Q in [14] and Z2 in [53]. Also, in [62, 64], the maxmin was
mentioned as a natural analogue to the minmax. But there is no evidence showing that
all these critical values coincide. G. Capitanio has given a proof [14] that the maxmin
and minmax for homology with coefficients in Q are equal, but the criterion he uses
(Proposition 2 in [14]) is not correct—see Remark 3.25 hereafter.

We will investigate the maxmin and minmax for a general function quadratic at in-
finity, not necessarily related to Hamilton-Jacobi equations. We give both algebraic and
geometric proofs that the minmax and maxmin with coefficients in a field coincide; the
geometric proof, based on Barannikov’s Jordan normal form for the boundary operator of
the Morse complex, improves our understanding of the problem.

A counterexample for coefficients in Z, due to F. Laudenbach [37], is constructed using
Morse homology; in this example, moreover, the minmax-maxmin for coefficients in Z2 is
not the same as for coefficients in Q. However, if the minmax and maxmin for coefficients
in Z coincide, then all three minmax-maxmin critical values are equal.

3.2 Maxmin and Minmax

Hypotheses and notation

We denote by X the vector space Rn and by f a real function on X, quadratic at infinity in
the sense that it is continuous and there exists a nondegenerate quadratic form Q : X → R

such that f coincides with Q outside a compact subset.

Let f c := {x|f(x) ≤ c} denote the sub-level sets of f . Note that for c large enough,
the homotopy types of f c, f−c do not depend on c, we may denote them as f∞ and
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f−∞. Suppose the quadratic form Q has Morse index λ, then the homology groups with
coefficient ring R are

H∗(f∞, f−∞;R) ≃

{

R in dimensionλ
0 otherwise

Consider the homomorphism of homology groups

ic∗ : H∗(f c, f−∞;R) → H∗(f∞, f−∞;R)

induced by the inclusion ic : (f c, f−∞) →֒ (f∞, f−∞).

Definition 3.1. If Ξ is a generator of Hλ(f∞, f−∞;R), we let

γ(f,R) := inf{c : Ξ ∈ im(ic∗)},

i.e. γ(f,R) = inf{c : ic∗Hλ(f c, f−∞;R) = Hλ(f∞, f−∞;R)}.

Similarly, we can consider the homology group

H∗(X \ f−∞, X \ f∞;R) ≃

{

R, in dimensionn− λ
0, otherwise

and the homomorphism

jc∗ : H∗(X \ f c, X \ f∞;R) → H∗(X \ f−∞, X \ f∞;R)

induced by jc : (X \ f c, X \ f∞) →֒ (X \ f−∞, X \ f∞).

Definition 3.2. If ∆ is a generator of Hn−λ(X \ f−∞, X \ f∞;R), we let

γ(f,R) := sup{c : ∆ ∈ im(jc∗)}

= sup{c : jc∗Hn−λ(X \ f c, X \ f∞;R) = Hn−λ(X \ f−∞, X \ f∞;R)}.

Lemma 3.3. One has that

γ(f,R) = inf max f := inf
[σ]=Ξ

max
x∈|σ|

f(x)

γ(f,R) = sup min f := sup
[σ]=∆

min
x∈|σ|

f(x),

where σ is a relative cycle and |σ| denotes its support. We call σ a descending (resp.
ascending) cycle if [σ] = Ξ (resp. [σ] = ∆).

Proof. A descending cycle σ defines a homology class in Hλ(f c, f−∞;R) if and only if
|σ| ⊂ f c, in which case one has max

x∈|σ|
f(x) ≤ c, hence γ(f,R) ≥ inf max f ; choosing

c = max
x∈|σ|

f(x), we get equality. The case of γ is identical.

Definition 3.4. γ(f,R) is called a minmax of f and γ(f,R), a maxmin .

Remark 3.5. As we shall see later, in view of Morse homology, the names are proper
generically for Morse-excellent functions.

One can also consider cohomology instead of homology and define

α(f,R) := inf{c : i∗c 6= 0}, i∗c : Hλ(f∞, f−∞;R) → Hλ(f c, f−∞;R)

α(f,R) := sup{c : j∗
c 6= 0}, j∗

c : Hn−λ(X \ f−∞, X \ f∞;R) → Hn−λ(X \ f c, X \ f∞;R).
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Proposition 3.6 ([64], Proposition 2.4). When X is R-oriented,

α(f,R) = γ(f,R) and α(f,R) = γ(f,R).

Proof. We establish for example the first identity: one has the commutative diagram

Hλ(f c, f−∞;R) ≃ Hn−λ(X \ f−∞, X \ f c;R)
↓ic∗ ↓

Hλ(f∞, f−∞;R) ≃ Hn−λ(X \ f−∞, X \ f∞;R)
↓ ↓j

∗
c

Hλ(f∞, f c;R) ≃ Hn−λ(X \ f c, X \ f∞;R)

where the horizontal isomorphisms are given by Alexander duality ([39], section 3.3) and
the columns are exact. It does follow that ic∗ is onto if and only if j∗

c is zero.

Proposition 3.7. If f is C2 then γ(f,R) and γ(f,R) are critical values of f ; they are
critical values of f in the sense of Clarke when f is locally Lipschitzien.

Proof. Take γ for example: if c = γ(f,R) is not a critical value then, for small ǫ > 0,

f c−ǫ is a deformation retract of f c+ǫ via the flow of − ∇f
‖∇f‖2 , hence γ(f,R) ≤ c − ǫ, a

contradiction. The same argument applies when f is only locally Lipschitzien, replacing
∇f by a pseudo-gradient.

Lemma 3.8. If f is locally Lipschitzien, then

γ(f,R) = −γ(−f,R)

Proof. Using a (pseudo-)gradient of f as previously, one can see that X \ f c and (−f)−c

have the same homotopy type when c is not a critical value of f . Otherwise, choose a
sequence of non-critical values cn ր c = γ(f,R), then −cn ≥ γ(−f,R), taking the limit,
we have γ(f,R) ≤ −γ(−f,R). Similarly, taking c′

n ց γ(−f,R), then −c′
n ≤ γ(f,R), from

which the limit gives us the inverse inequality −γ(−f,R) ≤ γ(f,R).

Now our questions at the beginning are formulated as follows:
(1) Do we have γ(f,R) = γ(f,R)?
(2) Do γ(f,R) and γ(f,R) depend on the coefficient ring R?

Here are two obvious elements for an answer:

Proposition 3.9. One has γ(f,Z) ≥ γ(f,R) and γ(f,Z) ≤ γ(f,R) for every ring R.

Proof. A simplex σ whose homology class generates Hλ(f∞, f−∞;Z) induces a simplex
whose homology class generates Hλ(f∞, f−∞;R), hence the first inequality and, mutatis
mutandis, the second one.

Proposition 3.10. One has γ(f,Z) ≥ γ(f,Z).

Proof. As the intersection number of Ξ and ∆ is ±1, the support of any descending
simplex σ must intersect the support of any ascending simplex τ at some point x̄, hence
max
x∈|σ|

f(x) ≥ f(x̄) ≥ min
x∈|τ |

f(x).

Theorem 3.11. If F is a field, then γ(f,F) = γ(f,F).
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R
λ

R
n−λ

f−∞
f−∞

f∞

f∞

Ξ

∆

Proof. By Proposition 3.6, it is enough to prove that

γ(f,F) = α(f,F)

Recall that γ(f,F) (resp. α(f,F)) is the infimum of the real numbers c such that ic∗ :

Hλ(f c, f−∞;F) → Hλ(f∞, f−∞;F) is onto (resp. such that i∗c : Hλ(f∞, f−∞;F) →
Hλ(f c, f−∞;F) is nonzero). Now, as Hλ(f∞, f−∞;F) is a one-dimensional vector space
over F, the linear map ic∗ is onto if and only if it is nonzero, i.e. if and only if the
transposed map i∗c is nonzero.

Remark 3.12. This proof is invalid for coefficients in Z since a Z-linear map to Z, for
example Z ∋ m → km, k ∈ Z, k > 1, can be nonzero without being onto; we shall see in
Section 3.4 that Theorem 3.11 itself is not true in that case.

Corollary 3.13. If γ(f,Z) = γ(f,Z) = γ then γ(f,F) = γ(f,F) = γ for every field F.

Proof. This follows at once from Theorem 3.11 and Proposition 3.9.

Corollary 3.14. Let γ ∈ R have the following property: there exist both a descending
simplex over Z along which γ is the maximum of f and an ascending simplex over Z along
which γ is the minimum of f . Then, γ(f,Z) = γ(f,Z) = γ(f,F) = γ(f,F) = γ for every
field F.

Proof. We have γ(f ;Z) ≤ γ ≤ γ(f ;Z) by Lemma 3.3 and γ(f ;Z) ≤ γ(f ;Z) by Proposi-
tion 3.10, hence our result by Corollary 3.13.

3.3 Morse complexes and the Barannikov normal form

The previous proof of Theorem 3.11, though simple, is quite algebraic. We now give a more
geometric proof, which we find more concrete and illuminating, based on Barannikov’s
canonical form of Morse complexes. It will provide a good setting for the counterexample
in Section 3.4.

First, recall a continuity result for the minmax and maxmin:
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Proposition 3.15. If f and g are two continuous functions quadratic at infinity with the
same reference quadratic form, then

|γ(f,R) − γ(g,R)| ≤ |f − g|C0

|γ(f,R) − γ(f,R)| ≤ |f − g|C0 .

Proof. For f ≤ g, from Lemma 3.3, it is easy to see that γ(f) ≤ γ(g). In the general
case, this implies γ(g) ≤ γ(f + |g − f |) ≤ γ(f) + |g − f |C0 ; exchanging f and g, we get
γ(f) ≤ γ(g) + |f − g|C0 .

Corollary 3.16. To prove Theorem 3.11, it suffices to establish it for excellent Morse
functions f : X → R, i.e. smooth functions having only non-degenerate critical points,
each of which corresponds to a different value of f .

Proof. By a standard argument, given a non-degenerate quadratic form Q on X, the set of
all continuous functions on X equal to Q off a compact subset contains a C0-dense subset
consisting of excellent Morse functions; our result follows by Proposition 3.15.

To prove Theorem 3.11 for excellent Morse functions, we will use Morse homology.

Hypotheses

We consider an excellent Morse function f on X, quadratic at infinity; for each pair of
regular values b < c of f , we denote by fb,c the restriction of f to f c∩(−f)−b = {b ≤ f ≤ c}.

Morse complexes

Let
Ck(fb,c) := {ξkℓ : 1 ≤ ℓ ≤ mk}

denote the set of critical points of index k of fb,c, ordered so that f(ξkℓ ) < f(ξkm) for ℓ < m.
Given a generic gradient-like vector field V for f such that (f, V ) is Morse-Smale 1, the
Morse complex of (fb,c, V ) over R consists of the free R-modules

Mk(fb,c, R) := {
∑

ℓ

aℓξ
k
ℓ , aℓ ∈ R}

together with the boundary operator ∂ : Mk(fb,c, R) → Mk−1(fb,c, R) given by

∂ξkℓ :=
∑

m

νf,V (ξkℓ , ξ
k−1
m )ξk−1

m

where, with given orientations for the stable manifolds (hence co-orientations for unsta-
ble manifolds), νf,V is the intersection number of the stable manifold W s(ξkl ) of ξkl and
the unstable manifold W u(ξk−1

m ) of ξk−1
m , i.e. the algebraic number of trajectories of V

connecting ξkℓ and ξk−1
m ; note that

• νf,V (ξkℓ , ξ
k−1
m ) is the same for all b, c with f(ξkℓ ), f(ξk−1

m ) in [b, c];

• νf,V (ξkℓ , ξ
k−1
m ) 6= 0 implies f(ξkℓ ) > f(ξk−1

m ): otherwise, the stable manifold of ξk−1
m

and the unstable manifold of ξkℓ for V , which cannot be transversal because of their
dimensions, would intersect, contradicting the genericity of V .

1. Being Morse-Smale means that the stable and unstable manifolds of all the critical points are
transversal.
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• νf,V (ξkl , ξ
k
m) = 0 for two distinct critical points of the same index.

This does define a complex, i.e. ∂ ◦ ∂ = 0: see for example [36, 52]. The homology
HM∗(fb,c, R) := H∗(M∗(fb,c, R)) is called the Morse homology 2 of fb,c.

Lemma 3.17 (Barannikov,[6]). If R is a field F, then this boundary operator ∂ has a
special kind of Jordan normal form as follows: each Mk(fb,c,F) has a basis

Ξkℓ :=
∑

i≤ℓ

αℓ,iξ
k
i , αℓ,ℓ 6= 0 (3.1)

such that either ∂Ξkℓ = 0 or ∂Ξkℓ = Ξk−1
m for some m, in which case no ℓ′ 6= ℓ satisfies

∂Ξkℓ′ = Ξk−1
m . If (Θk

ℓ ) is another such basis, then ∂Ξkℓ = Ξk−1
m (resp. 0) is equivalent to

∂Θk
ℓ = Θk−1

m (resp. 0); in other words, the matrix of ∂ in all such bases is the same.

Proof. We prove existence by induction. Given nonegative integers k, i with i < mk,
suppose that vectors Ξpq of the form (3.1) have been obtained for all (p, q) with either

p < k, or p = k and q ≤ i, possessing the required property that either ∂Ξpq = Ξp−1
jp(q) (with

jp(q) 6= jp(q′) for q 6= q′) or ∂Ξpq = 0. If ∂ξki+1 = 0 (e.g., when k = 0), we take ξki+1 := Ξki+1

and continue the induction. Otherwise, ∂ξki+1 =
∑

αjΞk−1
j , αj ∈ F. Moving all the terms

Ξk−1
jk(q) = ∂Ξkq , q ≤ i from the right-hand side to the left, we get

∂
(

ξki+1 −
∑

q≤i

αjk(q)Ξ
k
q

)

=
∑

j

βjΞk−1
j .

Let

Ξki+1 := ξki+1 −
∑

q≤i

αjk(q)Ξ
k
q .

If βj = 0 for all j, then ∂Ξki+1 = 0 and the induction can go on. Otherwise,

∂Ξki+1 =
∑

j≤j0

βjΞk−1
j =: Ξ̃k−1

j0
with βj0 6= 0;

as ∂Ξ̃k−1
j0

= ∂∂Ξki+1 = 0, we can replace Ξk−1
j0

by Ξ̃k−1
j0

and continue the induction 3.

Definition 3.18. Under the hypotheses and with the notation of the Barannikov lemma,
two critical points ξkℓ and ξk−1

m of fb,c are coupled if ∂Ξkℓ = Ξk−1
m . A critical point is free

(over F) when it is not coupled with any other critical point.

In other words, ξkℓ is free if and only if Ξkℓ is a cycle of Mk(fb,c,F) but not a boundary,
hence the following result:

Corollary 3.19. For each integer k, the Betti number dimFHMk(fb,c,F) is the number
of free critical points of index k of fb,c over F.

Theorem 3.20. 1. The Barannikov normal form of the Morse complex of fb,c over F

is independent of the gradient-like vector field V .

2. So is the Morse homology HM∗(fb,c, R); it is isomorphic to H∗(f c, f b;R).

2. Morse homology is defined in general for any Morse function without being excellent.
3. Note that if F was not a field, this would not provide a basis for noninvertible βj0 .
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3. For b′ ≤ b < c ≤ c′, the inclusion i : f c →֒ f c
′

, restricted to the critical set C∗(fb,c),
induces a linear map i∗ : M∗(fb,c, R) → M∗(fb′,c′ , R) such that ∂ ◦ i∗ = i∗ ◦ ∂
and therefore a linear map i∗ : HM∗(fb,c, R) → HM∗(fb′,c′ , R), which is the usual
i∗ : H∗(f c, f b;R) → H∗(f c

′

, f b
′

;R) modulo the isomorphism (ii).

Idea of the proof [36]. (1) Connecting two generic gradient-like vector fields V0, V1 for f
by a generic family, one can prove that each of the Morse complexes defined by V0 and V1

is obtained from the other by a change of variables whose matrix is upper-triangular with
all diagonal entries equal to 1.

(2) When there is no critical point of f in {b ≤ f ≤ c}, both HM∗(fb,c, R) and
H∗(f c, f b;R) are trivial (the flow of V defines a retraction of f c onto f b).

When there is only one critical point ξ of f in {b ≤ f ≤ c}, of index λ,

HMk(fb,c, R) ≃ Hk(f
c, f b;R) ≃

{

R, if k = λ,

0 otherwise :

the class of ξ obviously generates HMλ(fb,c, R), whereas a generator of Hλ(f c, f b;R) is
the class of a cell of dimension λ, namely the stable manifold of ξ for V |{b≤f≤c}; the
isomorphism associates the second class to the first.

In the general case, one can consider a subdivision b = b0 < · · · < bN = c consisting of
regular values of f such that each fbj ,bj+1

has precisely one critical point. One can show

that the boundary operator ∂ of the relative singular homology ∂ : Hk+1(f bi+1 , f bi) →
Hk(f

bi , f bi−1) can be interpreted as the intersection number of the stable manifold of the
critical point in {bi ≤ f ≤ bi+1} and the unstable manifold of that in {bi−1 ≤ f ≤ bi}, i.e.,
their algebraic number of connecting trajectories.

(3) The first claims are easy. The last one follows from what has just been sketched.

Corollary 3.21. If f is an excellent Morse function quadratic at infinity, then it has
precisely one free critical point ξ over F; its index λ is that of the reference quadratic form
Q and

γ(f,F) = f(ξ).

Proof. Clearly, the dimension of

HMk(f,F) = HMk(f−∞,∞,F) ≃ Hk(f
∞, f−∞;F) = Hk(Q

∞, Q−∞;F)

is 1 if k = λ and 0 otherwise. The first two assertions follow by Corollary 3.19. To prove
γ(f,F) = f(ξ), note that γ(f) is the infimum of the regular values c of f such that the
class of ξ in HMλ(f−∞,∞,F) lies in the image of ic∗ : HMλ(f−∞,c,F) → HMλ(f−∞,∞,F);
by Theorem 3.20 (iii), which means c ≥ f(ξ).

Proposition 3.22. The excellent Morse function −fb,c = (−f)−c,−b has the same free
critical points over the field F as fb,c.

Proof. Assuming V fixed, this is essentially easy linear algebra:

• One has Ck(−f) = Cn−k(f) and the ordering of the corresponding critical values
is reversed. Thus, the lexicographically ordered basis of M∗(−f) corresponding to
(ξkℓ )1≤ℓ≤mk,0≤k≤n is (ξn−k

mn−k−ℓ+1)1≤ℓ≤mn−k,0≤k≤n.

• The vector field −V has the same relations with −f as V has with f , hence

ν−f,−V (ξn−k
mn−k−ℓ+1, ξ

n−(k−1)
mn−(k−1)−m+1) = νf,V (ξ

n−(k−1)
mn−(k−1)−m+1, ξ

n−k
mn−k−ℓ+1).
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That is, the matrix of the boundary operator of M∗(−fb,c) in the basis (ξn−k
mn−k−ℓ+1) is the

matrix M̃ obtained from the matrix A of the boundary operator of M∗(fb,c) in the basis
(ξkℓ ) by symmetry with respect to the second diagonal (i.e. by reversing the order of both
the lines and columns of the transpose of A).

Lemma 3.17 can be rephrased as follows: there exists a block-diagonal matrix

P = diag(P0, . . . , Pn)

where each Pk ∈ GL(mk,F) is upper triangular, such that

P−1AP = B (3.2)

is a Barannikov normal form, meaning the following: the entries of the column of indices
k
ℓ are 0 except possibly one, equal to 1, which must lie on the line of indices k−1

m for some
m and be the only nonzero entry on this line. The normal form B is the same for every
choice of P and V . Clearly, ξkℓ is a free critical point of fb,c if and only if both the line
and column of indices k

ℓ of B are zero.
Equation (3.2) reads

P̃ ÃP̃−1 = B̃; (3.3)

Now, P̃−1 and P̃ = (P̃−1)−1 are block diagonal upper triangular matrices whose kth

diagonal block lies in GL(mn−k,F); therefore, by (3.3), as B̃ is a Barannikov normal form
for the ordering associated to −f , it is the Barannikov normal form of the boundary
operator of M∗(−fb,c), from which our result follows at once.

Corollary 3.23. For any excellent Morse function f quadratic at infinity, the sole free
critical point of −f over F is the free critical point ξ of f ; hence γ(f,F) = f(ξ) =
−(−f)(ξ) = −γ(−f,F) = γ(f,F) by Corollary 3.21 and Lemma 3.8, which proves Theo-
rem 3.11.

Before we give an example where γ(f,Z) > γ(f,Z), here is a situation where this
cannot occur:

Proposition 3.24. Assume that M∗(f,Z) can be put into Barannikov normal form by a
basis change (3.1) of the free Z-module M∗(f,Z):

Ξkℓ :=
∑

i≤ℓ

αkℓ,iξ
k
i , αkℓ,i ∈ Z, αkℓ,ℓ = ±1. (3.4)

Then, γ(f,Z) = γ(f,Z) = f(ξ), where ξ is the sole free critical point of f over Z.

Proof. We are in the situation of the proof of Proposition 3.22 with Pk ∈ GL(mk,Z), which
implies that the Barannikov normal form B of the boundary operator is the same for Z

as for Q; it does follow that there is a unique free critical point ξ of f over Z (the same as
over Q) and that it is the unique free critical point of −f over Z; moreover, the proof of
Corollary 3.21 shows that γ(f,Z) = γ(f,Z) = f(ξ). We conclude as in Corollary 3.23.

Now that the coefficients are in Z, the classical method of so called sliding handles
states that, under an additional condition imposed on the index of the change of basis in
(3.4), namely 2 ≤ k ≤ n−2, the Barannikov normal form can be realized by a gradient-like
vector field for f .

More precisely, let P : M∗(f) → M∗(f) be a transformation matrix where P =
diag(P0, . . . , Pn) with each Pk ∈ GL(mk,Z) such that Pk = id for k = 0, 1 or n − 1, n,
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and Pk is upper triangular with ±1 in the diagonal entries for 2 ≤ k ≤ n − 2. Then
one can construct a gradient-like vector field V ′ such that, if the matrix of the boundary
operator for a given gradient-like vector field V is A, then the matrix for V ′ is given by
B = P−1AP .

Roughly speaking, one modifies V , each time for one i ≤ l, by sliding handle of the
stable sphere 4SL(ξkl ) of ξkl for V such that it sweeps across the unstable sphere SR(ξki )
of ξki with indicated intersection number. In other words, S′

L(ξkl ) for the resulted V ′ is
the connected sum of SL(ξkl ) and the boundary of a meridian disk of SR(ξki ) described
in section 4.4 of [36]. One may refer to the Basis Theorem (Theorem 7.6) in [52] for a
detailed construction of V ′.

Remark 3.25 (on the “proof” of Corollary 3.23 in [14]). Capitanio uses the following

Criterion A critical point ξ of f is free (over Q) if and only if , for any critical point
η incident to ξ,there is a critical point ξ′, incident to η, such that

|f(ξ′) − f(η)| < |f(ξ) − f(η)|.

where fixing a gradient-like vector field V generic for f , two critical points are called
incident if their algebraic number of connecting trajectories is nonzero.

Unfortunately, this is not true: one can construct a function f : R2n → R, n ≥ 2,
quadratic at infinity with Morse index n, having five critical points, two of index n − 1
and three of index n, whose gradient vector field V defines the Morse complex

∂ξn1 = ξn−1
2 , ∂ξn2 = ξn−1

1 , ∂ξn3 = 0.

This complex can be reformulated into

∂ξn1 = (ξn−1
2 − ξn−1

1 ) + ξn−1
1

∂(ξn2 + ξn1 ) = (ξn−1
2 − ξn−1

1 ) + 2ξn−1
1

∂(ξn3 + ξn2 ) = ξn−1
1

Hence, for a change of basis

ξn−1
2 7→ ξn−1

2 − ξn−1
1 , ξn2 7→ ξn2 + ξn1 , ξ3

n 7→ ξ3
n + ξ2

n

one can construct a gradient-like vector field V ′ for f by sliding handles, such that

∂ξn1 = ξn−1
2 + ξn−1

1 , ∂ξn2 = ξn−1
2 + 2ξn−1

1 , ∂ξn3 = ξn−1
1 .

Obviously, ξn3 is the only free critical point, but ξn2 satisfies the criterion (with incidences
under V ′). �

4. The stable and unstable sphere is defined as : SL(ξk
l ) = W s(ξk

l )∩L and SR(ξk
i ) = W u(ξk

i )∩L where
L = f−1(c) for some c ∈ (f(ξk

i ), f(ξk
l )).
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3.4 An example of Laudenbach

Proposition 3.26. There exists an excellent Morse function f : R2n → R as follows:

1. it is quadratic at infinity and the reference quadratic form has index and coindex
n > 1;

2. it has exactly five critical points: three of index n, one of index n − 1 and one of
index n+ 1;

3. its Morse complex over Z is given by

∂ξn−1
1 = 0

∂ξn1 = ξn−1
1 , ∂ξn2 = −2ξn−1

1 , ∂ξn3 = −ξn−1
1 (3.5)

∂ξn+1
1 = ξn2 − 2ξn3 ,

hence, for any field F2 of characteristic 2 and any field F of characteristic 6= 2,

γ(f,Z) = γ(f,F2) = γ(f,F2) = f(ξn3 ) > f(ξn2 ) = γ(f,F) = γ(f,F) = γ(f,Z). (3.6)

Proof that (3.5) implies (3.6). The Morse complex of f over F2 writes

∂ξn−1
1 = 0

∂ξn1 = ξn−1
1 , ∂ξn2 = 0, ∂(ξn3 + ξn1 ) = 0

∂ξn+1
1 = ξn2 ,

implying that ξn3 is the only free critical point, hence, by Corollary 3.21,

γ(f,F2) = γ(f,F2) = f(ξn3 );

as γ(f,Z) ≥ γ(f,F2) by Proposition 3.9 and γ(f,Z) ≤ f(ξn3 ), we do have

γ(f,Z) = f(ξn3 ).

Similarly (keeping the numbering of the critical points defined by f) the Morse complex
of −f over F has the Barannikov normal form

∂(−2ξn+1
1 ) = 0

∂ξn3 = −2ξn+1
1 , ∂(ξn2 +

1

2
ξn3 ) = 0, ∂(−ξn3 − 2ξn2 + ξn1 ) = 0

∂ξn−1
1 = −ξn3 − 2ξn2 + ξn1 ,

showing that the free critical point is ξn2 ; hence, by Corollary 3.21 and Proposition 3.22,

γ(f,F) = γ(f,F) = f(ξn2 );

finally, as we have γ(f,Z) ≤ γ(f,F) by Proposition 3.9, and γ(f,Z) ≥ f(ξn1 ), we should
prove γ(f,Z) > f(ξn1 ), which is obvious since ξn1 and ξn+1

1 are boundaries in M∗(−f,Z).

How to construct such a function f . It is easy to construct a function f0 : R2n → R

with properties (1) and (2) required in the proposition and whose gradient vector field V0

provides a Morse complex given by

∂ξn−1
1 = 0,

∂ξn1 = ξn−1
1 , ∂ξn2 = 0, ∂ξn3 = 0

∂ξn+1
1 = ξn3 .
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For a change of basis

ξn2 7→ ξn2 − ξn1 , ξn3 7→ ξn3 − 2(ξn2 − ξn1 )

one can construct a gradient-like vector field V ′ for f0 by sliding handles, such that

∂ξn−1
1 = 0

∂ξn1 = ξn−1
1 , ∂ξn2 = −ξn−1

1 , ξn3 = −2ξn−1
1

∂ξn+1
1 = −2ξn2 + ξn3

Since (f0, V
′) is Morse-Smale, the invariant manifolds of those critical points of the

same index are disjoint, hence one can modify f0 to f such that

• f has the same critical points of f0;

• the ordering of critical points for f is f(ξn2 ) > f(ξn3 ) > f(ξn1 ),

• V ′ is a gradient-like vector field for f .

This can be realized by the preliminary rearrangement theorem (Theorem 4.1) in [52].
In other words, we have made a change of critical points ξn2 ↔ ξn3 , hence obtain the

required Morse complex in the proposition.

Question 3.27. For a generating family S(x, η) of a Lagrangian submanifold L ⊂ T ∗M
Hamiltonian isotopy to the zero section, where each Sx : Rk → R is quadratic at infinity,
do we have γ(Sx,Z) = γ(Sx,Z) for every x ∈ M .

3.5 On the product formula for minmax

In Chapter 2, we have proved in Lemma 2.40 a product formula for the minmax using the
equivalence of minmax and maxmin for coefficients in Z2. In this section, we give anther
proof based on the Barannikov normal form for coefficients in any field, which give us an
acess to a counterexample for coefficients in Z.

We will first describe the Künneth formula in Morse language. Let f : X → R and
g : Y → R be two Morse functions, and let Vf and Vg their corresponding pseudo-gradients
satisfying the Morse-Smale condition. Let

f ⊕ g : X × Y → R, (f ⊕ g)(x, y) = f(x) + g(y).

It is a Morse function on X × Y with pseudo-gradient Vf⊕g = Vf × Vg, and the set of
critical points of f ⊕ g is

Ck(f ⊕ g) =
⋃

i+j=k

Ci(f) × Cj(g).

Note that since Vf⊕g is split, so is its flow, hence the number of connecting trajectories ν of
is given as follows: abbreviating νf,V by νf , if (ξ, η) ∈ Ck(f⊕g) and (ξ′, η′) ∈ Ck−1(f⊕g),

νf⊕g

(

(ξ, η), (ξ′, η′)
)

= ±νf (ξ, ξ′) × νg(η, η
′) =















±νf (ξ, ξ′) if η = η′,

±νg(η, η
′) if ξ = ξ′,

0 otherwise

because Vf and Vg are Morse-Smale.
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Let R be a commutative ring with unit, and let Mk(f⊕g,R) denote the Morse complex.
We use the tensor product for chain complexes

(M∗(f,R) ⊗M∗(g,R))k =
⊕

i+j=k

Mi(f,R) ⊗Mj(g,R)

together with the boundary operator

∂(σi ⊗ τj) = ∂Vf
σi ⊗ τj + (−1)iσi ⊗ ∂Vgτj , forσi ⊗ τj ∈ Mi(f,R) ×Mj(g,R).

With a proper cohererent orientation, there is an isomorphism of Morse complexes

(M∗(f,R) ⊗M∗(g,R), ∂)
≃
→ (M∗(f ⊕ g,R), ∂Vf⊕g

)

See section 5.3 in [56] for reference.
Now suppose that f, g are Morse functions as before, and in addition, quadratic at

infinity. If λf and λg denote the indices of the corresponding quadratic forms, then
λf⊕g = λf + λg.

Lemma 3.28. We have an isomorphism of homology groups

Hλf
(f ;R) ⊗Hλg (g;R) ≃ Hλf⊕g

(f ⊕ g;R).

Proof. By the Künneth formula, we have a short exact sequence

0 →
⊕

i+j=k

Hi(f,R) ⊗Hj(g,R) → Hk(f ⊕ g,R) →
⊕

i+j=k−1

Tor1
(

Hi(f,R), Hj(g,R)
)

→ 0.

For k = λf + λg, we conclude since Hi(f,R) and Hj(g,R) are zero if i 6= λf and j 6= λg
respectively.

Proposition 3.29. For a field F, we have the product formula for minmax

γ(f ⊕ g,F) = γ(f,F) + γ(g,F)

Proof. For simplicity, we write λf = n and λg = m. Equip Mi(f) and Mj(g) with
Barannikov normal bases {Ξi} and {Θj} respectively (where we have omitted the subscript
enumerating the members of each basis). Let ξ and θ be are the unique free points of
f and g respectively, and let Ξ := Ξnℓ1 , Θ := Θm

ℓ2
be the corresponding elements of the

normal bases. Then, by Künneth’s formula, Ξ⊗Θ is a generator for Hn+m(f⊕g,F) and all
generators have the form σ = Ξ⊗Θ+∂σn+m+1, with σn+m+1 ∈ ⊕i+j=n+m+1Mi(f)⊗Mj(g),
hence the inequality

γ(f ⊕ g) ≤ f(ξ) + g(θ) = γ(f) + γ(g).

To obtain the reverse inequality, we write the generators as

σ = Ξ ⊗ Θ + α∂Ξn+1 ⊗ Θm + βΞn ⊗ ∂Θm+1 + other terms

= Ξ ⊗ Θ +
∑

ℓ 6=ℓ1

αℓ,hΞnℓ ⊗ Θm
h +

∑

ℓ 6=ℓ2

βh,ℓΞnh ⊗ Θm
ℓ + other terms.

By the construction of the Barannikov normal form, since ∂Ξnℓ1 = ∂Θm
ℓ2

= 0, the terms
Ξnℓ with ℓ 6= ℓ1 do not contain ξ = ξnℓ1 and the terms Θm

ℓ with ℓ 6= ℓ2 do not contain
θ = θmℓ2 . Hence σ always contains the term ξ ⊗ θ which can not be annulated, yielding
γ(f ⊕ g) = min maxσ f ⊕ g ≥ f(ξ) + g(θ) = γ(f) + γ(g) as required.
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Now we come to the question of the product formula for minmax with coefficients in
Z. As the first part of the previous proof does not use the fact that F is a field, we have

γ(f ⊕ g,Z) ≤ γ(f,Z) + γ(g,Z).

The reverse inequality is not true in general. A counterexample is given as follows :

Proposition 3.30. If f is the Morse function of Proposition 3.26 and g = −f , then

γ(f,Z) + γ(g,Z) = f(ξn3 ) − f(ξn2 ) > 0 and γ(f ⊕ g,Z) ≤ 0.

In particular, γ(f ⊕ g,Z) < γ(f,Z) + γ(g,Z).

Proof. We have proved in Proposition 3.26 that

γ(f,Z) = f(ξn3 ), γ(g,Z) = −γ(f,Z) = −f(ξn2 )

Moreover, [ξn3 +ξn1 ] is a generator of HMn(f,Z) and [2ξn2 +ξn3 ] is a generator of HMn(f,Z).
Now by the Künneth formula, [(ξn3 +ξn1 )⊗(2ξn2 +ξn3 )] is a generator of HM2n(f⊕g,Z).

Let us consider the cycle σ:

σ = (ξn3 + ξn1 ) ⊗ (2ξn2 + ξn3 ) + ∂(ξn+1
1 ⊗ ξn2 )

= (ξn3 + ξn1 ) ⊗ (2ξn2 + ξn3 ) + ∂ξn+1
1 ⊗ ξn2 + (−1)nξn+1

1 ⊗ ∂ξn2

= ξn3 ⊗ ξn3 + 2ξn1 ⊗ ξn2 + ξn1 ⊗ ξn3 + ξn2 ⊗ ξn2 + (−1)nξn+1
1 ⊗ ξn+1

1

Since f(ξn3 ) > f(ξn2 ) > f(ξn1 ), we have

max
σ

f ⊕ g = max{f(ξn3 ) − f(ξn3 ), f(ξn1 ) − f(ξn2 ), f(ξn1 ) − f(ξn3 ), · · · } = 0

hence γ(f ⊕ g,Z) ≤ 0 < f(ξn3 ) − f(ξn2 ) = γ(f,Z) − γ(f,Z).

Remark 3.31. For any f quadratic at infinity, we have

γ(f ⊕ (−f),Z) ≥ γ(f ⊕ (−f),F) = γ(f,F) + γ(−f,F) = γ(f,F) − γ(f,F) = 0

Question 3.32. For any function f quadratic at infinity, have we γ(f ⊕ (−f),Z) = 0?
Hence, if γ(f,Z) 6= γ(f,Z), i.e., γ(f,Z) > γ(f,Z) = −γ(−f,Z) by Proposition 3.10, then

γ(f ⊕ (−f),Z) < γ(f,Z) + γ(−f,Z).





Appendix A

Lipschitz critical point theory

We consider a real locally Lipschitz function f on 1 X := Rk.

Definition A.1. The Clarke generalized derivative ∂f(a) of f at a ∈ X is the convex
subset ∂f(a) of X∗ = T ∗

xX defined as follows: by Rademacher’s theorem, the set dom(df)
of differentiability points of f is dense in X; if df :=

{(

x, df(x)
)

: x ∈ dom(df)
}

, we let

∂f(a) := co{y ∈ X∗ : (a, y) ∈ df},

where co stands for the convex hull; in other words, ∂f(a) is the convex hull of the set of
limits of convergent sequences df(xn) with lim xn = a. As |df(x)| is bounded by the local
Lipschitz constant of f for x close to a, every sequence df(xn) with lim xn = a is bounded
and therefore has a convergent subsequence, implying

∀a ∈ X ∂f(a) 6= ∅;

moreover, ∂f(a) is compact, being the convex hull of a compact subset 2. The subset

∂f := {(x, y)|y ∈ ∂f(x), x ∈ X}

is a generalized version of the enlarged pseudograph defined for semi-concave functions in
[2], where the pseudograph is df := {(x, df(x))|x ∈ dom(df)}. In simple one-dimensional
cases, it is obtained by adding a vertical segment to df where f is not differentiable:

0 x

u = |x| ∂u

∂u(0)

Figure A.1

1. The theory extends to reflexive Banach spaces [16].

2. Caratheodory proved that it is the set of convex combinations of k+1 points of {y ∈ X∗ : (a, y) ∈ df}.
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Remark A.2. The set ∂f(x) consists of a single point if and only if f is “C1 at x with
respect to the set where it is differentiable”.

Example A.3. Let f : R → R, f(x) = x2 sin 1
x , then f is differentiable everywhere, C1

except at x = 0, and df(0) = 0 whereas ∂f(0) = [−1, 1].

Unfortunately, even though a Lipschitz function is differentiable almost everywhere, it
may not be C1 almost everywhere:

Example A.4. If χA : R → {0, 1} is the characteristic function of a Cantor set A ⊂ R of
positive measure, then

f : R → R, f(x) =

∫ x

0
χA(t)dt

is Lipschitzian but not C1 almost everywhere: indeed f ′(x) = χA(x) almost everywhere
and, as A has no interior point, χA is not continuous at points x ∈ A.

For the relation of partial derivative, if f : X × Y → R is Lispschitz, in general, we do
not have the relation ∂f(x, y) = ∂xf(x, y) × ∂yf(x, y).

Example A.5. Let f : R × R → R, f(x, y) = |x − y|. Then ∂1f(0, 0) × ∂2f(0, 0) =
[−1, 1] × [−1, 1]. But

∂f(0, 0) = co{lim df(xn, yn), (xn, yn) → 0}

= co{lim d1f(xn, yn) × d2f(xn, yn), (xn, yn) → 0}

= co{(a,−a), a = ±1} = {(a,−a) ∈ R2, a ∈ [0, 1]}

Example A.6. For the generating family S(x, η) defined in (1.4) or (1.5) with initial
function v Lipschitz, we have ∂xS(x, η) = ∂xS(x, η) × ∂ηS(x, η). Indeed, if we write
S(x, η) = v(x0) + f(x, η), where v is considered as a function of (x, η) and f is C2. It is
easy to see that

∂S(x, η) = ∂v(x0) + ∂f(x, η) = ∂xf(x, η) × ∂ηS(x, η) = ∂xS(x, η) × ∂ηS(x, η).

since ∂v(x0) = {0} × ∂ηv(x0).

Proposition A.7. The set-valued function x 7→ ∂f(x) is upper semi-continuous: for
every convergent sequence (xn, yn) → (x, y) with yn ∈ ∂f(xn), one has y ∈ ∂f(x). In
other words, ∂f is closed.

Proof. Each yn writes yn = tn,1vn,1+· · ·+tn,k+1vn,k+1 with tn,i ∈ [0, 1], tn,1+· · ·+tn,k+1 = 1
and (xn, vn,i) ∈ df . As f is locally Lipschitzian, there is a compact subset K ⊂ X∗

containing every vn,i for n large enough; hence, extracting subsequences, we may assume
that the sequences (vn,i)n, and (tn,i)n converge respectively to vi ∈ K and ti ∈ [0, 1]. As
there are points of df arbitrarily close to each (xn, vn,i), we may also assume (xn, vn,i) ∈ df ,
hence vi ∈ ∂f(x) and therefore y = t1v1 + · · · + tk+1vk+1 ∈ ∂f(x).

Proposition A.8. For any x, y ∈ X, one has

f(y) − f(x) ∈ co ∂f([x, y])(y − x)

where the right-hand side denotes the convex hull of all points of the form z(y − x) with
z ∈ ∂f(u) for some u in the line segment [x, y].
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Proof. It suffices to prove the inclusion for points y having the property that the segment
[x, y] meet dom(df) in a set of full one dimensional measure. Almost all y has this property,
and the general case will follow by a limiting argument bases on the continuity of f and
upper semicontinuity of ∂f . For such y, we may write

f(y) − f(x) =

∫ 1

0
df(x+ t(y − x))(y − x)dt

which directly expresses f(y)−f(x) as a convex combination of points from ∂f([x, y])(y−
x).

Corollary A.9. Let φ : [0, 1] → X be C1, then the function h = f ◦ φ is differentiable
almost everywhere and

h′(t) ≤ max{zφ′(t)|z ∈ ∂f(φ(t))}

Proof. The function h is locally Lipschitz so is differentiable almost everywhere. Suppose
that it is differentiable at t = t0, then

h′(t0) = lim
λ→0

[f(φ(t0 + λ)) − f(φ(t0))]/λ

= lim
λ→0

[f(φ(t0) + φ′(t0)λ+ o(λ)) − f(φ(t0))]/λ

= lim
λ→0

[f(φ(t0) + φ′(t0)λ) − f(φ(t0))]/λ by the Lipschitz condition

≤ lim
λ→0

max{zφ′(t0)|z ∈ ∂f([φ(t0), φ(t0) + φ′(t0)λ])}

= max{zφ′(t0)|z ∈ ∂f(φ(t0))}

Definition A.10. A point x ∈ X is called a critical point of f if 0 ∈ ∂f(x); the number
f(x) is then called a critical value of f . By Proposition A.7, the critical set Crit(f) of f ,
consisting of its critical points, is closed in X.

Setting
λ(x) := min

w∈∂f(x)
|w|X∗ ,

we say that f satisfies the Palais-Smale condition (P.S.) if every sequence (xn) along which
f(xn) is bounded, and such that λ(xn) goes to 0, possesses a convergent subsequence—
whose limit is a critical point of f by Proposition A.7, as there is a sequence yn ∈ ∂f(xn)
converging to 0.

Example A.11. The P.S. condition is satisfied when Lip(f − Q) < ∞ for some nonde-
generate quadratic form Q on X; moreover, in that case, Crit(f) is compact.

Proof. Indeed, if ψ := f − Q, each subset ∂f(x) = ∂ψ(x) + dQ(x) consists of vectors
whose norm is at least |dQ(x)| − Lip(ψ), hence λ(x) ≥ |dQ(x)| − Lip(ψ), which tends to
+∞ when |x| → ∞; therefore, there exists R > 0 such that every sequence (xn) with
limλ(xn) = 0 satisfies |xn| ≤ R for all large enough n, implying both the P.S. condition
and the compactness of Crit(f).

Proposition A.12. When f satisfies the P.S. condition, Crit(f)∩f−1(K) is compact for
every compact K ⊂ R.

Proof. For each sequence xn in Crit(f)∩f−1(K), the sequence f(xn) ∈ K is bounded and
the sequence λ(xn) = 0 converges to 0 hence, by the P.S. condition, xn has a convergent
subsequence, whose limit lies in the closed subset Crit(f) ∩ f−1(K).
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Lemma A.13 (existence of pseudo-gradients). Let B be an open subset of X; if one has
λ(x) ≥ b > 0 for all x ∈ B, then there exists a C∞ vector field v on B such that

|v(x)| ≤ 1 and x∗v(x) > b/2 for all x∗ ∈ ∂f(x), x ∈ B.

Proof. For each a ∈ B, there exists va ∈ X such that |va| = 1 and x∗va ≥ λ(a) for all
x∗ ∈ ∂f(a): just take va = wa/|wa|, where wa is the orthogonal projection of the origin
onto the image of ∂f(a) by the isomorphism X∗ → X defined by the scalar product.

Hence, by proposition B5, there is an open subset Va ∋ a of B such that df(x)va >
2λ(a)/3 ≥ 2b/3 for all x ∈ Va∩dom(df) and therefore x∗va ≥ 2b/3 > b/2 for all x∗ ∈ ∂f(x),
x ∈ Va.

Denoting by (θi) a smooth partition of unity subordinate to a locally finite cover (Vai
)

of B extracted from the cover (Va)a∈B, the vector field v : B → X can be defined by

v(x) :=
∑

θi(x)vai

where, as usual, the (finite) sum is over those i’s for which x ∈ Vai
.

Theorem A.14 (Deformation Lemma, straightforward part). Suppose f satisfies the P.S.
condition and let f c := {x|f(x) ≤ c} for each c ∈ R. If c is not a critical value of f , then
there exist ǫ > 0 and a bounded smooth vector field V on X equal to 0 off f c+2ǫ r f c−2ǫ,
and whose flow ϕtV satisfies ϕ1

V (f c+ǫ) ⊂ f c−ǫ.

Proof. By the P.S. condition, there exist ǫ > 0 and b > 0 such that λ(x) ≥ b in the open
subset B := {x|c + 3ǫ > f(x) > c − 3ǫ}; if v is a vector field as in Lemma A.13 and χ a
nonnegative smooth function equal to 0 off {x|c + 2ǫ > f(x) > c − 2ǫ} and reaching its
maximum 4ǫ/b for c+ ǫ ≥ f(x) ≥ c− ǫ, we claim that our requirements are fulfilled by

V (x) :=

{

−χ(x)v(x) for x ∈ B,

0 otherwise.

by Corollary A.9, the Lipschitz function t 7→ f ◦ ϕtV (x) satisfies almost everywhere

d

dt
f ◦ ϕtV (x) ≤

{

max{zV (ϕtV (x))|z ∈ ∂f(ϕtV (x))} ≤ − b
2χ

(

ϕtV (x)
)

for ϕtV (x) ∈ B,

0 otherwise,

it is nonincreasing and, for x ∈ f c+ǫ r f c−ǫ and t ≥ 0, one has

f
(

ϕtV (x)
)

− f(x) ≤ − b
2

4ǫ
b t = −2ǫt

as long as ϕtV (x) remains in f c+ǫ r f c−ǫ, hence our result.

Theorem A.15 (Deformation Lemma, subtle part). Suppose f satisfies the P.S. condi-
tion. If c ∈ R is a critical value of f and N any neighbourhood of Kc := Crit(f) ∩ f−1(c),
then there exist ǫ > 0 and a bounded smooth vector field V on X equal to 0 off f c+2ǫrf c−2ǫ,
whose flow ϕtV satisfies ϕ1

V (f c+ǫ rN) ⊂ f c−ǫ.

Proof. Choose δ > 0 so that N contains the closed 4δ-neighbourhood B4δ(Kc) of Kc.

Lemma. There exist ǫ > 0, b > 0 such that λ(x) ≥ b for all x ∈
(

f c+3ǫrf c−3ǫ
)

rBδ(Kc).

Indeed, otherwise, there would exist a sequence (xn) in XrBδ(Kc) with |f(xn)−c| ≤ 3
n

and λ(xn) < 1
n ; by the P.S. condition, it would have a convergent subsequence, whose limit

would be a critical point x with f(x) = c and d(x,Kc) ≥ δ, a contradiction. ⊟
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We can of course take

ǫ ≤
b

4
δ.

The open subset B := {x ∈ X|c − 3ǫ < f(x) < c + 3ǫ and d(x,Kc) > δ} satisfies the
hypotheses of Lemma A.13; if v denotes the ensuing pseudo-gradient vector field, we claim
that V can be defined by

V (x) :=

{

−χ(x)ψ(x)v(x) for x ∈ B,

0 otherwise,

where the smoth real functions χ : X → [0, 4ǫ
b ] and ψ : X → [0, 1] satisfy

χ(x) =

{

4ǫ
b in f c+ǫ r f c−ǫ,

0 off f c+2ǫ r f c−2ǫ

ψ(x) =

{

0 in B2δ(Kc),

1 off B3δ(Kc).

Indeed, for x ∈ f c+ǫ rB4δ(Kc), two cases can occur:

• for x ∈ f c−ǫ, the nonincreasing function 3 t 7→ f ◦ ϕtV (x) takes its values in f c−ǫ for
t ≥ 0;

• otherwise, for t ∈ [0, 1], the inequality |V (x)| ≤ 4ǫ
b ≤ δ yields

|ϕtV (x) − x| ≤ δt, hence ϕtV (x) ∈ f c+ǫ rB3δ(Kc);

it follows that, as long as f ◦ ϕtV (x) ≥ c − ǫ, one has V
(

ϕsV (x)
)

= 4ǫ
b v

(

ϕsV (x)
)

for
0 ≤ s ≤ t and therefore, as in the proof of Theorem A.14,

f(x) − f
(

ϕtV (x)
)

= f(x) − f
(

ϕ
− 4ǫ

b
t

v (x)
)

≥ b
2

(

4ǫ
b t

)

= 2ǫt.

Since t 7→ f
(

ϕtV (x)
)

is nonincreasing, this implies ϕ1
V (x) ∈ f c−ǫ.

Lemma A.16. If f : X → R is a Lipschitz function, F : X → X a C1 diffeomorphism,
then

∂(f ◦ F )(x) = ∂f(F (x)) ◦ dF (x) := {dF (x)(ξ), ξ ∈ ∂f(F (x))}

Proof. Let h(x) = f ◦ F (x), then h : X → R is Lipschitz hence differentiable almost
everywhere. Firstly, we claim that, if h is differentiable at x, then, dh(x) = dF (x)df(F (x)).
Indeed, for any v ∈ X∗, we have

dh(x)(v) = lim
t→0

[f(F (x+ tv)) − f(F (x))]/t

= lim
t→0

[f(F (x) + tdF (x)(v)) − f(F (x))]/t

= lim
t→0

[f(F (x) + tu) − f(F (x))]/t

Since dF (x) is a bijective linear map, we get that f is differentiable at F (x) by definition.

∂(f ◦ F )(x) = co{lim d(f ◦ F )(xn), xn → x} = co{lim dF (xn)(df(F (xn))), xn → x}

= co{lim dF (x)(df(F (xn))), xn → x}

⊂ co{lim dF (x)(df(yn)), yn → x}

= ∂f(F (x)) ◦ dF (x)

The inclusion becomes equality since F is onto.

3. See the proof of Theorem A.14.
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Remark A.17. In fact, to prove the inclusion “⊂”, one dot not need F to be diffeomor-
phism, see Theorem 2.3.10 in [27] for a general statement.

Lemma A.18. If f, g : X → R are Lipschitz functions, then

∂(fg)(x) ⊂ f(x)∂g(x) + g(x)∂f(x)

Proof. By definition,

∂(fg)(x) = co{lim d(fg)(xn), xn → x}

= co{lim(f(xn)dg(xn) + g(xn)df(xn))xn → x}

= co{f(x) lim dg(xn) + g(x) lim df(xn), xn → x}

⊂ f(x)∂g(x) + g(x)∂f(x)
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